首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lu J  He ML  Wang L  Chen Y  Liu X  Dong Q  Chen YC  Peng Y  Yao KT  Kung HF  Li XP 《Cancer research》2011,71(1):225-233
Several microRNAs (miRNA) have been implicated in nasopharyngeal carcinoma (NPC), a highly invasive and metastatic cancer that is widely prevalent in southern China. In this study, we report that microRNA miR-26a is commonly downregulated in NPC specimens and NPC cell lines with important functional consequences. Ectopic expression of miR-26a dramatically suppressed cell proliferation and colony formation by inducing G(1)-phase cell-cycle arrest. We found that miR-26a strongly reduced the expression of EZH2 oncogene in NPC cells. Similar to the restoring miR-26 expression, EZH2 downregulation inhibited cell growth and cell-cycle progression, whereas EZH2 overexpression rescued the suppressive effect of miR-26a. Mechanistic investigations revealed that miR-26a suppressed the expression of c-myc, the cyclin D3 and E2, and the cyclin-dependent kinase CDK4 and CDK6 while enhancing the expression of CDK inhibitors p14(ARF) and p21(CIP1) in an EZH2-dependent manner. Interestingly, cyclin D2 was regulated by miR-26a but not by EZH2, revealing cyclin D2 as another direct yet mechanistically distinct target of miR-26a. In clinical specimens, EZH2 was widely overexpressed and its mRNA levels were inversely correlated with miR-26a expression. Taken together, our results indicate that miR-26a functions as a growth-suppressive miRNA in NPC, and that its suppressive effects are mediated chiefly by repressing EZH2 expression.  相似文献   

2.
Brain metastasis is a major cause of morbidity and mortality of lung cancer patients. We assessed whether aberrant expression of specific microRNAs could contribute to brain metastasis. Comparison of primary lung tumors and their matched metastatic brain disseminations identified shared patterns of several microRNAs, including common down-regulation of miR-145-5p. Down-regulation was attributed to methylation of miR-145''s promoter and affiliated elevation of several protein targets, such as EGFR, OCT-4, MUC-1, c-MYC and, interestingly, tumor protein D52 (TPD52). In line with these observations, restored expression of miR-145-5p and selective depletion of individual targets markedly reduced in vitro and in vivo cancer cell migration. In aggregate, our results attribute to miR-145-5p and its direct targets pivotal roles in malignancy progression and in metastasis.  相似文献   

3.
目的:探究miR-323a-3p、四次穿膜蛋白超家族成员1(TM4SF1)在NSCLC组织和细胞中的表达及两者间的靶向调控关系,观察两者表达对A549细胞增殖、迁移、侵袭和裸鼠移植瘤生长的影响。方法:收集2014年1月至12月间青海省人民医院手术切除的20例NSCLC组织及其相应的癌旁组织,qPCR和WB法检测癌组织中miR-323a-3p、TM4SF1 mRNA和TM4SF1蛋白的表达。向A549细胞转染miR-323a-3p mimic,采用MTT法、Transwell法、WB法检测miR-323a-3p过表达对细胞的增殖、迁移和侵袭以及TM4SF1、细胞周期蛋白D1(cyclin D1)、p21、MMP-2、MMP-9蛋白表达的影响。采用生物信息学预测工具StarBase和双荧光素酶报告基因实验分析miR-323a-3p与TM4SF1靶向关系。将si-TM4SF1转染至A549细胞,以及分别将miR-323a-3p mimic与pcDNA或pcDNA-TM4SF1共转染A549细胞,评估细胞增殖、迁移和侵袭能力的变化;同时建立各组细胞的BALB/c裸鼠移植瘤模型,在14、21和2...  相似文献   

4.
5.
Numblike (Numbl), a conserved homolog of Drosophila Numb, has been proved to be implicated in early development of the nervous system. A recent study also showed that Numbl played an important role in tumorigenesis and invasion by suppressing NF-κB activation. However, the biological role of Numbl remains unknown in lung cancer up to now. To address the expression of Numbl in the lung cancer cell, four lung cancer cell lines (metastatic cell lines NCI-H292, 95-D, and non-metastatic cell lines A549, HCC827) and non-cancerous human bronchial epithelial cells were used to detect the protein expression of Numbl by western blotting. The results in this study indicated that the expression of Numbl was downregulated in human lung cancer cell lines, especially in metastatic cell lines. To investigate the role of Numbl in lung cancer cell proliferation, apoptosis, and invasion, we generated human lung cancer 95-D cell lines in which Numbl was either overexpressed or depleted. Subsequently, the effects of Numbl on the cell viability, cycle, apoptosis, and invasion properties in 95-D cells were determined with MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] assay, flow cytometry analysis, and Transwell invasion assays. The results indicated that Numbl could decrease cell viability, suppress cell proliferation and invasion, and promote cell apoptosis. In addition, we investigated the effects of Numbl on the expression of the following proteins: TRAF6 (tumor necrosis factor receptor-associated factor 6), p-p65 (phosphor-NF-κB), cyclin D1, caspase-3, and matrix metalloproteinase 9 (MMP9). Results showed that Numbl could decrease the expression of TRAF6, p-p65, cyclin D1, and MMP9 and increase the expression of caspase-3. All these results suggested that Numbl might be involved in the inhibition of growth, proliferation, and invasion of 95-D cells, as well as the potentiation of apoptosis of 95-D cells by abrogating TRAF6-induced activation of NF-κB.  相似文献   

6.
Oligometastasis is a clinically distinct subset of metastasis characterized by a limited number of metastases potentially curable with localized therapies. We analyzed pathways targeted by microRNAs over-expressed in clinical oligometastasis samples and identified suppression of cellular adhesion, invasion, and motility pathways in association with the oligometastatic phenotype. We identified miR-127-5p, miR-544a, and miR-655-3p encoded in the 14q32 microRNA cluster as co-regulators of multiple metastatic pathways through repression of shared target genes. These microRNAs suppressed cellular adhesion and invasion and inhibited metastasis development in an animal model of breast cancer lung colonization. Target genes, including TGFBR2 and ROCK2, were key mediators of these effects. Understanding the role of microRNAs expressed in oligometastases may lead to improved identification of and interventions for patients with curable metastatic disease, as well as an improved understanding of the molecular basis of this unique clinical entity.  相似文献   

7.
8.
Malignant pleural effusion (PE) is associated with advanced human lung cancer. We found recently, using a nude mouse model, that vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) is responsible for PE induced by non-small cell human lung carcinoma cells. The purpose of this study was to determine the therapeutic potential of a VEGF/VPF receptor tyrosine kinase phosphorylation inhibitor, PTK 787, against PE formed by human lung adenocarcinoma (PC14PE6) cells. PTK 787 did not affect the in vitro proliferation of PC14PE6 cells, whereas it specifically inhibited proliferation of human dermal microvascular endothelial cells stimulated by VEGF/VPF. A specific platelet-derived growth factor receptor tyrosine kinase inhibitor, CGP57148 (used as a control because PTK 787 also inhibits platelet-derived growth factor receptor tyrosine kinases), had no effect on proliferation of PC14PE6 or human dermal microvascular endothelial cells. i.v. injection of PC14PE6 cells into nude mice produced lung lesions and a large volume of PE containing a high level of VEGF/VPF. Oral treatment with CGP57148 had no effect on PE or lung metastasis. In contrast, oral treatment with PTK 787 significantly reduced the formation of PE but not the number of lung lesions. Furthermore, treatment with PTK 787 significantly suppressed vascular hyperpermeability of PE-bearing mice but did not affect the VEGF/VPF level in PE or expression of VEGF/VPF protein and mRNA in the lung tumors of PC14PE6 cells in vivo. These findings indicate that PTK 787 reduced PE formation mainly by inhibiting vascular permeability, suggesting that this VEGF/VPF receptor tyrosine kinase inhibitor could be useful for the control of malignant PE.  相似文献   

9.
10.
MicroRNA-449a (miR-449a) was significantly downregulated in 156 lung cancer tissues (< 0.001). We found that the low expression of miR-449a was highly correlated with cancer recurrence and survival of lung cancer patients. The transient introduction of miR-449a caused cell cycle arrest and cell senescence in A549 and 95D cells. Further studies revealed that E2F3 was a direct target of miR-449a in lung cancer cells. miR-449a also suppressed tumor formation in vivo in nude mice. These results suggest that miR-449a plays an important role in lung cancer tumorigenesis and that miR-449a might predict cancer recurrence and survival of lung cancer patients.  相似文献   

11.
目的:探讨长链非编码RNA(long non-coding RNA,lncRNA)GAS6-AS2对肺癌A549细胞增殖、迁移、侵袭及紫杉醇(paclitaxel,PTX)敏感性的影响及其分子机制.方法:用qPCR法检测肺癌A549和A549/PTX细胞中GAS6-AS2和miR-125a-3p 的表达水平.用脂质体转...  相似文献   

12.
Objective: To explore the relationship between miR-122-5p and DUSP4 and their effects on gastric cancer (GC) cell mobility and invasiveness.

Methods: Abnormally expressed miRNAs and mRNAs were analyzed using microarrays. The miR-122-5p and DUSP4 mRNA expression levels in GC tissues and cells were determined by RT-qPCR. The target relationship between miR-122-5p and DUSP4 was validated by dual luciferase reporter assay. GC cell mobility and invasiveness were respectively observed by wound healing assay and transwell invasion assay. Western blot and immunohistochemistry were used for detection of the expressions of DUSP4 protein and MMP2 and MMP9 proteins related to cell invasion and migration. The migration and invasion abilities of gastric cancer cells in vivo were evaluated according to the number of lung metastatic nodules in mice.

Results: The expression of miR-122-5p in GC tissues and cells was significantly down-regulated, whereas DUSP4 expression was up-regulated. Bioinformatics prediction strategies and dual luciferase reporter assay verified the binding sites of miR-122-5p on 3′UTR of DUSP4 and the target relationship between miR-122-5p and DUSP4. Overexpression of miR-122-5p and knockdown of DUSP4 in BGC-823 cells observantly suppressed GC cell mobility and invasiveness, whereas downregulation of miR-122-5p expression promoted cell metastasis. MiR-122-5p inhibited GC cell mobility and invasiveness and pulmonary tumor metastasis via downregulation of DUSP4.

Conclusion: MiR-122-5p restrained migration and invasion abilities of GC cells by repressing DUSP4.  相似文献   


13.
MicroRNA (miR)-490-3p and miR-490-5p, located on chromosome 7q33, are two independent mature products of miR-490 exerting distinct effects on tumor progression. miR-490-3p and miR-490-5p possess antitumor properties. miR-490-3p dysfunction has been associated with malignancies including colorectal cancer, while the abnormal function of miR-490-5p has been more considerably associated with bladder cancer (for example). At present, there are 30 and 11 target genes of miR-490-3p and miR-490-5p, respectively, that have been experimentally verified, of which the cyclin D1 (CCND1) gene is a common target. Through these target genes, miR-490-3p and miR-490-5p are involved in 7 and 3 signaling pathways, respectively, of which only 2 are shared regulatory signaling pathways. The present review introduces two competing endogenous RNA (ceRNA) regulatory networks centered on miR-490-3p and miR-490-5p. These networks may be important promoters of tumor cell proliferation, invasiveness, metastatic potential and apoptosis. Unlike miR-490-5p, miR-490-3p plays a unique role in promoting cancer. However, both are promising molecular markers for early cancer diagnosis and prognosis. In addition, miR-490-3p was also found to be associated with the chemical resistance of cisplatin and paclitaxel. The present review focuses on the abnormal expression of miR-490-3p and miR-490-5p in different tumor types, and their complex ceRNA regulatory networks. The clinical value of miR-490-3p and miR-490-5p in cancer diagnosis, prognosis and treatment is also clarified, and an explanation for the opposing effects of miR-490-3p in tumor research is provided.  相似文献   

14.
Paclitaxel (PTX) is an anticancer drug that is effective against a wide range of solid tumors. The effect of PTX on two human lung cancer cell lines, PC14PE6 and NCI-H441 cells, was examined in an orthotopically transplanted animal model with an in vivo imaging devise. Although PTX effectively suppressed tumor growth and improved survival rate in NCI-H441, it did not influence these in PC14PE6. In vitro experiments confirmed that PC14PE6 cells are resistant to PTX under normoxic conditions and that both cell lines were resistant to PTX under hypoxic conditions. It was found that the expression level of endogenous hypoxia inducible factor (HIF)-1alpha in PC14PE6 is much higher than that in NCI-H441 cells under normoxic conditions. Furthermore, sensitivity to PTX in these cell lines was reversed when HIF-1alpha expression was decreased by siRNA specific to HIF-1alpha in PC14PE6 and increased by overexpression of the exogenous HIF-1alpha gene in NCI-H441. These results suggest that HIF-1 influences the PTX sensitivity of these cells. The authors further examined beta-tubulin, a target molecule of PTX, with western blotting and immunohistochemical analysis in these cells. The expression level of beta-tubulin was comparable in these cells under both normoxic and hypoxic conditions while the distribution of beta-tubulin and cell morphology were changed according to HIF-1alpha expression levels, suggesting that HIF-1 influences the conformation and dynamics of microtubules. These data support the potential development of HIF-1 targeted approaches in combination with PTX, where drug resistance tends to contribute to treatment failure.  相似文献   

15.
16.
ZD6474 is a novel, orally active inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2) tyrosine kinase, with some additional activity against epidermal growth factor receptor (EGFR) tyrosine kinase. The purpose of this study was to determine the potential of ZD6474 in the control of established experimental lung metastasis and pleural effusions produced by human non-small cell lung cancer (NSCLC) cells. PC14PE6 (adenocarcinoma) and H226 (squamous cell carcinoma) cells express high levels of EGFR and only PC14PE6 cells overexpress VEGF. Neither ZD6474 nor the EGFR tyrosine kinase inhibitor gefitinib inhibit proliferation of PC14PE6 or H226 cells in vitro. Both PC14PE6 and H226 cells inoculated intravenously into nude mice induced multiple lung nodules after 5-7 weeks. In addition, PC14PE6 cells produced bloody pleural effusions. Daily oral treatment with ZD6474 did not reduce the number of lung nodules produced by PC14PE6 or H226 cells, but did reduce the lung weight and the size of lung nodules. ZD6474 also inhibited the production of pleural effusions by PC14PE6 cells. Histological analyses of lung lesions revealed that ZD6474 treatment inhibited activation of VEGFR-2 and reduced tumor vascularization and tumor cell proliferation. Therapeutic effects of ZD6474 were considered likely to be due to inhibition of VEGFR-2 tyrosine kinase because gefitinib was inactive in this model. These results indicate that ZD6474, an inhibitor of VEGFR-2, may be useful in controlling the growth of established lung metastasis and pleural effusions by NSCLC.  相似文献   

17.
The lung is the common target organ of hematogenous metastasis that restricts the prognosis of cancer patients. MMPs play a pivotal role in metastasis by promoting tumor invasion and angiogenesis; therefore, a large number of MMPIs have been developed. Our purpose was to determine the therapeutic efficacy of a selective-spectrum MMPI, ONO-4817 (inhibits MMP-2 and MMP-9 but not MMP-1), against established lung micrometastasis in combination with a cytotoxic anticancer drug, DOC, in a nude mouse model. Human non-small cell lung cancer PC14PE6 (adenocarcinoma) or H226 (squamous cell carcinoma) cells, expressing MMP-2, MMP-9 and/or MMP-1, were injected i.v. into nude mice on day 0. Mice received a single injection of DOC on day 7 (after establishment of micrometastasis) and/or ONO-4817 mixed with food from day 7 to the end of experiments. Monotherapy with ONO-4817 or DOC inhibited formation of lung metastasis by PC14PE6 and H226 cells. In addition, combined use of ONO-4817 with DOC significantly suppressed the tumor burden of H226 and PC14PE6 cells in the lung and prolonged the survival of PC14PE6-bearing mice compared to ONO-4817 or DOC alone. These therapies did not affect the body weight or food intake of tumor-bearing mice. FIZ revealed that lung lesions, but not nontumor parenchyma of the lung, expressed gelatinolytic activity and that treatment with ONO-4817 abrogated the gelatinolytic activity in lung lesions. These results suggest that the combined use of MMPIs with cytotoxic anticancer drugs may be helpful in the control of established lung micrometastasis by tumor cells expressing MMPs.  相似文献   

18.
19.
BACKGROUNDAlthough circulating tumor cells (CTCs) have been the focus of consideration for a decade, a categorized cell-based diagnostic strategy is unavailable. The personalized management and complementary/analytical-strategy of data require an alphabetic guide. Therefore, we aimed to determine the behavior of CTCs in tumor and blood in order to provide the hypothetical-based agenda in the brain neoplasms. Exploring the protein expression (PE) using a single cell-based method would clarify the heterogeneity and diversity in tumor and blood, which are key events in the evolution in brain tumors. In fact, heterogeneity, diversity, and evolution are required for cancer initiation and progression. AIMTo explore CTCs in brain tumors and blood cells and to assay intensity of PE through personalized insight.METHODSThe focal population included 14 patients with meningioma, and four patients with metastatic brain tumors (T). PE was assayed by immunofluorescence in tumors cells and CTCs in 18 patients with brain tumors. Ratio test was applied between the T cells and CTCs in tumor tissue and in vascular system. T/CTC ratio-based classification of PE in macrophage chemoattractant chemokine ligand 2 (CCL2), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), CD133, cyclin E, neurofilament marker, cytokeratin 19, and leukocyte common antigen (CD45) were investigated. RESULTSTotal analyzed cells ranged between 10794-92283 for tumor cells and between 117-2870 for CTCs. Characteristics of histopathologic and status of an ataxia-telangiectasia mutated polymorphism (D1853N) in 18 patients affected with brain tumors were also provided. The course of evolution and metastatic event relied on the elevated protein expression in CTCs, which could be considered as a prognostic value. Diverse protein expression of the migrated cells into the blood stream and the tumor was indicative of the occurrence of evolution. Besides, the harmonic co-expression between CCL2/EGF and CCL2/VEGF could facilitate the tumor progression including the metastatic event. Expression of these proteins in the migrated vasculature and into the buccal tissue offered a non-invasive follow-up detection in neoplastic disorders. PE-exploration of neurofilament marker/CD133/VEGF of the CTCs in meningioma and cytokeratin 19/CD45/ cyclin E in the patients with metastatic brain tumor would clarify the tumor biology of the brain neoplastic disorders. CONCLUSIONThe alphabetical base of the evolutionary mechanisms relies on dual-, triple-, and multi-models with diverse intensity of expression. In fact, cross-talk between initiative and the complementary channels defines the evolutionary insight in cancer. A diverse-model of protein expression, including low, medium, and high intensity, is the key requirement for the completed model. The cluster of cells with diverse expression and remarkable co-expression between CCL2/EGF/VEGF and NM/CD133/VEGF in CTCs may be indicative of probable invasiveness of the tumor. Furthermore, the mode of cytokeratin-19+/CD45- can be traced in the metastatic patients.  相似文献   

20.
Lin SL  Chang DC  Ying SY  Leu D  Wu DT 《Cancer research》2010,70(22):9473-9482
miR-302 is the major microRNA found in human embryonic stem cells and induced pluripotent stem cells, but its function has been unclear. In mice, there is evidence that miR-302 may silence p21Cip1 (CDKN1A) to promote cell proliferation, whereas studies in human reprogrammed pluripotent stem cells suggested that elevated miR-302 expression inhibited cell cycle transit. Here, we clarify this difference, reporting that in human cells, miR-302 simultaneously suppressed both the cyclin E-CDK2 and cyclin D-CDK4/6 pathways to block>70% of the G1-S cell cycle transition. Concurrent silencing of BMI-1, a cancer stem cell marker targeted by miR-302, further promoted tumor suppressor functions of p16Ink4a and p14/p19Arf directed against CDK4/6-mediated cell proliferation. Among all G1 phase checkpoint regulators, human p21Cip1 was found not to be a valid target of miR-302. Overall, our findings indicate that miR-302 inhibits human pluripotent stem cell tumorigenicity by enhancing multiple G1 phase arrest pathways rather than by silencing p21Cip1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号