首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Obesity is associated with the accumulation of pro‐inflammatory cells in visceral adipose tissue (VAT), which is an important underlying cause of insulin resistance and progression to diabetes mellitus type 2 (DM2). Although the role of pro‐inflammatory cytokines in disease development is established, the initiating events leading to immune cell activation remain elusive. Lean adipose tissue is predominantly populated with regulatory cells, such as eosinophils and type 2 innate lymphocytes. These cells maintain tissue homeostasis through the excretion of type 2 cytokines, such as IL‐4, IL‐5, and IL‐13, which keep adipose tissue macrophages (ATMs) in an anti‐inflammatory, M2‐like state. Diet‐induced obesity is associated with the loss of tissue homeostasis and development of type 1 inflammatory responses in VAT, characterized by IFN‐γ. A key event is a shift of ATMs toward an M1 phenotype. Recent studies show that obesity‐induced adipocyte hypertrophy results in upregulated surface expression of stress markers. Adipose stress is detected by local sentinels, such as NK cells and CD8+ T cells, which produce IFN‐γ, driving M1 ATM polarization. A rapid accumulation of pro‐inflammatory cells in VAT follows, leading to inflammation. In this review, we provide an overview of events leading to adipose tissue inflammation, with a special focus on adipose homeostasis and the obesity‐induced loss of homeostasis which marks the initiation of VAT inflammation.  相似文献   

2.
The global obesity epidemic and its associated co‐morbidities, including type 2 diabetes, cardiovascular disease and certain types of cancers, have drawn attention to the pivotal role of adipocytes in health and disease. Besides their ‘classical’ function in energy storage and release, adipocytes interact with adipose‐tissue‐resident immune cells, among which are lipid‐responsive invariant natural killer T (iNKT) cells. The iNKT cells are activated by lipid antigens presented by antigen‐presenting cells as CD1d/lipid complexes. Upon activation, iNKT cells can rapidly secrete soluble mediators that either promote or oppose inflammation. In lean adipose tissue, iNKT cells elicit a predominantly anti‐inflammatory immune response, whereas obesity is associated with declining iNKT cell numbers. Recent work showed that adipocytes act as non‐professional antigen‐presenting cells for lipid antigens. Here, we discuss endogenous lipid antigen processing and presentation by adipocytes, and speculate on how these lipid antigens, together with ‘environmental factors’ such as tissue/organ environment and co‐stimulatory signals, are able to influence the fate of adipose‐tissue‐resident iNKT cells, and thereby the role of these cells in obesity and its associated pathologies.  相似文献   

3.
Glucose is a vital source of energy for all mammals. The balance between glucose uptake, metabolism and storage determines the energy status of an individual, and perturbations in this balance can lead to metabolic diseases. The maintenance of organismal glucose metabolism is a complex process that involves multiple tissues, including adipose tissue, which is an endocrine and energy storage organ that is critical for the regulation of systemic metabolism. Adipose tissue consists of an array of different cell types, including specialized adipocytes and stromal and endothelial cells. In addition, adipose tissue harbors a wide range of immune cells that play vital roles in adipose tissue homeostasis and function. These cells contribute to the regulation of systemic metabolism by modulating the inflammatory tone of adipose tissue, which is directly linked to insulin sensitivity and signaling. Furthermore, these cells affect the control of thermogenesis. While lean adipose tissue is rich in type 2 and anti-inflammatory cytokines such as IL-10, obesity tips the balance in favor of a proinflammatory milieu, leading to the development of insulin resistance and the dysregulation of systemic metabolism. Notably, anti-inflammatory immune cells, including regulatory T cells and innate lymphocytes, protect against insulin resistance and have the characteristics of tissue-resident cells, while proinflammatory immune cells are recruited from the circulation to obese adipose tissue. Here, we review the key findings that have shaped our understanding of how immune cells regulate adipose tissue homeostasis to control organismal metabolism.  相似文献   

4.
5.
Obesity is a complex disorder of excessive adiposity, and is associated with adverse health effects such as cardiometabolic complications, which are to a large extent attributable to dysfunctional white adipose tissue. Adipose tissue dysfunction is characterized by adipocyte hypertrophy, impaired adipokine secretion, a chronic low‐grade inflammatory status, hormonal resistance and altered metabolic responses, together contributing to insulin resistance and related chronic diseases. Adipose tissue hypoxia, defined as a relative oxygen deficit, in obesity has been proposed as a potential contributor to adipose tissue dysfunction, but studies in humans have yielded conflicting results. Here, we will review the role of adipose tissue oxygenation in the pathophysiology of obesity‐related complications, with a specific focus on human studies. We will provide an overview of the determinants of adipose tissue oxygenation, as well as the role of adipose tissue oxygenation in glucose homeostasis, lipid metabolism and inflammation. Finally, we will discuss the putative effects of physiological and experimental hypoxia on adipose tissue biology and whole‐body metabolism in humans. We conclude that several lines of evidence suggest that alteration of adipose tissue oxygenation may impact metabolic homeostasis, thereby providing a novel strategy to combat chronic metabolic diseases in obese humans.  相似文献   

6.
Adipose tissue produces multiple mediators that modulate the immune response. Adiponectin is an adipocyte‐derived cytokine that exhibits metabolic and anti‐inflammatory effects. Adiponectin acts through binding to adiponectin receptor 1 and 2 (AdipoR1/AdipoR2). AdipoR1 is ubiquitously expressed, whereas AdipoR2 is restricted to skeletal muscle and liver. AdipoR1 expression has been reported on a small percentage of T cells; nevertheless, it is still unknown whether Foxp3+ regulatory T cells (Tregs) express AdipoR1. Recently, it has been shown that Tregs accumulate in adipose tissue and that they play a potential role in modulating adipose tissue inflammation. Our aim was to evaluate AdipoR1 expression in adipose tissue‐resident Tregs and to evaluate the effect of weight gain on this expression. Male C57BL/6 mice were fed with a high‐fat diet for 14 weeks (to develop overweight) or 21 weeks (to develop obesity). Mice on a standard diet were used as age‐matched controls. Helios expression was evaluated as a marker to discriminate thymic‐derived from peripherally induced Tregs. The majority of Tregs in both adipose tissue and the spleen expressed Helios. Adipose tissue Tregs expressed higher levels of AdipoR1 than Tregs in the spleen. AdipoR1 expression on adipose tissue Helios+ Tregs was negatively correlated with epididymal fat. Overall, we show that AdipoR1 is expressed on adipose tissue‐resident Tregs, mainly Helios+ Tregs, and that this expression is dependent on weight and fat accumulation. Because both adiponectin and Tregs play roles in anti‐inflammatory mechanisms, our data propose a new mechanism through which weight gain might alter immunoregulation.  相似文献   

7.
The interaction between tissue‐resident mast cells (MCs) and recruited immune cells contributes to tissue immunosurveillance. However, the cells, mechanisms, and receptors involved in this crosstalk remain ill defined. Invariant natural killer T (iNKT) cells are CD1d‐restricted innate lymphocytes that recognize glycolipid antigens and have emerged as critical players in immunity. Here, we show that primary mouse peritoneal MCs express surface CD1d, which is upregulated in vivo following administration of alpha‐galactosylceramide. In contrast, in BM‐derived MCs CD1d was found to be stored intracellularly and to relocate at the cell surface upon IgE‐mediated degranulation. Activated BM‐derived MCs expressing surface CD1d and loaded with alpha‐galactosylceramide were found to induce iNKT‐cell proliferation and the release of IFN‐γ, IL‐13, and IL‐4 in a CD1d‐restricted manner. Moreover, the costimulatory molecules CD48, CD137L, CD252, CD274, and CD275 affected MC‐induced IFN‐γ release and iNKT‐cell proliferation. Interestingly, among the costimulatory molecules, CD48 and CD252 exhibited a distinctly regulatory activity on iNKT‐cell release of both IFN‐γ and IL‐13. In conclusion, we demonstrate that the crosstalk between MCs and iNKT cells may regulate inflammatory immune responses.  相似文献   

8.
Obesity is associated with chronic low‐grade inflammation of the adipose tissue (AT) that might develop into systemic inflammation, insulin resistance (IR) and an increased risk of type 2 diabetes mellitus (T2DM) in severe obese rodents and humans. In the lean state, small normal adipocytes and AT macrophages interact with each other to maintain metabolic homeostasis but during obesity, enlarged adipocytes secrete inflammatory mediators and express immune receptors to recruit immune cells and aggravate the inflammation. The better understanding of the obesity‐related inflammatory milieu and the sequential events leading to IR could be helpful in designing new preventive and therapeutic strategies. The present review will discuss the cellular and molecular abnormalities participating in the pathogenesis of obesity in obese individuals as well as high‐fat diet (HFD)‐fed mice, a mouse model of obesity.  相似文献   

9.
Invariant natural killer T (iNKT) cells mediate rapid immune responses which bridge the gap between innate and adaptive responses to pathogens while also providing key regulation to maintain immune homeostasis. Both types of important iNKT immune responses are mediated through interactions with innate and adaptive B cells. As such, iNKT cells sit at the decision‐making fulcrum between regulating inflammatory or autoreactive B cells and supporting protective or regulatory B cell populations. iNKT cells interpret the signals in their environment to set the tone for subsequent adaptive responses, with outcomes ranging from getting licensed to maintain homeostasis as an iNKT regulatory cell (iNKTreg) or being activated to become an iNKT follicular helper (iNKTFH) cell supporting pathogen‐specific effector B cells. Here we review iNKT and B cell cooperation across the spectrum of immune outcomes, including during allergy and autoimmune disease, tumor surveillance and immunotherapy, or pathogen defense and vaccine responses. Because of their key role as influencers, iNKT cells provide a valuable target for therapeutic interventions. Understanding the nature of the interactions between iNKT and B cells will enable the development of clinical interventions to strategically target regulatory iNKT and B cell populations or inflammatory ones, depending on the circumstance.  相似文献   

10.
Adipose tissue (AT) is home to an abundance of immune cells. With chronic obesity, inflammatory immune cells accumulate and promote insulin resistance and the progression to type 2 diabetes mellitus. In contrast, recent studies have highlighted the regulation and function of immune cells in lean, healthy AT, including those associated with type 2 or “allergic” immunity. Although traditionally activated by infection with multicellular helminthes, AT type 2 immunity is active independently of infection, and promotes tissue homeostasis, AT “browning,” and systemic insulin sensitivity, protecting against obesity‐induced metabolic dysfunction and type 2 diabetes mellitus. In particular, group 2 innate lymphoid cells (ILC2s) are integral regulators of AT type 2 immunity, producing the cytokines interleukin‐5 and IL‐13, promoting eosinophils and alternatively activated macrophages, and cooperating with and promoting AT regulatory T (Treg) cells. In this review, we focus on the recent developments in our understanding of group 2 innate lymphoid cell cells and type 2 immunity in AT metabolism and homeostasis.  相似文献   

11.
Metabolic disorders, such as obesity, type 2 diabetes mellitus, and nonalcoholic fatty liver disease, are characterized by chronic low-grade tissue and systemic inflammation. During obesity, the adipose tissue undergoes immunometabolic and functional transformation. Adipose tissue inflammation is driven by innate and adaptive immune cells and instigates insulin resistance. Here, we discuss the role of innate immune cells, that is, macrophages, neutrophils, eosinophils, natural killer cells, innate lymphoid type 2 cells, dendritic cells, and mast cells, in the adipose tissue in the healthy (lean) and diseased (obese) state and describe how their function is shaped by the obesogenic microenvironment, and humoral, paracrine, and cellular interactions. Moreover, we particularly outline the role of hypoxia as a central regulator in adipose tissue inflammation. Finally, we discuss the long-lasting effects of adipose tissue inflammation and its potential reversibility through drugs, caloric restriction, or exercise training.  相似文献   

12.
Adipose tissue is an active organ playing a role not only in metabolism but also in immune and inflammatory processes, releasing several pro-inflammatory mediators. This can explain the possible association between obesity and rheumatoid arthritis (RA) and its role in the progression of the disease. Adipose and synovial tissues share common histological features of local inflammation in terms of activation of target tissues infiltrating cells (i.e. myeloid cells). Among the so-called adipocytokines, PEDF and Chemerin orchestrate the cellular cross-talk between adipose and myeloid cells, being possible biomarkers to monitor the effect of weight loss or the decrease of adipose tissue in patients with RA. Moreover, dietary intervention has been demonstrated to reduce Chemerin as well as IL-6 and MCP-1 expression. Finally, epigenetic regulators such as micro-RNAs (i.e. miR-155) are key regulators of myeloid cells activation in RA and obesity as well as in adipocytes. In this review, we will summarize the biological link between obesity/overweight state and RA focusing on pathophysiological mechanisms, consequences and management considerations.  相似文献   

13.
脂肪组织和脂肪细胞因子的研究进展   总被引:4,自引:0,他引:4       下载免费PDF全文
脂肪组织是一个活跃的内分泌和旁分泌器官,分泌许多细胞因子和生物活性因子。脂肪组织的分泌功能存在节律性,全身各脂肪库脂肪因子的表达和分泌具有特异性,提示其复杂的生物学功能。脂肪组织是促炎症反应介质的丰富来源,这些介质参与炎症、凝血和纤溶反应,可直接引起血管损伤、胰岛素抵抗和动脉粥样硬化;脂肪细胞因子是肥胖和代谢综合征的分子联系。  相似文献   

14.
Adipose tissue is a highly dynamic endocrine organ, secreting a number of bioactive substances (adipokines) regulating insulin sensitivity, energy metabolism and vascular homeostasis. Dysfunctional adipose tissue is a key mediator that links obesity with insulin resistance, hypertension and cardiovascular disease. Obese adipose tissue is characterized by adipocyte hypertrophy and infiltration of inflammatory macrophages and lymphocytes, leading to the augmented production of pro-inflammatory adipokines and vasoconstrictors that induce endothelial dysfunction and vascular inflammation through their paracrine and endocrine actions. By contrast, the secretion of adiponectin, an adipokine with insulin sensitizing and anti-inflammatory activities, is decreased in obesity and its related pathologies. Emerging evidence suggests that adiponectin is protective against vascular dysfunction induced by obesity and diabetes, through its multiple favourable effects on glucose and lipid metabolism as well as on vascular function. Adiponectin improves insulin sensitivity and metabolic profiles, thus reducing the classical risk factors for cardiovascular disease. Furthermore, adiponectin protects the vasculature through its pleiotropic actions on endothelial cells, endothelial progenitor cells, smooth muscle cells and macrophages. Data from both animal and human investigations demonstrate that adiponectin is an important component of the adipo-vascular axis that mediates the cross-talk between adipose tissue and vasculature. This review highlights recent work on the vascular protective activities of adiponectin and discusses the molecular pathways underlying the vascular actions of this adipokine.  相似文献   

15.
Adipose tissue inflammation mediates the association between excessive body fat accumulation and several chronic inflammatory diseases. A high prevalence of obesity-associated adipose tissue inflammation was observed not only in patients with cardiovascular conditions but also in patients with inflammatory bowel diseases, abdominal aortic aneurysm, or cardiorenal syndrome. In addition to excessive caloric intake, other triggers promote visceral adipose tissue inflammation followed by chronic, low-grade systemic inflammation. The infiltration and accumulation of immune cells in the inflamed and hypertrophied adipose tissue promote the production of inflammatory cytokines, contributing to target organ damages. This comorbidity seems to delimit subgroups of individuals with systemic adipose tissue inflammation and more severe chronic inflammatory diseases that are refractory to conventional treatment. This review highlights the association between adipose tissue immune response and the pathophysiology of visceral adiposity-related chronic inflammatory diseases, while suggesting several new therapeutic strategies.  相似文献   

16.
Obesity‐associated visceral adipose tissue (AT) inflammation promotes insulin resistance and type 2 diabetes (T2D). In mice, lean visceral AT is populated with anti‐inflammatory cells, notably regulatory T cells (Tregs) expressing the IL‐33 receptor ST2. Conversely, obese AT contains fewer Tregs and more proinflammatory cells. In humans, however, there is limited evidence for a similar pattern of obesity‐associated immunomodulation. We used flow cytometry and mRNA quantification to characterize human omental AT in 29 obese subjects, 18 of whom had T2D. Patients with T2D had increased proportions of inflammatory cells, including M1 macrophages, with positive correlations to body mass index. In contrast, Treg frequencies negatively correlated to body mass index but were comparable between T2D and non‐T2D individuals. Compared to human thymic Tregs, omental AT Tregs expressed similar levels of FOXP3, CD25, IKZF2, and CTLA4, but higher levels of PPARG, CCR4, PRDM1, and CXCL2. ST2, however, was not detectable on omental AT Tregs from lean or obese subjects. This is the first comprehensive investigation into how omental AT immunity changes with obesity and T2D in humans, revealing important similarities and differences to paradigms in mice. These data increase our understanding of how pathways of immune regulation could be targeted to ameliorate AT inflammation in humans.  相似文献   

17.
《Seminars in immunology》2015,27(5):322-333
Adipose tissue provides the body with a storage depot of nutrients that is drained during times of starvation and replenished when food sources are abundant. As such, it is the primary sensor for nutrient availability in the milieu of an organism, which it communicates to the body through the excretion of hormones. Adipose tissue regulates a multitude of body functions associated with metabolism, such as gluconeogenesis, feeding and nutrient uptake. The immune system forms a vital layer of protection against micro-organisms that try to gain access to the nutrients contained in the body. Because infections need to be resolved as quickly as possible, speed is favored over energy-efficiency in an immune response. Especially when immune cells are activated, they switch to fast, but energy-inefficient anaerobic respiration to fulfill their energetic needs. Despite the necessity for an effective immune system, it is not given free rein in its energy expenditure. Signals derived from adipose tissue limit immune cell numbers and activity under conditions of nutrient shortage, whereas they allow proper immune cell activity when food sources are sufficiently available. When excessive fat accumulation occurs, such as in diet-induced obesity, adipose tissue becomes the site of pathological immune cell activation, causing chronic low-grade systemic inflammation. Obesity is therefore associated with a number of disorders in which the immune system plays a central role, such as atherosclerosis and non-alcoholic steatohepatitis. In this review, we will discuss the way in which adipose tissue regulates activity of the immune system under healthy and pathological conditions.  相似文献   

18.
One decade has passed since seminal publications described macrophage infiltration into adipose tissue (AT) as a key contributor to inflammation and obesity-related insulin resistance. Currently, a PubMed search for ‘adipose tissue inflammation’ reveals over 3500 entries since these original reports. We now know that resident macrophages in lean AT are alternatively activated, M2-like, and play a role in AT homeostasis. In contrast, the macrophages in obese AT are dramatically increased in number and are predominantly classically activated, M1-like, and promote inflammation and insulin resistance. Mediators of AT macrophage (ATM) phenotype include adipokines and fatty acids secreted from adipocytes as well as cytokines secreted from other immune cells in AT. There are several mechanisms that could explain the large increase in ATMs in obesity. These include recruitment-dependent mechanisms such as adipocyte death, chemokine release, and lipolysis of fatty acids. Newer evidence also points to recruitment-independent mechanisms such as impaired apoptosis, increased proliferation, and decreased egress. Although less is known about the homeostatic function of M2-like resident ATMs, recent evidence suggests roles in AT expansion, thermoregulation, antigen presentation, and iron homeostasis. The field of immunometabolism has come a long way in the past decade, and many exciting new discoveries are bound to be made in the coming years that will expand our understanding of how AT stands at the junction of immune and metabolic co-regulation.  相似文献   

19.
Adipose tissue, adipokines, and inflammation   总被引:46,自引:0,他引:46  
White adipose tissue is no longer considered an inert tissue mainly devoted to energy storage but is emerging as an active participant in regulating physiologic and pathologic processes, including immunity and inflammation. Macrophages are components of adipose tissue and actively participate in its activities. Furthermore, cross-talk between lymphocytes and adipocytes can lead to immune regulation. Adipose tissue produces and releases a variety of proinflammatory and anti-inflammatory factors, including the adipokines leptin, adiponectin, resistin, and visfatin, as well as cytokines and chemokines, such as TNF-alpha, IL-6, monocyte chemoattractant protein 1, and others. Proinflammatory molecules produced by adipose tissue have been implicated as active participants in the development of insulin resistance and the increased risk of cardiovascular disease associated with obesity. In contrast, reduced leptin levels might predispose to increased susceptibility to infection caused by reduced T-cell responses in malnourished individuals. Altered adipokine levels have been observed in a variety of inflammatory conditions, although their pathogenic role has not been completely clarified.  相似文献   

20.
Obesity and type‐2 diabetes (T2D) are associated with metabolic defects and inflammatory processes in fat depots. FoxP3+ regulatory T cells (Tregs) control immune tolerance, and have an important role in controlling tissue‐specific inflammation. In this mini‐review we will discuss current insights into how cross‐talk between T cells and adipose tissue shapes the inflammatory environment in obesity‐associated metabolic diseases, focusing on the role of CD4+T cells and Tregs. We will also highlight potential opportunities for how the immunoregulatory properties of Tregs could be harnessed to control inflammation in obesity and T2D and emphasize the critical need for more research on humans to establish mechanisms that are conserved in both mice and humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号