首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increasing evidence suggests a role for the hippocampus not only in long-term memory (LTM) but also in relational working memory (WM) processes, challenging the view of the hippocampus as being solely involved in episodic LTM. However, hippocampal involvement reported in some neuroimaging studies using "classical" WM tasks may at least partly reflect incidental LTM encoding. To disentangle WM processing and LTM formation we administered a delayed-match-to-sample associative WM task in an event-related fMRI study design. Each trial of the WM task consisted of four pairs of faces and houses, which had to be maintained during a delay of 10s. This was followed by a probe phase consisting of three consecutively presented pairs; for each pair participants were to indicate whether it matched one of the pairs of the encoding phase. After scanning, an unexpected recognition-memory (LTM) task was administered. Brain activity during encoding was analyzed based on WM and LTM performance. Hence, encoding-related activity predicting WM success in the absence of successful LTM formation could be isolated. Furthermore, regions critical for successful LTM formation for pairs previously correctly processed in WM were analyzed. Results showed that the left parahippocampal gyrus including the fusiform gyrus predicted subsequent accuracy on WM decisions. The right anterior hippocampus and left inferior frontal gyrus, in contrast, predicted successful LTM for pairs that were previously correctly classified in the WM task. Our results suggest that brain regions associated with higher-level visuo-perceptual processing are involved in successful associative WM encoding, whereas the anterior hippocampus and left inferior frontal gyrus are involved in successful LTM formation during incidental encoding.  相似文献   

2.
The working memory (WM) system is vital to performing everyday functions that require attentive, non-automatic processing of information. However, its interaction with long term memory (LTM) is highly debated. Here, we used fMRI to examine whether a popular complex WM span task, thought to force the displacement of to-be-remembered items in the focus of attention to LTM, recruited medial temporal regions typically associated with LTM functioning to a greater extent and in a different manner than traditional neuroimaging WM tasks during WM encoding and maintenance. fMRI scans were acquired while participants performed the operation span (OSPAN) task and an arithmetic task. Results indicated that performance of both tasks resulted in significant activation in regions typically associated with WM function. More importantly, significant bilateral activation was observed in the hippocampus, suggesting it is recruited during WM encoding and maintenance. Right posterior hippocampus activation was greater during OSPAN than arithmetic. Persitimulus graphs indicate a possible specialization of function for bilateral posterior hippocampus and greater involvement of the left for WM performance. Recall time-course activity within this region hints at LTM involvement during complex span.  相似文献   

3.
Yoon JH  Curtis CE  D'Esposito M 《NeuroImage》2006,29(4):1117-1126
Maintaining relevant information for later use is a critical aspect of working memory (WM). The lateral prefrontal cortex (PFC) and posterior sensory cortical areas appear to be important in supporting maintenance. However, the relative and unique contributions of these areas remain unclear. We have designed a WM paradigm with distraction to probe the contents of maintenance representations in these regions. During delayed recognition trials of faces, selective interference was evident behaviorally with face distraction leading to significantly worse performance than with scene distraction. Event-related fMRI of the human brain showed that maintenance activity in the lateral PFC, but not in visual association cortex (VAC), was selectively disrupted by face distraction. Additionally, the functional connectivity between the lateral PFC and the VAC was perturbed during these trials. We propose a hierarchical and distributed model of active maintenance in which the lateral PFC codes for abstracted mnemonic information, while sensory areas represent specific features of the memoranda. Furthermore, persistent coactivation between the PFC and sensory areas may be a mechanism by which information is actively maintained.  相似文献   

4.
Successful long-term memory (LTM) depends upon effective control of information in working memory (WM), and there is evidence that both WM and LTM are impaired by schizophrenia. This study tests the hypothesis that LTM deficits in schizophrenia may result from impaired control of relational processing in WM due to dorsolateral prefrontal cortex (DLPFC) dysfunction. fMRI was performed on 19 healthy controls and 20 patients with schizophrenia during WM tasks emphasizing relational (reorder trials) versus item-specific (rehearse trials) processing. WM activity was also examined with respect to LTM recognition on a task administered outside the scanner. Receiver operator characteristic analysis assessed familiarity and recollection components of LTM. Patients showed a disproportionate familiarity deficit for reorder versus rehearse trials against a background of generalized LTM impairments. Relational processing during WM led to DLPFC activation in both groups. However, this activation was less focal in patients than in controls, and patients with more severe negative symptoms showed less of a DLPFC increase. fMRI analysis of subsequent recognition performance revealed a group by condition interaction. High LTM for reorder versus rehearse trials was associated with bilateral DLPFC activation in controls, but not in patients who activated the left middle temporal and inferior occipital gyrus. Results indicate that although patients can activate the DLPFC on a structured relational WM task, this activation is less focal and does not translate to high retrieval success, suggesting a disruption in the interaction between WM and LTM processes in schizophrenia.  相似文献   

5.
Positron emission tomography was used to investigate common versus specific cortical regions for the maintenance of spatial versus phonological information in working memory (WM). Group and single-subject analyses of regional cerebral blood flow during a new 2 x 2 factorial n-back task were performed. Eight subjects had to memorize either phonological features or the location of serially presented syllables. Brain activation during phonological judgment and spatial judgment (0-back) was compared with that during two corresponding WM conditions (2-back). We observed a common network associated with the requirement of maintaining and sequencing items in WM. Seven or more subjects activated (posterior) superior frontal sulcus (pSFS, BA 6/8, global maximum) and/or adjacent gyri, posterior parietal cortex, and precuneus (BA 7). Less consistently, bilateral middle frontal gyrus (BA 9/46) was involved. Bilateral anterior (BA 39/40) and posterior (BA 7) intraparietal sulcus, as well as right pSFS, exhibited dominance for spatial WM. Although underlying stimulus processing pathways for both types of information were different, no region specific for phonological WM was found. Robust activation within the left inferior frontal gyrus (BA 44 and 45) was present, during both phonological WM and phonological judgment. We conclude that the controversial left prefrontal lateralization for verbal WM reflects more general phonological processing strategies, not necessarily required by tasks using letters. We propose a stimulus-independent role for the bilateral pSFS and its vicinity for maintenance and manipulation of different context-dependent information within working memory.  相似文献   

6.
Ishai A  Haxby JV  Ungerleider LG 《NeuroImage》2002,17(4):1729-1741
Complex pictorial information can be represented and retrieved from memory as mental visual images. Functional brain imaging studies have shown that visual perception and visual imagery share common neural substrates. The type of memory (short- or long-term) that mediates the generation of mental images, however, has not been addressed previously. The purpose of this study was to investigate the neural correlates underlying imagery generated from short- and long-term memory (STM and LTM). We used famous faces to localize the visual response during perception and to compare the responses during visual imagery generated from STM (subjects memorized specific pictures of celebrities before the imagery task) and imagery from LTM (subjects imagined famous faces without seeing specific pictures during the experimental session). We found that visual perception of famous faces activated the inferior occipital gyri, lateral fusiform gyri, the superior temporal sulcus, and the amygdala. Small subsets of these face-selective regions were activated during imagery. Additionally, visual imagery of famous faces activated a network of regions composed of bilateral calcarine, hippocampus, precuneus, intraparietal sulcus (IPS), and the inferior frontal gyrus (IFG). In all these regions, imagery generated from STM evoked more activation than imagery from LTM. Regardless of memory type, focusing attention on features of the imagined faces (e.g., eyes, lips, or nose) resulted in increased activation in the right IPS and right IFG. Our results suggest differential effects of memory and attention during the generation and maintenance of mental images of faces.  相似文献   

7.
Leung HC  Oh H  Ferri J  Yi Y 《NeuroImage》2007,35(1):368-377
Previous studies have emphasized that the dorsolateral prefrontal cortex is important for manipulating information in working memory, although activations in other frontal and parietal areas are commonly observed under the same conditions. We conducted an fMRI experiment to examine brain responses as a parametric function of memory updating, which is considered as an elemental process in working memory. In a variant spatial delayed-response task, human subjects performed updating operations over a 9-second delay period, during which they mentally transform the location of a memorized target in a 4 by 4 grid according to 3 to 12 instruction cues. Activity increased monotonically with increasing updating load in numerous cortical and subcortical regions including the rostrodorsal premotor (rdPM), lateral precentral sulcus, lateral prefrontal, posterior associative, striatal and cerebellar areas. The rdPM and superior parietal were particularly sensitive to the updating manipulation. There were several main findings. First, updating spatial working memory involved mostly the same cortical and subcortical regions that were activated during maintenance of spatial information. Second, the updating load response functions of regions in the spatial working memory circuit showed a strong linear component. However, none shows significant increases in activity from 9 to 12 updating operations. Third, activity in the right rdPM and anterior inferior frontal gyrus correlated positively with working memory performance in the high updating load condition. Our findings suggest that updating and maintenance of spatial information may share similar processes and that the rostrodorsal premotor cortex and anterior inferior frontal gyrus may be important for the success of tracking spatial information in working memory.  相似文献   

8.
In our daily life, we often need to selectively remember information related to the same retrieval cue in a consecutive manner (e.g., ingredients from a recipe). To investigate such selection processes during cued long-term memory (LTM) retrieval, we used a paradigm in which the retrieval demands were systematically varied from trial to trial and analyzed, by means of behavior and slow cortical EEG potentials (SCPs), the retrieval processes in the current trial depending on those of the previous trial. We varied whether the retrieval cue, the type of to-be-retrieved association (feature), or retrieval load was repeated or changed from trial to trial. The behavioral data revealed a benefit of feature repetition, probably due to trial-by-trial feature priming. SCPs further showed an effect of cue change with a mid-frontal maximum, suggesting increased control demands when the cue was repeated, as well as a parietal effect of retrieval-load change, indicating increased activation of posterior neural resources when focusing on a single association after all learned associations had been activated previously, compared to staying with single associations across trials. These effects suggest the existence of two distinct types of dynamic (trial-by-trial) control processes during LTM retrieval: (1) medial frontal processes that monitor or regulate interference within a set of activated associations, and (2) posterior processes regulating attention to LTM representations. The present study demonstrates that processes mediating selective LTM retrieval can be successfully studied by manipulating the history of processing demands in trial sequences.  相似文献   

9.
PET and fMRI experiments have previously shown that several brain regions in the frontal and parietal lobe are involved in working memory maintenance. MEG and EEG experiments have shown parametric increases with load for oscillatory activity in posterior alpha and frontal theta power. In the current study we investigated whether the areas found with fMRI can be associated with these alpha and theta effects by measuring simultaneous EEG and fMRI during a modified Sternberg task This allowed us to correlate EEG at the single trial level with the fMRI BOLD signal by forming a regressor based on single trial alpha and theta power estimates. We observed a right posterior, parametric alpha power increase, which was functionally related to decreases in BOLD in the primary visual cortex and in the posterior part of the right middle temporal gyrus. We relate this finding to the inhibition of neuronal activity that may interfere with WM maintenance. An observed parametric increase in frontal theta power was correlated to a decrease in BOLD in regions that together form the default mode network. We did not observe correlations between oscillatory EEG phenomena and BOLD in the traditional WM areas. In conclusion, the study shows that simultaneous EEG-fMRI recordings can be successfully used to identify the emergence of functional networks in the brain during the execution of a cognitive task.  相似文献   

10.
Common neural substrates for visual working memory and attention   总被引:2,自引:0,他引:2  
Humans are severely limited in their ability to memorize visual information over short periods of time. Selective attention has been implicated as a limiting factor. Here we used functional magnetic resonance imaging to test the hypothesis that this limitation is due to common neural resources shared by visual working memory (WM) and selective attention. We combined visual search and delayed discrimination of complex objects and independently modulated the demands on selective attention and WM encoding. Participants were presented with a search array and performed easy or difficult visual search in order to encode one or three complex objects into visual WM. Overlapping activation for attention-demanding visual search and WM encoding was observed in distributed posterior and frontal regions. In the right prefrontal cortex and bilateral insula blood oxygen-level-dependent activation additively increased with increased WM load and attentional demand. Conversely, several visual, parietal and premotor areas showed overlapping activation for the two task components and were severely reduced in their WM load response under the condition with high attentional demand. Regions in the left prefrontal cortex were selectively responsive to WM load. Areas selectively responsive to high attentional demand were found within the right prefrontal and bilateral occipital cortex. These results indicate that encoding into visual WM and visual selective attention require to a high degree access to common neural resources. We propose that competition for resources shared by visual attention and WM encoding can limit processing capabilities in distributed posterior brain regions.  相似文献   

11.
In real world, objects have multiple features and change dynamically. Thus, object representations must satisfy dynamic updating and feature binding. Previous studies have investigated the neural activity of dynamic updating or feature binding alone, but not both simultaneously. We investigated the neural basis of feature-bound object representation in a dynamically updating situation by conducting a multiple object permanence tracking task, which required observers to simultaneously process both the maintenance and dynamic updating of feature-bound objects. Using an event-related design, we separated activities during memory maintenance and change detection. In the search for regions showing selective activation in dynamic updating of feature-bound objects, we identified a network during memory maintenance that was comprised of the inferior precentral sulcus, superior parietal lobule, and middle frontal gyrus. In the change detection period, various prefrontal regions, including the anterior prefrontal cortex, were activated. In updating object representation of dynamically moving objects, the inferior precentral sulcus closely cooperates with a so-called “frontoparietal network”, and subregions of the frontoparietal network can be decomposed into those sensitive to spatial updating and feature binding. The anterior prefrontal cortex identifies changes in object representation by comparing memory and perceptual representations rather than maintaining object representations per se, as previously suggested.  相似文献   

12.
Recent functional imaging studies of working memory (WM) have suggested a relationship between the requirement for response selection and activity in dorsolateral prefrontal (DLPFC) and parietal regions. Although a number of WM operations are likely to occur during response selection, the current study was particularly interested in the contribution of this neural network to WM-based response selection when compared to the selection of an item from a list being maintained in memory, during a verbal learning task. The design manipulated stimulus-response mappings so that selecting an item from memory was not always accompanied with selecting a motor response. Functional activation during selection supported previous findings of fronto-parietal involvement, although in contrast to previous findings left, rather than right, DLPFC activity was significantly more active for selecting a memory-guided motor response, when compared to selecting an item currently maintained in memory or executing a memory-guided response. Our results contribute to the debate over the role of fronto-parietal activity during WM tasks, suggesting that this activity appears particularly related to response selection, potentially supporting the hypothesized role of prefrontal activity in biasing attention toward task-relevant material in more posterior regions.  相似文献   

13.
The role of frontopolar cortex in subgoal processing during working memory   总被引:11,自引:0,他引:11  
Neuroimaging studies have implicated the anterior-most or frontopolar regions of prefrontal cortex (FP-PFC, e.g., Brodmann's Area 10) as playing a central role in higher cognitive functions such as planning, problem solving, reasoning, and episodic memory retrieval. The current functional magnetic resonance imaging (fMRI) study tested the hypothesis that FP-PFC subserves processes related to the monitoring and management of subgoals, while maintaining information in working memory (WM). Subjects were scanned while performing two variants of a simple delayed response WM task. In the control WM condition, subjects monitored for the presence of a specific concrete probe word (LIME) occurring following a specific abstract cue word (FATE). In the subgoal WM condition, subjects monitored for the presence of any concrete probe word immediately following any abstract cue word. Thus, the task required semantic classification of the probe word (the subgoal task), while the cue was simultaneously maintained in WM, so that both pieces of information could be integrated into a target determination. In a second control condition, subjects performed abstract/concrete semantic classification without WM demands. A region within right FP-PFC was identified which showed significant activation during the subgoal WM condition, but no activity in either of the two control conditions. However, this FP-PFC region was not modulated by direct manipulation of active maintenance demands. In contrast, left dorsolateral PFC was affected by active maintenance demands, but the effect did not interact with the presence of a subgoal task. Finally, left ventral PFC regions showed activation in response to semantic classification, but were not affected by WM demands. These results suggest a triple dissociation of function within PFC regions, and further indicate that FP-PFC is selectively engaged by the requirement to monitor and integrate subgoals during WM tasks.  相似文献   

14.
Cabeza R  Dolcos F  Graham R  Nyberg L 《NeuroImage》2002,16(2):317-330
Functional neuroimaging studies have shown that different cognitive functions activate overlapping brain regions. An activation overlap may occur because a region is involved in operations tapped by different cognitive functions or because the activated area comprises subregions differentially involved in each of the functions. To investigate these issues, we directly compared brain activity during episodic retrieval (ER) and working memory (WM) using event-related functional MRI (fMRI). ER was investigated with a word recognition test, and WM was investigated with a word delayed-response test. Two-phase trials distinguished between retrieval mode and cue-specific aspects of ER, as well as between encoding/maintenance and retrieval aspects of WM. The results revealed a common fronto-parieto-cerebellar network for ER and WM, as well as subregions differentially involved in each function. Specifically, there were two main findings. First, the results differentiated common and specific subregions within the prefrontal cortex: (i) left dorsolateral areas were recruited by both functions, possibly reflecting monitoring operations; (ii) bilateral anterior and ventrolateral areas were more activated during ER than during WM, possibly reflecting retrieval mode and cue-specific ER operations, respectively; and (iii) left posterior/ventral (Broca's area) and bilateral posterior/dorsal areas were more activated during WM than during ER, possibly reflecting phonological and generic WM operations, respectively. Second, hippocampal and parahippocampal regions were activated not only for ER but also for WM. This result suggests that indexing operations mediated by the medial temporal lobes apply to both long-term and short-term memory traces. Overall, our results show that direct cross-function comparisons are critical to understand the role of different brain regions in various cognitive functions.  相似文献   

15.
Sentence comprehension declines with age, but the neural basis for this change is unclear. We monitored regional brain activity in 13 younger subjects and 11 healthy seniors matched for sentence comprehension accuracy while they answered a simple probe about written sentences. The sentences varied in their grammatical features (subject-relative vs object-relative subordinate clause) and their verbal working memory (WM) demands (short vs long antecedent noun-gap linkage). We found that young and senior subjects both recruit a core written sentence processing network, including left posterolateral temporal and bilateral occipital cortex for all sentences, and ventral portions of left inferior frontal cortex for object-relative sentences with a long noun-gap linkage. Differences in activation patterns for seniors compared to younger subjects were due largely to changes in brain regions associated with a verbal WM network. While seniors had less left parietal recruitment than younger subjects, left premotor cortex, and dorsal portions of left inferior frontal cortex showed greater activation in seniors compared to younger subjects. Younger subjects recruited right posterolateral temporal cortex for sentences with a long noun-gap linkage. Seniors additionally recruited right parietal cortex for this sentence-specific form of WM. Our findings are consistent with the hypothesis that the neural basis for sentence comprehension includes dissociable but interactive large-scale neural networks supporting core written sentence processes and related cognitive resources involved in WM. Seniors with good comprehension appear to up-regulate portions of the neural substrate for WM during sentence processing to achieve comprehension accuracy that equals young subjects.  相似文献   

16.
中国临床实践指南更新情况调查   总被引:1,自引:0,他引:1  
目的调查中国临床实践指南的更新周期、方法和步骤。方法在WanFang Data、VIP、CNKI中,以"指南、指引"为检索词在题名中进行检索,在CBM数据库中以"指南"为主题词进行检索,纳入符合标准的文献,统计分析其更新情况。结果共纳入指南380个,报道已更新的指南仅有38个(10%),平均更新周期为5.1年,更新周期最长为10年,最短为1年;38个已更新指南中有8个(2%)进行过多次更新,其平均更新次数为3次,平均更新周期为4.9年。在342个未更新过的指南中,提及未来会更新的指南有42个(12%)。将已更新指南按临床用途分:预防类指南1个(0.3%),更新周期为4年;治疗类指南8个(2%),平均更新周期为4.3年;防治指南5个(1%),平均更新周期6.8年;诊疗类指南18个(5%),平均更新周期5.3年;技术类指南4个(1%),平均更新周期为5.5年;综合指南2个(0.5%),平均更新周期为2.5年。所有指南中,有40个(10%)在文中描述了更新方法。结论分析国际与国内指南更新情况发现,中国临床实践指南更新比例低,更新周期长,且参差不齐;更新方法和步骤报道不规范,描述不充分;不同类别的指南和不同机构制定的指南更新情况差异大。  相似文献   

17.
Development of working memory (WM) aptitude parallels structural changes in the frontal–parietal association cortices important for performance within this cognitive domain. The cerebellum has been proposed to function in support of the postulated phonological loop component of verbal WM, and along with frontal and parietal cortices, has been shown to exhibit linear WM load-dependent activation in adults. It is not known if these kinds of WM load-dependent relationships exist for cerebro-cerebellar networks in developmental populations, and whether there are age-related changes in the nature of load-dependency between childhood, adolescence, and adulthood. The present study used fMRI and a verbal Sternberg WM task with three load levels to investigate developmental changes in WM load-dependent cerebro-cerebellar activation in a sample of 30 children, adolescents, and young adults between the ages of 7 and 28. The neural substrates of linear load-dependency were found to change with age. Among adolescents and adults, frontal, parietal and cerebellar regions showed linear load-dependency, or increasing activation under conditions of increasing WM load. In contrast, children recruited only left ventral prefrontal cortex in response to increasing WM load. These results demonstrate that, while children, adolescents, and young adults activate similar cerebro-cerebellar verbal working memory networks, the extent to which they rely on parietal and cerebellar regions in response to increasing task difficulty changes significantly between childhood and adolescence.  相似文献   

18.
Emery L  Heaven TJ  Paxton JL  Braver TS 《NeuroImage》2008,42(4):1577-1586
A long-standing assumption in the cognitive aging literature is that performance on working memory (WM) tasks involving serial recall is relatively unaffected by aging, whereas tasks that require the rearrangement of items prior to recall are more age-sensitive. Previous neuroimaging studies of WM have found age-related increases in neural activity in frontoparietal brain regions during simple maintenance tasks, but few have examined whether there are age-related differences that are specific to rearranging WM items. In the current study, older and younger adults' brain activity was monitored using functional magnetic resonance imaging (fMRI) as they performed WM tasks involving either maintenance or manipulation (letter–number sequencing). The paradigm was developed so that performance was equivalent across age groups in both tasks, and the manipulation condition was not more difficult than the maintenance condition. In younger adults, manipulation-related increases in activation occurred within a very focal set of regions within the canonical brain WM network, including left posterior prefrontal cortex and bilateral inferior parietal cortex. In contrast, older adults showed a much wider extent of manipulation-related activation within this WM network, with significantly increased activity relative to younger adults found within bilateral PFC. The results suggest that activation and age-differences in lateral PFC engagement during WM manipulation conditions may reflect strategy use and controlled processing demands rather than reflect the act of manipulation per se.  相似文献   

19.
Multi-modal brain imaging was used to examine the relation between individual differences in resting-state striatal dopamine D2 binding and the magnitude of prefrontal BOLD activation during updating of long-term memory (LTM) representations. Increased activity in the left prefrontal cortex was observed when LTM updating was required, and there was a positive correlation between striatal D2 activity and the magnitude of left prefrontal activity during updating. These findings support predictions from neurocomputational models of a relation of dopaminergic neurotransmission to transient cognitive operations and related brain activity.  相似文献   

20.
The objective of this study was to delineate a common functional network that underlies autobiographical, episodic, and semantic memory retrieval. We conducted an event-related fMRI study in which we utilized the same pictorial stimuli, but manipulated retrieval demands to extract autobiographical, episodic, or semantic memories. To assess this common network, we first examined the functional connectivity of regions identified by a previous analysis of task-related activity that were active across all three tasks. Three of these regions (left hippocampus, left lingual gyrus, and right caudate nucleus) appeared to share a common pattern of connectivity. This was confirmed in a subsequent functional connectivity analysis using these three regions as seeds. The results of this analysis showed that there was a pattern of functional connectivity that characterized all three seeds and that was common across the three retrieval conditions. Activity in inferior frontal and middle temporal cortex bilaterally, left temporoparietal junction, and anterior and posterior cingulate gyri was positively correlated with the seeds, whereas activity in posterior occipito-temporo-parietal regions was negatively correlated. These findings support the idea that a common neural network underlies the retrieval of declarative memories regardless of memory content. This proposed network consists of increased activity in regions that represent internal processes of memory retrieval and decreased activity in regions that mediate attention to external stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号