首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
α7 nicotinic acetylcholine receptor expression in Alzheimer's disease   总被引:1,自引:0,他引:1  
The brains of people with Alzheimer's disease (AD) display several characteristic pathological features, including deposits (plaques) of beta-amyloid 1-42 (Abeta1-42), intraneuronal accumulations (tangles) of hyperphosphorylated tau, degeneration of the basal forebrain cholinergic pathway, and gliosis. Abeta1-42 plaques develop in specific brain regions, including hippocampus and cortex, as well as in the vasculature. Abeta1-42 might promote neurodegeneration through the induction of free radicals and disruption of Ca2+ homeostasis, giving rise to the symptoms of AD. Abeta1-42 interacts with the alpha7 subtype of the nicotinic acetylcholine receptor (alpha7 nAChR), which is widely expressed throughout the central and peripheral nervous systems, as well as in several nonneuronal loci, such as epithelial cells, lymphoid tissues, and peripheral blood lymphocytes. Western blot and autoradiographic analyses indicate that the alpha7 nAChR subunit protein is up-regulated in human brain samples from Alzheimer patients, as well as in animal models of AD (Dineley et al., 2001; Bednar et al., 2002), and might be involved in nicotine-mediated reduction of Abeta1-42 deposition (Hellstrom et al., 2004), although the nature of this relationship remains ill-defined. We have undertaken a semiquantitative histological evaluation of alpha7 nAChR expression in a mouse model of AD pathology, as well as a comparison of alpha7 nAChR levels in lymphocytes from AD patients and control subjects.  相似文献   

2.
Mutations in the beta-amyloid precursor protein (APP) gene cause familial Alzheimer's disease (AD). Although amyloid beta peptide (Abeta) is the principal constituent of senile plaques in AD, other cleavage products of APP are also implicated in playing a role in the pathogenesis of AD. C-terminal fragments of APP (APP-CTs), that contain complete Abeta sequence, are found in neuritic plaques, neurofibrillary tangles and the cytosol of lymphoblastoid cells obtained from AD patients. Our previous report demonstrated that APP-CT105 causes death of differentiated PC12 cells and cultured rat cortical neurons (Kim and Suh [1996] J. Neurochem. 67:1172-1182) and induces strong inward currents in Xenopus oocyte (Fraser et al., [1996] J. Neurochem. 66:2034-2040). In the present study, to investigate which domain of APP-CT105 is responsible for the neurotoxicity, we have made deletion mutants of APP-CT105 without Abeta and transmembrane domain (TM) or without NPTY domain, a putative endocytosis signaling sequence, using the PCR-amplified strategy and the recombinant GST-fusion protein strategy. The effect on cell survival of the deletion mutants of APP-CT105 (8 microM) was then determined by the LDH and MTT assay. We found that C-terminal fragment without NPTY significantly causes cell death in NGF-differentiated PC12 cells and cultured rat cortical neurons. This finding suggests that NPTY may not play an important role in APP-CT105 mediated neurotoxicity. We found, however, that C-terminal fragment without Abeta and TM significantly induces neuronal cell death. Our results suggest that in addition to Abeta, C-terminal fragment of APP without Abeta and TM domain itself may also participate in the neuronal degeneration in AD.  相似文献   

3.
Protein oxidation has been implicated in Alzheimer's disease (AD) and can lead to loss of protein function, abnormal protein turnover, interference with cell cycle, imbalance of cellular redox potential, and eventually cell death. Recent proteomics work in our laboratory has identified specifically oxidized proteins in AD brain such as: creatine kinase BB, glutamine synthase, ubiquitin carboxy-terminal hydrolase L-1, dihydropyrimidase-related protein 2, alpha-enolase, and heat shock cognate 71, indicating that a number of cellular mechanisms are affected including energy metabolism, excitotoxicity and/or synaptic plasticity, protein turnover, and neuronal communication. Synapse loss is known to be an early pathological event in AD, and incubation of synaptosomes with amyloid beta peptide 1-42 (Abeta 1-42) leads to the formation of protein carbonyls. In order to test the involvement of Abeta(1-42) in the oxidation of proteins in AD brain, we utilized two-dimensional gel electrophoresis, immunochemical detection of protein carbonyls, and mass spectrometry to identify proteins from synaptosomes isolated from Mongolian gerbils. Abeta(1-42) treatment leads to oxidatively modified proteins, consistent with the notion that Abeta(1-42)-induced oxidative stress plays an important role in neurodegeneration in AD brain. In this study, we identified beta-actin, glial fibrillary acidic protein, and dihydropyrimidinase-related protein-2 as significantly oxidized in synaptosomes treated with Abeta(1-42). Additionally, H+-transporting two-sector ATPase, syntaxin binding protein 1, glutamate dehydrogenase, gamma-actin, and elongation factor Tu were identified as increasingly carbonylated. These results are discussed with respect to their potential involvement in the pathogenesis of AD.  相似文献   

4.
Protein oxidation mediated by amyloid beta-peptide (1-42) (Abeta[1-42]) has been proposed to play a central role in the pathogenesis of Alzheimer's disease (AD), a neurodegenerative disorder associated with aging and the loss of cognitive function. The specific mechanism by which Abeta(1-42), the primary component of the senile plaque and a pathologic hallmark of AD, contributes to the oxidative damage evident in AD brain is unknown. Moreover, the specific proteins that are vulnerable to oxidative damage induced by Abeta(1-42) are unknown. Identification of such proteins could contribute to our understanding of not only the role of Abeta(1-42) in the pathogenesis of AD, but also provide insight into the mechanisms of neurodegeneration at the protein level in AD. We report the proteomic identification of two proteins found to be oxidized significantly in neuronal cultures treated with Abeta(1-42): 14-3-3zeta and glyceraldehyde-3-phosphate dehydrogenase. We also report that pretreatment of neuronal cultures with gamma-glutamylcysteine ethyl ester, a compound that supplies the limiting substrate for the synthesis of glutathione and results in the upregulation of glutathione in neuronal cultures, protects both proteins against Abeta(1-42)-mediated protein oxidation.  相似文献   

5.
Transmissible spongiform encephalopaties are caused by an extracellular surface protein, the scrapie prion protein (PrPsc), which is an aberrant form of normal and functional cellular PrP (PrPc). The pathological hallmarks of these diseases are the accumulation and deposition of PrPsc in the form of amyloid fibrils in the central nervous system (Tateishi et al., 1988), similar to amyloid-beta (Abeta) protein in Alzheimer's disease (AD). In some patients, Abeta and prion pathology can coexist (Hainfellner et al., 1998), and a common spatial pattern of protein deposition has been described (Armstrong et al., 2001). In addition, it is well-known that acetylcholinesterase (AChE) colocalizes with Abeta deposits of brains in AD patients and accelerates assembly of Abeta peptides through the peripheral site of the enzyme (Inestrosa et al., 1996). The aim of the present study was to analyze time course and concentration dependence of the AChE proaggregating effect on synthetic peptide-spanning residues 106-126 of human PrP (PrP106-126) and the reversion of this effect by different AChE inhibitors (AChEIs).  相似文献   

6.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by loss of memory and cognition and by senile plaques and neurofibrillary tangles in brain. Amyloid-beta peptide, particularly the 42-amino-acid peptide (Abeta(1-42)), is a principal component of senile plaques and is thought to be central to the pathogenesis of the disease. The AD brain is under significant oxidative stress, and Abeta(1-42) peptide is known to cause oxidative stress in vitro and in vivo. Acetyl-L-carnitine (ALCAR) is an endogenous mitochondrial membrane compound that helps to maintain mitochondrial bioenergetics and lowers the increased oxidative stress associated with aging. Glutathione (GSH) is an important endogenous antioxidant, and its levels have been shown to decrease with aging. Administration of ALCAR increases cellular levels of GSH in rat astrocytes. In the current study, we investigated whether ALCAR plays a protective role in cortical neuronal cells against Abeta(1-42)-mediated oxidative stress and neurotoxicity. Decreased cell survival in neuronal cultures treated with Abeta(1-42) correlated with an increase in protein oxidation (protein carbonyl, 3-nitrotyrosine) and lipid peroxidation (4-hydroxy-2-nonenal) formation. Pretreatment of primary cortical neuronal cultures with ALCAR significantly attenuated Abeta(1-42)-induced cytotoxicity, protein oxidation, lipid peroxidation, and apoptosis in a dose-dependent manner. Addition of ALCAR to neurons also led to an elevated cellular GSH and heat shock proteins (HSPs) levels compared with untreated control cells. Our results suggest that ALCAR exerts protective effects against Abeta(1-42) toxicity and oxidative stress in part by up-regulating the levels of GSH and HSPs. This evidence supports the pharmacological potential of acetyl carnitine in the management of Abeta(1-42)-induced oxidative stress and neurotoxicity. Therefore, ALCAR may be useful as a possible therapeutic strategy for patients with AD.  相似文献   

7.
Alzheimer's disease (AD) is characterized by cholinergic dysfunction and progressive basal forebrain cell loss which has been hypothesized to be associated with extensive accumulation of beta-amyloid (Abeta). To reveal whether oligomeric Abeta displays a particular toxicity for cholinergic neurons, the cholinergic cell line SN56.B5.G4 (SN56) was used as a model. Recently performed microarray analyses demonstrated that genes affected by exposure of SN56 cells with 50 microM oligomeric Abeta(1-42) for 24 h were involved in protein modification and degradation [Heinitz, K., Beck, M., Schliebs, R., Perez-Polo, J.R., 2006. Toxicity mediated by soluble oligomers of beta-amyloid(1-42) on cholinergic SN56.B5.G4 cells. J. Neurochem. 98, 1930-1945]. Using a proteomic approach, we compared the levels of proteins and specially of phosphorylated proteins in cytosolic fractions of cell lysates from cholinergic SN56 cells exposed to 50 microM Abeta(1-42) for 24h to those in control incubations. We show here that the levels of calreticulin, and mitogen-activated protein kinase (MAPK) kinase 6c were up-regulated in cholinergic SN56 cells exposed to Abeta(1-42), while gamma-actin appeared down-regulated. Abeta(1-42) exposure of cholinergic SN56 cells led to decreased phosphorylation of phosphoproteins, such as the Rho GDP dissociation inhibitor, the ubiquitin carboxyl terminal hydrolase-1, and the tubulin alpha-chain isotype Malpha6, as compared to untreated control lysates. The proteins identified have also been reported to be affected in brains of AD patients, suggesting a potential role of Abeta in influencing the integrity and functioning of the proteome in AD.  相似文献   

8.
The carboxy-terminal fragments (CTFs) of the amyloid precursor protein (APP) are considered beta-amyloid (Abeta) precursors as well as molecular species possibly amyloidogenic and neurotoxic by [corrected] in vitro or in animal models. The CTF's role in the pathogenesis of Alzheimer's disease (AD) is however relatively unexplored in human brain. In this study, we analyzed brain extracted CTFs in subjects with AD, non-AD control, and Down's syndrome (DS) cases. Our data indicate that: (i) In fetal DS subjects CTFs levels are increased in comparison to age-matched control, suggesting that the enhanced CTFs formation is important for the early occurrence of plaques deposition in DS. No significant difference in CTFs level [corrected] between AD and age-matched control cases. (ii) CTFs modified at their N-terminus are the direct precursors of similarly N-terminally modified Abeta peptides, which constitute the most abundant species in AD and DS plaques. This observation suggests that N-truncated Abeta peptides are formed directly at beta-secretase level and not through a progressive proteolysis of full-length Abeta1-40/42. (iii) Among the differently cleaved CTFs, only the 22- and 12.5-kDa CTF polypeptides are tyrosine phosphorylated in both AD and control brain while the full-length APP and the CTFs migrating below the 12.5-kDa marker are not phosphorylated, suggesting that APP and CTFs may be involved in different pathways depending on their length and sequences. This study provides evidence that CTFs constitute in human brain a molecular species directly involved in AD pathogenesis and in the development of the AD-like pathology in DS subjects.  相似文献   

9.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive impairments that become severe enough to interfere with the daily activities of patients and eventually lead to death (Chung and Cummings, 2000). Arecent study reports that approx 24 million people suffer from dementia worldwide. If the mortality rate does not change and no curative or preventive treatment is developed, this number is expected to double every 20 yr worldwide (Ferri et al., 2005). Although the causes of AD remain obscure, it has been reported that incremental loss of cholinergic neurons and of nicotinic receptor (nAChR) function/expression in specific brain regions correlates well with the severity of the symptoms at early stages of the disease (Hellstr?m-Lindahl et al., 1999; Nordberg, 2001; Perry et al., 2001; Wevers et al., 1999). In patients with more advanced stages of AD, such a correlation between the magnitude of nAChR loss and of cognitive decline does not appear to exist (Sabbagh et al., 2001). The nicotinic cholinergic system plays a central role in modulating different forms of associative learning known to be impaired in AD patients, including the eyeblink classical conditioning (Woodruff-Pak, 2001), and in maintaining neuronal viability. Neuroprotection and cognitive improvement result from increasing the activity of different nAChR subtypes, including those bearing the alpha7 subunit (Carlson et al., 1998; Hejmadi et al., 2003; Kihara et al., 1997; Levin et al., 2006). Thus, increasing nAChR activity in the brain was proposed as a mechanism to slow down the progression of the disease (Maelicke and Albuquerque, 1996).  相似文献   

10.
The therapeutic potential of acetylcholinesterase (AChE) inhibitors has been strengthened recently by evidence showing that besides their role in cognitive function, they might contribute to slow down the neurodegeneration in Alzheimer's disease (AD) patients. It is known that AChE exerts secondary noncholinergic functions, related to its peripheral anionic site, in cell adhesion and differentiation, and recent findings also support its role in mediating the processing and deposition of beta-amyloid (Abeta) peptide. AChE is one of the proteins that colocalizes with Abeta peptide deposits in the brain of AD patients and promotes Abeta fibrillogenesis by forming stable AChEA beta complexes. Additionally, it has also been postulated that AChE binds through its peripheral site to the Abeta nonamyloidogenic form and acts as a pathological chaperone inducing a conformational transition to the amyloidogenic form (Inestrosa et al., 1996; Bartolini et al., 2003). Anew series of dual binding site AChE inhibitors has been designed and synthesized as new potent AChE inhibitors, which might simultaneously alleviate cognitive deficits and behave as disease-modifying agents by inhibiting Abeta peptide aggregation through binding to both catalytic and peripheral sites of the enzyme.  相似文献   

11.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the deposition of amyloid-beta peptide (Abeta), a peptide that as both oligomers and fibrils is believed to play a central role in the development and progress of AD by inducing oxidative stress in brain. Therefore, treatment with antioxidants might, in principle, prevent propagation of tissue damage and neurological dysfunction. The aim of the present study was to investigate the in vivo protective effect of the antioxidant compound ferulic acid ethyl ester (FAEE) against Abeta-induced oxidative damage on isolated synaptosomes. Gerbils were injected intraperitoneally (i.p.) with FAEE or with dimethylsulfoxide, and synaptosomes were isolated from the brain. Synaptosomes isolated from FAEE-injected gerbils and then treated ex vivo with Abeta(1-42) showed a significant decrease in oxidative stress parameters: reactive oxygen species levels, protein oxidation (protein carbonyl and 3-nitrotyrosine levels), and lipid peroxidation (4-hydroxy-2-nonenal levels). Consistent with these results, both FAEE and Abeta(1-42) increased levels of antioxidant defense systems, evidenced by increased levels of heme oxygenase 1 and heat shock protein 72. FAEE led to decreased levels of inducible nitric oxide synthase. These results are discussed with potential therapeutic implications of FAEE, a brain accessible, multifunctional antioxidant compound, for AD involving modulation of free radicals generated by Abeta.  相似文献   

12.
The abundance and solubility of Abeta peptides are critical determinants of amyloidosis in Alzheimer's disease (AD). Hence, we compared levels of total soluble, insoluble, and total Abeta1-40 and Abeta1-42 in AD brains with those in age-matched normal and pathologic aging brains using a sandwich enzyme-linked immunosorbent assay (ELISA). Since the measurement of Abeta1-40 and Abeta1-42 depends critically on the specificity of the monoclonal antibodies used in the sandwich ELISA, we first demonstrated that each assay is specific for Abeta1-40 or Abeta1-42 and the levels of these peptides are not affected by the amyloid precursor protein in the brain extracts. Thus, this sandwich ELISA enabled us to show that the average levels of total cortical soluble and insoluble Abeta1-40 and Abeta1-42 were highest in AD, lowest in normal aging, and intermediate in pathologic aging. Remarkably, the average levels of insoluble Abeta1-40 were increased 20-fold while the average levels of insoluble Abeta1-42 were increased only 2-fold in the AD brains compared to pathologic aging brains. Further, the soluble pools of Abeta1-40 and Abeta1-42 were the largest fractions of total Abeta in the normal brain (i.e., 50 and 23%, respectively), but they were the smallest in the AD brain (i.e., 2.7 and 0.7%, respectively) and intermediate (i.e., 8 and 0.8%, respectively) in pathologic aging brains. Thus, our data suggest that pathologic aging is a transition state between normal aging and AD. More importantly, our findings imply that a progressive shift of brain Abeta1-40 and Abeta1-42 from soluble to insoluble pools and a profound increase in the levels of insoluble Abeta1-40 plays mechanistic roles in the onset and/or progression of AD.  相似文献   

13.
Alzheimer's disease (AD) brain is characterized by excess deposition of amyloid beta-peptide (Abeta), particularly the 42-amino acid peptide [Abeta(1-42)] and by extensive oxidative stress. Several sources of the oxidative stress and inflammatory cascades are likely, including that induced by advanced glycation end products, microglial activation, and by Abeta(1-42) and its sequelae. This review briefly examines each of these sources of oxidative stress and inflammation in AD brain and discusses their potential roles in the clinical progression of AD dementia.  相似文献   

14.
BACKGROUND/AIMS: Alterations in the blood-brain barrier (BBB) may play an important role in the pathogenesis and treatment of Alzheimer's disease (AD). We investigated BBB disturbance and its influence on the equilibrium of amyloid-beta protein (Abeta) between plasma and cerebrospinal fluid (CSF) in AD patients. METHODS: We analyzed albumin ratio as a marker of the BBB permeability and correlated it with the severity of dementia, brain atrophy on MRI, apolipoprotein E isoform, CSF levels of total tau, CSF and plasma levels of Abeta 1-40 (Abeta40) and 1-42 (Abeta42), and CSF/plasma ratios of Abeta40 and Abeta42 in 42 AD patients. RESULTS: The albumin ratio was positively correlated with the severity of medial temporal lobe atrophy but not with the other parameters including CSF/plasma ratios of Abeta40 or Abeta42. CONCLUSION: Our results suggest that progression of medial temporal lobe atrophy is associated with increased BBB permeability and that the transport of Abeta across the BBB is not influenced by the BBB alteration in AD.  相似文献   

15.
Beta-amyloid peptide (Abeta) is considered responsible for the pathogenesis of Alzheimer's disease (AD). Several lines of evidence support that Abeta-induced cytotoxicity is mediated through the generation of reactive oxygen species (ROS). Thus, agents that scavenge ROS level may usefully impede the development or progress of AD. Green tea extract has been known to have such antioxidant properties. Our previous studies demonstrate that green tea extract protected ischemia/reperfusion-induced brain cell death by scavenging oxidative damages of macromolecules. In this study, we investigated the effects of green tea extract on Abeta-induced oxidative cell death in cultured rat pheochromocytoma (PC12) cells. PC12 cells treated with Abeta25-35 (10-50 microM) showed intracellular ROS elevation, the formation of 8-oxodG (an oxidized form of DNA), and underwent apoptotic cell death in a dose-dependent manner. Abeta(25-35) treatment upregulated pro-apoptotic p53 at the gene level, and Bax and caspase-3 at the protein level, but downregulated anti-apoptotic Bcl-2 protein. Interestingly, co-treated green tea extract (10-50 microg/ml) dose-dependently attenuated Abeta(25-35) (50 microM)-induced cell death, intracellular ROS levels, and 8-oxodG formation, in addition to p53, Bax, and caspase-3 expression, but upregulated Bcl-2. Furthermore, green tea extract prevented the Abeta(25-35)-induced activations of the NF-kappaB and ERK and p38 MAP kinase pathways. Our study suggests that green tea extract may usefully prevent or retard the development and progression of AD.  相似文献   

16.
There is evidence that the complement system, a major component of inflammatory responses, may play an important role in neurodegenerative conditions such as Alzheimer's disease (AD). Work from our lab demonstrated that mice genetically deficient in the complement component C5 are more susceptible to hippocampal excitotoxic lesions (Pasinetti et al., 1996) and that the C5-derived ana;hylatoxin C5a may protect against excitotoxicity in vitro and in vivo (Osaka et al., 1999). Potential mechanisms identified in C5a-mediated neuroprotection include activation of mitogen activated protein (MAP)-kinase (Osaka et al., 1998; Osaka et al., 1999). This novel neuroprotective role of C5a complicates current theories that complement proteins augment beta-amyloid (Abeta) toxicity in AD. In view of the fact that the complement system represents a target for therapeutic interventions in AD, further characterization of the complex role of complement proteins is essential. Towards this aim, we have characterized a transgenic C5a receptor (C5aR) knockout (KO) mouse. Recent studies in the lab using C5aR-KO mice show that disruption of C5aR alters calcium calmodulin kinase (CaM-KII) signal transduction in brain cells. We are presently using C5aR-KO mice to study the role of C5a in caspase mediated apoptotic neuronal death. In this review we will attempt to delineate possible neuroprotective roles for C5a in mechanisms of neurotoxicity pertaining to AD.  相似文献   

17.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder whose clinical manifestations appear in old age. The hallmark pathological features of AD (amyloid plaques and associated proteins) are present in normal aging indivduals, suggesting that AD may result from the acceleration of normal age-related processes in the brain. The sporadic nature of most AD cases strongly argues for an environmental link that may drive AD pathogenesis; however, it is unclear when this environmental stress may occur. Therefore it is important to identify an environmental trigger(s) and to pinpoint the period during which such factors pose the greatest risk. Recently, we reported that developmental exposure of rats to the xenobiotic metal lead (Pb) resulted in a delayed overexpression (20 months later) of the amyloid precursor protein (APP) and its amyloidogenic Abeta product. Similarly, aged monkeys exposed to Pb as infants also responded in the same way. These data suggest that environmental influences occurring during brain development predetermine the expression and regulation of APP later in life, potentially influencing the course of amyloidogenesis, and argue for both an environmental trigger and a developmental origin of AD. In this review, we present evidence for the developmental basis of neurodegeneration and discuss mechanisms that may explain how perturbations during development can have long-term or delayed consequences in the aging brain.  相似文献   

18.
Amyloid beta-peptide (Abeta), the major constituent in senile plaques in Alzheimer's disease (AD) brain, is thought by many researchers to be central to neurotoxicity in AD brain. Increasing evidence from many laboratories indicates that AD brain is under oxidative stress, with strong evidence of protein oxidation, lipid peroxidation, and peroxynitrite damage. A link between the central role of Abeta and oxidative stress in AD brain may be Abeta-associated free radical oxidative stress. If so, antioxidants such as vitamin E should modulate Abeta-induced oxidative damage and neurotoxicity in brain cells. This review summarizes studies of Abeta-associated free radical oxidative stress and its inhibition by vitamin E in cortical synaptosomal membranes and hippocampal neuronal cells in culture. Taken together with the recent report that vitamin E slows the progression of AD, this review strongly supports a central role of Abeta-associated free radical oxidative stress in neurotoxicity in AD brain.  相似文献   

19.
Alzheimer's disease (AD) is characterized by the deposition in brain of beta-amyloid (Abeta) peptides, elevated brain caspase-3, and systemic deficiency of cytochrome c oxidase. Although increased Abeta deposition can result from mutations in amyloid precursor protein or presenilin genes, the cause of increased Abeta deposition in sporadic AD is unknown. Cytoplasmic hybrid ("cybrid") cells made from mitochondrial DNA of nonfamilial AD subjects show antioxidant-reversible lowering of mitochondrial membrane potential (delta(gYm), secrete twice as much Abeta(1-40) and Abeta(1-42), have increased intracellular Abeta(1-40) (1.7-fold), and develop Congo red-positive Abeta deposits. Also elevated are cytoplasmic cytochrome c (threefold) and caspase-3 activity (twofold). Increased AD cybrid Abeta(1-40) secretion was normalized by inhibition of caspase-3 or secretase and reduced by treatment with the antioxidant S(-)pramipexole. Expression of AD mitochondrial genes in cybrid cells depresses cytochrome c oxidase activity and increases oxidative stress, which, in turn, lowers delta(psi)m. Under stress, cells with AD mitochondrial genes are more likely to activate cell death pathways, which drive caspase 3-mediated Abeta peptide secretion and may account for increased Abeta deposition in the AD brain. Therapeutic strategies for reducing neurodegeneration in sporadic AD can address restoration of delta(psi)m and reduction of elevated Abeta secretion.  相似文献   

20.
Age-associated oxidative stress has been implicated in neuronal damage linked with Alzheimer's disease (AD). In addition to the role of beta-amyloid peptide (Abeta) in the pathogenesis of AD, reduced glucose oxidative metabolism and decreased mitochondrial activity have been suggested as associated factors. However, the relationship between Abeta toxicity, metabolic impairment, and oxidative stress is far from being understood. In vivo neurotoxicity of Abeta25-35 peptide has been conflicting. However, in previous studies, we have shown that Abeta25-35 consistently induces synaptic toxicity and neuronal death in the hippocampus in vivo, when administered during moderate glycolytic or mitochondrial inhibition. In the present study, we have investigated whether enhancement of Abeta neurotoxicity during these conditions involves oxidative stress. Results show increased lipoperoxidation (LPO) when Abeta is administered in the hippocampus of rats previously treated with the glycolysis inhibitor, iodoacetate. Neuronal damage and LPO are efficiently prevented by vitamin E, while the spin trapper, alpha-phenyl-N-tert-butyl nitrone, shows partial protection. Abeta stimulates LPO in synaptosomes, but toxicity is only observed in the presence of metabolic inhibitors. Damage and LPO are efficiently prevented by vitamin E. The present results suggest an interaction between oxidative stress and metabolic impairment in the Abeta neurotoxic cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号