首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 744 毫秒
1.
2.
3.
4.
Molecular alterations in KRAS, BRAF, PIK3CA, and PTEN have been implicated in designing targeted therapy for colorectal cancer (CRC). The present study aimed to determine the status of these molecular alterations in Malaysian CRCs as such data are not available in the literature. We investigated the mutations of KRAS, BRAF, and PTEN, the gene amplification of PIK3CA, and the protein expression of PTEN and phosphatidylinositol 3‐kinase (PI3K) catalytic subunit (p110α) by direct DNA sequencing, quantitative real‐time PCR, and immunohistochemistry, respectively, in 49 CRC samples. The frequency of KRAS (codons 12, 13, and 61), BRAF (V600E), and PTEN mutations, and PIK3CA amplification was 25.0% (11/44), 2.3% (1/43), 0.0% (0/43), and 76.7% (33/43), respectively. Immunohistochemical staining demonstrated loss of PTEN protein in 54.5% (24/44) of CRCs and no significant difference in PI3K p110α expression between CRCs and the adjacent normal colonic mucosa (p = 0.380). PIK3CA amplification was not associated with PI3K p110α expression level, but associated with male cases (100% of male cases vs 56% of female cases harbored amplified PIK3CA, p = 0.002). PI3K p110α expression was significantly higher (p = 0.041) in poorly/moderately differentiated carcinoma compared with well‐differentiated carcinoma. KRAS mutation, PIK3CA amplification, PTEN loss, and PI3K p110α expression did not correlate with Akt phosphorylation or Ki‐67 expression. KRAS mutation, PIK3CA amplification, and PTEN loss were not mutually exclusive. This is the first report on CRC in Malaysia showing comparable frequency of KRAS mutation and PTEN loss, lower BRAF mutation rate, higher PIK3CA amplification frequency, and rare PTEN mutation, as compared with published reports.  相似文献   

5.
We describe a rare multicentric neoplastic disease arising bilteraly in the kidney. The patient was a 70‐year‐old man, who, during a period of 3 years, was treated for five independent tumors of three histotypes (three multilocular cystic clear cell renal cell neoplasms of low malignant potential, one clear cell renal cell carcinoma, and one clear cell papillary renal cell carcinoma, respectively). Pathologic diagnosis of the reported tumors was confirmed by immunohistochemical analyses, including CD10, CA IX, CK7, AMACR/RACEMASE, and 34 beta E12. Molecular detection of KRAS, BRAF, NRAS, PIK3CA, ALK, ERBB2, DDR2, MAP2K1, RET, and EGFR gene mutational analysis was also performed in all tumors.  相似文献   

6.
Altered plasma levels of lipids and lipoproteins, obesity, hypertension, and diabetes are major risk factors for atherosclerotic cardiovascular disease. To identify genes that affect these traits and disorders, we looked for association between markers in candidate genes (apolipoprotein AII (apo AII), apolipoprotein AI‐CIII‐AIV gene cluster (apo AI‐CIII‐AIV), apolipoprotein E (apo E), cholesteryl ester transfer protein (CETP), cholesterol 7α‐hydroxylase (CYP7a), hepatic lipase (HL), and microsomal triglyceride transfer protein (MTP)) and known risk factors (triglycerides (Tg), total cholesterol (TC), apolipoprotein AI (apo AI), apolipoprotein AII (apo AII), apolipoprotein B (apo B), body mass index (BMI), blood pressure (BP), leptin, and fasting blood sugar (FBS) levels.) A total of 1,102 individuals from the Pacific island of Kosrae were genotyped for the following markers: Apo AII/MspI, Apo CIII/SstI, Apo AI/XmnI, Apo E/HhaI, CETP/TaqIB, CYP7a/BsaI, HL/DraI, and MTP/HhpI. After testing for population stratification, family‐based association analysis was carried out. Novel associations found were: 1) the apo AII/MspI with apo AI and BP levels, 2) the CYP7a/BsaI with apo AI and BMI levels. We also confirmed the following associations: 1) the apo AII/MspI with Tg level; 2) the apo CIII/SstI with Tg, TC, and apo B levels; 3) the Apo E/HhaI E2, E3, and E4 alleles with TC, apo AI, and apo B levels; and 4) the CETP/TaqIB with apo AI level. We further confirmed the connection between the apo AII gene and Tg level by a nonparametric linkage analysis. We therefore conclude that many of these candidate genes may play a significant role in susceptibility to heart disease. © 2002 Wiley‐Liss, Inc.  相似文献   

7.
8.
9.
10.
Progress in our understanding of the pathogenesis and diagnosis of soft tissue neoplasia is exceptionally rapid. Although the most recent World Health Organization classification of soft tissue tumours contains many new entities and refinements of older ones, even this comprehensive document is by now incomplete or in need of modification. This review will attempt to summarise the developments in soft tissue pathology that have occurred since 2020, emphasising lesions for which morphology and genetics intersect in a complementary fashion. Novel entities discussed include KMT2A-rearranged sarcoma, PRRX::NCOAx fibroblastic tumours, EWSR1::PATZ1 sarcomas, BRAF-altered infantile fibrosarcoma-like lesions, NUTM1-rearranged colorectal sarcomas, and a variety of interesting giant cell-rich and matrix-producing lesions. In addition, recently described mimics of atypical lipomatous tumour/well-differentiated liposarcoma are covered, as is a wholly new, morphologically defined and genetically confirmed entity, pseudoendocrine sarcoma. Finally, exciting new developments in the use of immunohistochemistry as a surrogate for molecular genetic techniques are discussed.  相似文献   

11.
12.
13.
14.
15.
16.
17.
Schwannomatosis is a rare neurofibromatosis clinically diagnosed by age‐dependent criteria, with bilateral vestibular schwannoma and/or a constitutional NF2 mutation representing exclusion criteria. Following SMARCB1 germline mutations, constitutional mutations in LZTR1 were discovered. We report on the molecular investigation in a patient presenting at 14 years with a unilateral vestibular schwannoma, ultimately causing blindness and unilateral hearing loss, in the absence of other schwannomas or a positive family history. In DNA derived from frozen tumor tissue, a comprehensive NF2, SMARCB1 and LZTR1 analysis showed an NF2 truncating mutation c.1006_1021delins16; an LZTR1 mutation c.791+1G>A; and a partial 22q deletion including NF2, SMARCB1 and LZTR1. Sequence analysis on peripheral blood derived DNA showed the LZTR1 mutation to be constitutional, but the NF2 mutation and partial 22q deletion were not found, indicating them to be somatic events. RNA‐based targeted analysis confirmed missplicing of LZTR1 intron 8, predicted to result in a premature stop codon. This LZTR1 mutation was paternally inherited. While isolated vestibular schwannoma or NF2 may be considered in a young individual with a unilateral vestibular schwannoma, this report suggests that LZTR1 ‐related schwannomatosis be added to this differential diagnosis.  相似文献   

18.
Multilocus sequence typing and pulsed‐field gel electrophoresis were used to type 22 commensal isolates of Neisseria perflava collected by swabbing from neutropenic patients. High genetic diversity was found among our N. perflava clinical isolates.  相似文献   

19.
The group of CNS mesenchymal (non‐meningothelial) and primary glial/neuronal tumors in association with EWSR1‐non‐ETS rearrangements comprises a growing spectrum of entities, mostly reported in isolation with incomplete molecular profiling. Archival files from three pediatric institutions were queried for unusual cases of pediatric (≤21 years) CNS EWSR1‐rearranged tumors confirmed by at least one molecular technique. Extra‐axial tumors and cases with a diagnosis of Ewing sarcoma (EWSR1‐ETS family fusions) were excluded. Additional studies, including anchored multiplex‐PCR with next‐generation sequencing and DNA methylation profiling, were performed as needed to determine fusion partner status and brain tumor methylation class, respectively. Five cases (median 17 years) were identified (M:F of 3:2). Location was parenchymal (n = 3) and undetermined (n = 2) with topographic distributions including posterior fossa (n = 1), frontal (n = 1), temporal (n = 1), parietal (n = 1) and occipital (n = 1) lobes. Final designation with fusion findings included desmoplastic small round cell tumor (EWSR1‐WT1; n = 1) and tumors of uncertain histogenesis (EWSR1‐CREM, n = 1; EWSR1‐CREB1, n = 1; EWSR1‐PLAGL1, n = 1; and EWSR1‐PATZ1, n = 1). Tumors showed a wide spectrum of morphology and biologic behavior. For EWSR1‐CREM, EWSR1‐PLAGL1 and EWSR1‐PATZ1 tumors, no significant methylation scores were reached in the known brain tumor classes. Available outcome (4/5) was reported as favorable (n = 2) and unfavorable (n = 2) with a median follow‐up of 30 months. In conclusion, we describe five primary EWSR1‐nonETS fused CNS tumors exhibiting morphologic and biologic heterogeneity and we highlight the clinical importance of determining specific fusion partners to improve diagnostic accuracy, treatment and monitoring. Larger prospective clinicopathological and molecular studies are needed to determine the prognostic implications of histotypes, anatomical location, fusion partners, breakpoints and methylation profiles in patients with these rare tumors.  相似文献   

20.
Recently, the gene coding for the tandem pore domain K+‐channel TASK‐3 (KCNK9) has been localized to the chromosomal region 8q24. Because mutations in ion channel genes have been recognized as an important factor in the etiology of abnormal neuronal excitability, TASK‐3 is an interesting candidate gene for epilepsies linked to 8q24. We therefore performed a mutation analysis of the TASK‐3 gene in 65 patients with childhood and juvenile absence epilepsy. Only one silent nucleotide exchange (636C/T) was detected in exon 2 of the TASK‐3 coding region. No evidence for an allelic association was found between the exon 2 polymorphism and absence epilepsy. Accordingly, genetic variation of the TASK‐3 coding region does not play a major role in the etiology of idiopathic absence epilepsies. © 2002 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号