首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Entry into S phase is carefully regulated and, in most organisms, under the control of a G(1)-S checkpoint. We have previously described a G(1)-S checkpoint in fission yeast that delays formation of the prereplicative complex at chromosomal replication origins after exposure to UV light (UVC). This checkpoint absolutely depends on the Gcn2 kinase. Here, we explore the signal for activation of the Gcn2-dependent G(1)-S checkpoint in fission yeast. If some form of DNA damage can activate the checkpoint, deficient DNA repair should affect the length of the checkpoint-induced delay. We find that the cell-cycle delay differs in repair-deficient mutants from that in wild-type cells. However, the duration of the delay depends not only on the repair capacity of the cells, but also on the nature of the repair deficiency. First, the delay is abolished in cells that are deficient in the early steps of repair. Second, the delay is prolonged in repair mutants that fail to complete repair after the incision stage. We conclude that the G(1)-S delay depends on damage to the DNA and that the activating signal derives not from the initial DNA damage, but from a repair intermediate(s). Surprisingly, we find that activation of Gcn2 does not depend on the processing of DNA damage and that activated Gcn2 alone is not sufficient to delay entry into S phase in UVC-irradiated cells. Thus, the G(1)-S delay depends on at least two different inputs.  相似文献   

2.
Background: Hepatocellular carcinoma (HCC) is a leading cause of cancer deaths. Aflatoxins, which may play a causative role in 5–28% of HCCs worldwide, are activated in liver cells and induce principally G→T mutations, including the TP53 codon 249(G→T) hotspot mutation. The DNA damage checkpoint response acts as an antitumour mechanism against genotoxic agents, but its role in aflatoxin‐induced DNA damage is unknown. Aim: We studied the DNA damage checkpoint response of human cells to aflatoxin B1 (AFB1). Methods and results: The treatment of HepG2 hepatoma cells with mutation‐inducing doses (3–5 μmol/l) of AFB1 induced DNA adducts, 8‐hydroxyguanine lesions and DNA strand breaks that lasted several days. Persistent phospho‐H2AX and 53BP1 foci were also detected, but cell growth was not affected. AFB1‐exposed HepG2 cells formed phospho‐H2AX and 53BP1 foci, but failed to phosphorylate both Chk1 and Chk2. Huh7 hepatoma and HCT116 colorectal cancer cell lines also exhibited a similarly incomplete checkpoint response. p53 phosphorylation also failed, and AFB1‐exposed cells did not show p53‐dependent G1 arrest or a sustained G2/M arrest. These observations contrasted sharply with the fully functional DNA damage response of cells to Adriamycin. Cotreatment of cells with AFB1 did not inhibit p53 and p21Cip1 accumulation induced by Adriamycin. Thus, the deficient checkpoint response to AFB1 was not due to an inhibitory effect, but could be explained by an inefficient activation. Conclusion: Genotoxic doses of AFB1 induce an incomplete and inefficient checkpoint response in human cells. This defective response may contribute to the mutagenic and carcinogenic potencies of aflatoxins.  相似文献   

3.
Exposure of the yeast Saccharomyces cerevisiae to ultraviolet (UV) light, the UV-mimetic chemical 4-nitroquinoline-1-oxide (4NQO), or gamma radiation after release from G1 arrest induced by alpha factor results in delayed resumption of the cell cycle. As is the case with G2 arrest following ionizing radiation damage [Weinert, T. A. & Hartwell, L. H. (1988) Science 241, 317-322], the normal execution of DNA damage-induced G1 arrest depends on a functional yeast RAD9 gene. We suggest that the RAD9 gene product may interact with cellular components common to the G1/S and G2/M transition points in the cell cycle of this yeast. These observations define a checkpoint in the eukaryotic cell cycle that may facilitate the repair of lesions that are otherwise processed to lethal and/or mutagenic damage during DNA replication. This checkpoint apparently operates after the mating pheromone-induced G1 arrest point but prior to replicative DNA synthesis, S phase-associated maximal induction of histone H2A mRNA, and bud emergence.  相似文献   

4.
A critical determinant of the efficacy of antineoplastic therapy is the response of malignant cells to DNA damage induced by anticancer agents. The p53 tumor-suppressor gene is a critical component of two distinct cellular responses to DNA damage, the induction of a reversible arrest at the G1/S cell cycle checkpoint, and the activation of apoptosis, a genetic program of autonomous cell death. Expression of the BCR-ABL chimeric gene produced by a balanced translocation in chronic myeloid leukemia, confers resistance to multiple genotoxic anticancer agents. BCR-ABL expression inhibits the apoptotic response to DNA damage without altering either the p53-dependent WAF1/CIP1-mediated G1 arrest or DNA repair. BCR-ABL-mediated inhibition of DNA damage-induced apoptosis is associated with a prolongation of cell cycle arrest at the G2/M restriction point; the delay of G2/M transition may allow time to repair and complete DNA replication and chromosomal segregation, thereby preventing a mitotic catastrophe. The inherent resistance of human cancers to genotoxic agents may result not only by the loss or inactivation of the wild-type p53 gene, but also by genetic alterations such as BCR-ABL that can delay G2/M transition after DNA damage.  相似文献   

5.
KJ Haro  AC Scott  DA Scheinberg 《Blood》2012,120(10):2087-2097
Low linear energy transfer (LET) ionizing radiation (IR) is an important form of therapy for acute leukemias administered externally or as radioimmunotherapy. IR is also a potential source of DNA damage. High LET IR produces structurally different forms of DNA damage and has emerged as potential treatment of metastatic and hematopoietic malignancies. Therefore, understanding mechanisms of resistance is valuable. We created stable myeloid leukemia HL60 cell clones radioresistant to either γ-rays or α-particles to understand possible mechanisms in radioresistance. Cross-resistance to each type of IR was observed, but resistance to clustered, complex α-particle damage was substantially lower than to equivalent doses of γ-rays. The resistant phenotype was driven by changes in: apoptosis; late G(2)/M checkpoint accumulation that was indicative of increased genomic instability; stronger dependence on homology-directed repair; and more robust repair of DNA double-strand breaks and sublethal-type damage induced by γ-rays, but not by α-particles. The more potent cytotoxicity of α-particles warrants their continued investigation as therapies for leukemia and other cancers.  相似文献   

6.
Eukaryotic cells irradiated with high doses of UV exhibit cell-cycle responses referred to as G(1)/S, intraS, and G(2)/M checkpoints. After a moderate UV dose that approximates sunlight exposure and is lethal to fission yeast checkpoint mutants, we found unexpectedly that these cell-cycle responses do not occur. Instead, cells at all stages of the cell cycle carry lesions into S phase and delay cell-cycle progression for hours after the completion of bulk DNA synthesis. Both DNA replication and the checkpoint kinase, Chk1, are required to generate this cell-cycle response. UV-irradiation of Deltachk1 cells causes chromosome damage and loss of viability only after cells have replicated irradiated DNA and entered mitosis. These data suggest that an important physiological role of the cell-cycle response to UV is to provide time for postreplication repair.  相似文献   

7.
Multiple myeloma (MM) is characterized by over‐expression of cyclin D1 (CCND1) or D2 (CCND2), which control G1 phase cell‐cycle progression. Proteolytic degradation of CCND1 (but not CCND2), resulting in G1 arrest, is reported in non‐MM cells post‐DNA damage, affecting DNA repair and survival. We examined the effect of ionizing radiation (IR) on D‐cyclin levels and cell‐cycle kinetics of MM cells, exploring differences based on D‐cyclin expression. We showed that CCND1 is downregulated, whereas CCND2 is not, following IR. This did not lead to hypo‐phosphorylation of retinoblastoma protein or G1 arrest. Both CCND1‐ and CCND2‐expressing MM cells arrested in S/G2/M, and did not differ in other cell‐cycle proteins or sensitivity to IR. When treated with a CDK4/6 inhibitor, both CCND1 and CCND2 MM cells arrested in G1 and therefore are subject to physiological regulation at this checkpoint. Immunoprecipitation showed that, despite CCND1 degradation following IR, sufficient protein remains bound to CDK4/6 to prevent G1 arrest. Aberrant expression of CCND1 driven from the IGH promoter in t(11;14) MM cells maintains progression through G1 to arrest in S/G2/M. Differential expression of D‐cyclin does not appear to affect cell‐cycle response to IR, and is unlikely to underlie differential sensitivity to DNA damage.  相似文献   

8.
9.
The oncogenic BCR/ABL tyrosine kinase induces constitutive DNA damage in Philadelphia chromosome (Ph)-positive leukemia cells. We find that BCR/ABL-induced reactive oxygen species (ROSs) cause chronic oxidative DNA damage resulting in double-strand breaks (DSBs) in S and G(2)/M cell cycle phases. These lesions are repaired by BCR/ABL-stimulated homologous recombination repair (HRR) and nonhomologous end-joining (NHEJ) mechanisms. A high mutation rate is detected in HRR products in BCR/ABL-positive cells, but not in the normal counterparts. In addition, large deletions are found in NHEJ products exclusively in BCR/ABL cells. We propose that the following series of events may contribute to genomic instability of Ph-positive leukemias: BCR/ABL --> ROSs --> oxidative DNA damage --> DSBs in proliferating cells --> unfaithful HRR and NHEJ repair.  相似文献   

10.
GADD45 induction of a G2/M cell cycle checkpoint   总被引:30,自引:0,他引:30       下载免费PDF全文
G1/S and G2/M cell cycle checkpoints maintain genomic stability in eukaryotes in response to genotoxic stress. We report here both genetic and functional evidence of a Gadd45-mediated G2/M checkpoint in human and murine cells. Increased expression of Gadd45 via microinjection of an expression vector into primary human fibroblasts arrests the cells at the G2/M boundary with a phenotype of MPM2 immunopositivity, 4n DNA content and, in 15% of the cells, centrosome separation. The Gadd45-mediated G2/M arrest depends on wild-type p53, because no arrest was observed either in p53-null Li-Fraumeni fibroblasts or in normal fibroblasts coexpressed with p53 mutants. Increased expression of cyclin B1 and Cdc25C inhibited the Gadd45-mediated G2/M arrest in human fibroblasts, indicating that the mechanism of Gadd45-mediated G2/M checkpoint is at least in part through modulation of the activity of the G2-specific kinase, cyclin B1/p34(cdc2). Genetic and physiological evidence of a Gadd45-mediated G2/M checkpoint was obtained by using GADD45-deficient human or murine cells. Human cells with endogenous Gadd45 expression reduced by antisense GADD45 expression have an impaired G2/M checkpoint after exposure to either ultraviolet radiation or methyl methanesulfonate but are still able to undergo G2 arrest after ionizing radiation. Lymphocytes from gadd45-knockout mice (gadd45 -/-) also retained a G2/M checkpoint initiated by ionizing radiation and failed to arrest at G2/M after exposure to ultraviolet radiation. Therefore, the mammalian genome is protected by a multiplicity of G2/M checkpoints in response to specific types of DNA damage.  相似文献   

11.
G1 is a crucial phase of cell growth because the decision to begin another mitotic cycle is made during this period. Occurrence of DNA damage in G1 poses a particular challenge, because replication of damaged DNA can be deleterious and because no sister chromatid is present to provide a template for recombinational repair. We therefore have studied the response of Schizosaccharomyces pombe cells to UV irradiation in early G1 phase. We find that irradiation results in delayed progression through G1, as manifested most critically in the delayed formation of the pre-replication complex. This delay does not have the molecular hallmarks of known checkpoint responses: it is independent of the checkpoint proteins Rad3, Cds1, and Chk1 and does not elicit inhibitory phosphorylation of Cdc2. Irradiated cells eventually progress into S phase and arrest in early S by a rad3- and cds1-dependent mechanism, most likely the intra-S checkpoint. Caffeine alleviates both the intra-G1- and intra-S-phase delays. We suggest that intra-G1 delay may be widely conserved and discuss significance and possible mechanisms.  相似文献   

12.
UV light induces DNA lesions, which are removed by nucleotide excision repair (NER). Exonuclease 1 (EXO1) is highly conserved from yeast to human and is implicated in numerous DNA metabolic pathways, including repair, recombination, replication, and telomere maintenance. Here we show that hEXO1 is involved in the cellular response to UV irradiation in human cells. After local UV irradiation, fluorescent-tagged hEXO1 localizes, together with NER factors, at the sites of damage in nonreplicating cells. hEXO1 accumulation requires XPF-dependent processing of UV-induced lesions and is enhanced by inhibition of DNA repair synthesis. In nonreplicating cells, depletion of hEXO1 reduces unscheduled DNA synthesis after UV irradiation, prevents ubiquitylation of histone H2A, and impairs activation of the checkpoint signal transduction cascade in response to UV damage. These findings reveal a key role for hEXO1 in the UV-induced DNA damage response linking NER to checkpoint activation in human cells.  相似文献   

13.
A concise review of DNA damage checkpoints and repair in mammalian cells   总被引:8,自引:0,他引:8  
DNA of eukaryotic cells, including vascular cells, is under the constant attack of chemicals, free radicals, or ionizing radiation that can be caused by environmental exposure, by-products of intracellular metabolism, or medical therapy. Damage may be either limited to altered DNA bases and abasic sites or extensive like double-strand breaks (DSBs). Nuclear proteins sense this damage and initiate the attachment of protein complexes at the site of the lesion. Subsequently, signal transducers, mediators, and finally, effector proteins phosphorylate targets (e.g., p53) that eventually results in cell cycle arrest at the G1/S, intra-S, or G2/M checkpoint until the lesion undergoes repair. Defective cell cycle arrest at the respective checkpoints is associated with genome instability and oncogenesis. When cell cycle arrest is accomplished, the DNA repair machinery can become effective. Important pathways in mammalian cells are the following: base excision repair, nucleotide excision repair, mismatch repair, and DSB repair. When repair is successful, the cell cycle arrest may be lifted. If repair is unsuccessful (e.g., by high doses of DNA-damaging agents or genetic defects in the DNA repair machinery), then this may lead to permanent cell cycle arrest (cellular senescence), apoptosis, or oncogenesis.  相似文献   

14.
ATR [ataxia-telangiectasia-mutated (ATM)- and Rad3-related] is a protein kinase required for both DNA damage-induced cell cycle checkpoint responses and the DNA replication checkpoint that prevents mitosis before the completion of DNA synthesis. Although ATM and ATR kinases share many substrates, the different phenotypes of ATM- and ATR-deficient mice indicate that these kinases are not functionally redundant. Here we demonstrate that ATR but not ATM phosphorylates the human Rad17 (hRad17) checkpoint protein on Ser(635) and Ser(645) in vitro. In undamaged synchronized human cells, these two sites were phosphorylated in late G(1), S, and G(2)/M, but not in early-mid G(1). Treatment of cells with genotoxic stress induced phosphorylation of hRad17 in cells in early-mid G(1). Expression of kinase-inactive ATR resulted in reduced phosphorylation of these residues, but these same serine residues were phosphorylated in ionizing radiation (IR)-treated ATM-deficient human cell lines. IR-induced phosphorylation of hRad17 was also observed in ATM-deficient tissues, but induction of Ser(645) was not optimal. Expression of a hRad17 mutant, with both serine residues changed to alanine, abolished IR-induced activation of the G(1)/S checkpoint in MCF-7 cells. These results suggest ATR and hRad17 are essential components of a DNA damage response pathway in mammalian cells.  相似文献   

15.
In response to genotoxic stress, mammalian cells can activate cell cycle checkpoint pathways to arrest the cell for repair of DNA damage or induce apoptosis to eliminate damaged cells. The checkpoint kinase, Chk2, has been implicated in both of these responses and is believed to function in an ataxia telangiectasia (Atm)-dependent manner. We show here that Chk2-/- mouse embryo fibroblasts (MEFs), unlike Atm-/- or p53-/- MEFs, behaved like normal MEFs in manifesting p21 induction and G(1) arrest upon exposure to gamma-irradiation. Therefore, Chk2 is not involved in p53-mediated G(1) arrest. To examine the role of Chk2 in p53-dependent apoptotic response, we used adenovirus E1A-expressing MEFs. We show that Chk2-/- cells, like p53-/- cells, did not undergo DNA damage-induced apoptosis, whereas Atm-/- cells behaved like normal cells in invoking an apoptotic response. Furthermore, this apoptosis could occur in the absence of protein synthesis, suggesting that it is preexisting, or "latent," p53 that mediates this response. We conclude that Chk2 is not involved in Atm- and p53-dependent G(1) arrest, but is involved in the activation of latent p53, independently of Atm, in triggering DNA damage-induced apoptosis.  相似文献   

16.
Radiosensitivity in ataxia-telangiectasia: a new explanation.   总被引:36,自引:8,他引:28       下载免费PDF全文
The cause of increased radiosensitivity in ataxia-telangiectasia (AT) cells may be a defect in their ability to respond to DNA damage rather than a defect in their ability to repair it. Doses of x-radiation that markedly inhibited the rate of DNA synthesis in normal human cells caused almost no inhibition in AT cells and thus less delay during which x-ray damage could be repaired. The radioresistance of DNA synthesis in AT cells was primarily due to a much smaller inhibition of replicon initiation than in normal cells; the AT cells were also more resistant to damage that inhibited chain elongation. AT cells have been reported to undergo less radiation-induced mitotic delay than normal cells, which may cause them to move from G2 phase into mitosis before repair is complete and may result in the increased incidence of chromatid aberrations observed by others. Therefore, AT cells fail to go through those delays that allow normal cells to repair DNA damage before it can be expressed.  相似文献   

17.
BRIT1 (BRCT-repeat inhibitor of hTERT expression), also known as microcephalin (MCPH1), is a crucial gene in the complex cellular machine that is devoted to DNA repair and acts as a regulator of both the intra-S and G2/M checkpoints. The most important role of BRIT1/MCPH1 in the regulation of cell cycle progression appears to be the G2/M checkpoint. The K562 and peripheral blood cells of chronic myeloid leukemia (CML) patients at diagnosis were found to downregulate BRIT1/MCPH1. However, we could not find any correlation between bcr/abl activity and the BRIT1/MCPH1 level. In order to study the genomic instability of CML cells, we evaluated the ability of these cells to arrest mitotic division after exposure to hydroxyurea, a known genotoxic agent. We showed that CML cells continue to proliferate without the activation of the G2/M cell cycle checkpoint arrest or of the apoptotic mechanism. This behavior may predispose the cells to accumulate genomic defects. In conclusion, we found that CML cells have a low BRIT1/MCPH1 level and show a defective G2/M arrest, confirming that these cells have a constitutive genomic instability.  相似文献   

18.
Faithful repair of damaged DNA is a crucial process in maintaining cell viability and function. A multitude of factors and pathways guides this process and includes repair proteins and cell cycle checkpoint factors. Differences in the maintenance of genomic processes are one feature that may contribute to species-specific differences in lifespan. We predicted that 53BP1, a key transducer of the DNA damage response and cell cycle checkpoint control, is highly involved in maintaining genomic stability and may function differently in cells from different species. We demonstrate a difference in the levels and recruitment of 53BP1 in mouse and human cells following DNA damage. In addition, we show that unresolved DNA damage persists more in mouse cells than in human cells, as evidenced by increased numbers of micronuclei. The difference in micronuclei seems to be related to the levels of 53BP1 present in cells. Finally, we present evidence that unresolved DNA damage correlates with species lifespan. Taken together, these studies suggest a link between recruitment of 53BP1, resolution of DNA damage, and increased species lifespan.  相似文献   

19.
Exposure of eukaryotic cells to UV light induces a checkpoint response that delays cell-cycle progression after cells enter S phase. It has been hypothesized that this checkpoint response provides time for repair by signaling the presence of structures generated when the replication fork encounters UV-induced DNA damage. To gain insight into the nature of the signaling structures, we used time-lapse microscopy to determine the effects of deficiencies in translesion DNA polymerases on the checkpoint response of the fission yeast Schizosaccharomyces pombe. We found that disruption of the genes encoding translesion DNA polymerases Polκ and Polη significantly prolonged the checkpoint response, indicating that the substrates of these enzymes are signals for checkpoint activation. Surprisingly, we found no evidence that the translesion polymerases Rev1 and Polζ repair structures that are recognized by the checkpoint despite their role in maintaining viability after UV irradiation. Quantitative flow cytometry revealed that cells lacking translesion polymerases replicate UV-damaged DNA at the same rate at WT cells, indicating that the enhanced checkpoint response of cells lacking Polκ and Polη is not the result of stalled replication forks. These observations support a model in which postreplication DNA gaps with unrepaired UV lesions in the template strand act both as substrates for translesion polymerases and as signals for checkpoint activation.  相似文献   

20.
A single HO endonuclease-induced double-strand break (DSB) is sufficient to activate the DNA damage checkpoint and cause Saccharomyces cells to arrest at G(2)/M for 12-14 h, after which cells adapt to the presence of the DSB and resume cell cycle progression. The checkpoint signal leading to G(2)/M arrest was previously shown to be nuclear-limited. Cells lacking ATR-like Mec1 exhibit no DSB-induced cell cycle delay; however, cells lacking Mec1's downstream protein kinase targets, Rad53 or Chk1, still have substantial G(2)/M delay, as do cells lacking securin, Pds1. This delay is eliminated only in the triple mutant chk1Delta rad53Delta pds1Delta, suggesting that Rad53 and Chk1 control targets other than the stability of securin in enforcing checkpoint-mediated cell cycle arrest. The G(2)/M arrest in rad53Delta and chk1Delta revealed a unique cytoplasmic phenotype in which there are frequent dynein-dependent excursions of the nucleus through the bud neck, without entering anaphase. Such excursions are infrequent in wild-type arrested cells, but have been observed in cells defective in mitotic exit, including the semidominant cdc5-ad mutation. We suggest that Mec1-dependent checkpoint signaling through Rad53 and Chk1 includes the repression of nuclear movements that are normally associated with the execution of anaphase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号