首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
d-Fructose is an important starting material for producing furfurals and other industrially important chemicals. While the base-catalyzed and enzymatic conversion of d-glucose to d-fructose is well known, the employed methods typically provide limited conversion. d-Glucosone can be obtained from d-glucose by enzymatic oxidation at the C2 position and, subsequently, selectively hydrogenated at C1 to form d-fructose. This work describes an investigation on the hydrogenation of d-glucosone, using both chromatographically purified and crude material obtained directly from the enzymatic oxidation, subjected to filtration and lyophilization only. High selectivities towards d-fructose were observed for both starting materials over a Ru/C catalyst. Hydrogenation of the crude d-glucosone was, however, inhibited by the impurities resulting from the enzymatic oxidation process. Catalyst deactivation was observed in the case of both starting materials.

Investigation on the hydrogenation of both chromatographically purified and crude d-glucosone directly from its enzymatic production process to yield d-fructose.  相似文献   

2.
(+)-5-Thiosucrose 1, a novel isosteric sulfur analog of sucrose, was synthesized stereoselectively for the first time via indirect β-d-fructofuranosidation involving selective β-d-psicofuranosidation, followed by stereo-inversion of the secondary hydroxy group at the C-3 position on the furanose ring. Glycosidation of protected 5-thio-d-glucose with a d-psicofuranosyl donor provided β-d-psicofuranosyl 5-thio-α-d-glucopyranoside and that with d-fructofuranosyl donor gave α-d-fructofuranosyl 5-thio-α-d-glucopyranoside. Two anomeric stereocenters of the glycosyl donor and acceptor were controlled correctly to provide a single disaccharide among four possible anomeric isomers in the glycosylation. Conversion of the resulting disaccharides afforded (+)-5-thiosucrose 1 and (+)-5-thioisosucrose 2 in excellent yields, respectively. Inhibitory activities of 1 and 2 against α-glucosidase in vitro were also examined.

(+)-5-Thiosucrose and (+)-5-thioisosucrose were stereoselectively synthesized among four possible anomeric isomers using 5-thio-d-glucose as an α-directing glycosyl acceptor.  相似文献   

3.
A chemically defined medium, consisting of d-fructose, l-glutamic acid, l-histidine, K2HPO4, MgSO4·7H2O, ZnSO4·7H2O, CaCl2·2H2O, FeSO4·7H2O, CoCl2·6H2O, and deionized water, was developed for synthesis of high yields (500 to 600 μg/ml) of actinomycin D by Streptomyces parvulus. Under these nutritional conditions, growth and actinomycin formation did not follow a typical trophophase-idiophase pattern. The amino acids appeared to have a sparing action on the utilization of d-fructose which was slowly and incompletely metabolized during mycelium development and antibiotic production. A significant repression of actinomycin synthesis by S. parvulus was observed when d-glucose (0.01 to 0.25%) was added to the culture medium. The repression was not due to a decline in the pH of the medium during glucose catabolism.  相似文献   

4.
The d- and l-isomers of glyceraldehyde are equally effective in the inhibition of SS erythrocyte sickling in vitro. The following compounds at a concentration of 20 mM were ineffective in inhibiting sickling: glyceraldehyde-3-phosphate, d-erythrose, d-ribose, d-fructose, d-glucose, d-sucrose, dihydroxyacetone, and methylglyoxal. Glyceraldehyde does not reverse the sickling of cells in the deoxy state. The properties of purified hemoglobin after treatment with glyceraldehyde and of the hemoglobin isolated from treated cells are very similar; these results suggest that glyceraldehyde itself is the reactive species within the erythrocyte. Erythrocyte glutathione is decreased by treatment in vitro with the aldehyde.  相似文献   

5.
Studies with 14C-labeled isoleucine stereisomers have established that l-alloisoleucine, d-alloisoleucine, and d-isoleucine may function as precursors for the biogenesis of d-isoleucine and N-methyl-l-alloisoleucine residues in actinomycin. l-[14C]isoleucine appears to be employed chiefly for d-alloisoleucine (and N-methylisoleucine [?] formation); however, its role in the biosynthesis of d-isoleucine and N-methylalloisoleucine remains unclear. The potential pathway of biosynthesis of d-isoleucine and N-methyl-l-isoleucine is discussed.  相似文献   

6.
7.
Synthesis of peptidoglycan precursors ending in d-lactate (d-Lac) is thought to be responsible for glycopeptide resistance in members of the order Actinomycetales that produce these drugs and in related soil bacteria. More recently, the peptidoglycan of several members of the order Actinomycetales was shown to be cross-linked by l,d-transpeptidases that use tetrapeptide acyl donors devoid of the target of glycopeptides. To evaluate the contribution of these resistance mechanisms, we have determined the peptidoglycan structure of Streptomyces coelicolor A(3)2, which harbors a vanHAX gene cluster for the production of precursors ending in d-Lac, and Nonomuraea sp. strain ATCC 39727, which is devoid of vanHAX and produces the glycopeptide A40296. Vancomycin retained residual activity against S. coelicolor A(3)2 despite efficient incorporation of d-Lac into cytoplasmic precursors. This was due to a d,d-transpeptidase-catalyzed reaction that generated a stem pentapeptide recognized by glycopeptides by the exchange of d-Lac for d-Ala and Gly. The contribution of l,d-transpeptidases to resistance was limited by the supply of tetrapeptide acyl donors, which are essential for the formation of peptidoglycan cross-links by these enzymes. In the absence of a cytoplasmic metallo-d,d-carboxypeptidase, the tetrapeptide substrate was generated by hydrolysis of the C-terminal d-Lac residue of the stem pentadepsipeptide in the periplasm in competition with the exchange reaction catalyzed by d,d-transpeptidases. In Nonomuraea sp. strain ATCC 39727, the contribution of l,d-transpeptidases to glycopeptide resistance was limited by the incomplete conversion of pentapeptides into tetrapeptides despite the production of a cytoplasmic metallo-d,d-carboxypeptidase. Since the level of drug production exceeds the level of resistance, we propose that l,d-transpeptidases merely act as a tolerance mechanism in this bacterium.  相似文献   

8.
This study aimed to characterize the stereoselective pharmacokinetics of oral eflornithine in 25 patients with late-stage Trypanosoma brucei gambiense sleeping sickness. A secondary aim was to determine the concentrations of l- and d-eflornithine required in plasma or cerebrospinal fluid (CSF) for an efficient eradication of the T. brucei gambiense parasites. Patients were randomly allocated to receive either 100 (group I, n = 12) or 125 (group II, n = 13) mg/kg of body weight of drug every 6 h for 14 days. The concentrations of l- and d-eflornithine in the plasma and CSF samples were measured using a stereospecific liquid chromatographic method. Nonlinear mixed-effects modeling was used to characterize the plasma pharmacokinetics. The plasma concentrations of l-eflornithine were on average 52% (95% confidence interval [CI], 51, 54%; n = 321) of the d-enantiomer concentrations. The typical oral clearances of l- and d-eflornithine were 17.4 (95% CI, 15.5, 19.3) and 8.23 (95% CI, 7.36, 9.10) liters/h, respectively. These differences were likely due to stereoselective intestinal absorption. The distributions of eflornithine enantiomers to the CSF were not stereoselective. A correlation was found between the probability of cure and plasma drug exposure, although it was not more pronounced for the l-enantiomer than for that of total eflornithine. This study may explain why oral treatment for late-stage human African trypanosomiasis (HAT) patients with racemic eflornithine has previously failed; the more potent l-enantiomer is present at much lower concentrations in both plasma and CSF than those of the d-enantiomer. Eflornithine stereoselective pharmacokinetics needs to be considered if an oral dosage regimen is to be explored further.  相似文献   

9.
Temperature usually occupies a crucial position in the construction of chiral compounds. By controlling the temperature of the reaction system, chiral and non-chiral compounds can be designed and synthesized. Given the above, three new chiral and non-chiral compounds based on copper(ii) monosubstituted polyoxoanions and Cu(en) complexes (en = ethylenediamine), d/l-[Cu(H2O)(en)2]2{[Cu(H2O)2(en)][SiCuW11O39]}·5H2O (1, d-1 and l-1) and [Cu(H2O)(en)2]{[Cu(en)2]2[SiCuW11O39]}·2.5H2O (2), were successfully synthesized under hydrothermal conditions. The main synthesis conditions of compound 1 (d-1 and l-1) and compound 2 are the same, however, the only difference is that the reaction temperatures are 80 °C and 140 °C, respectively. What''s more, compounds 1 and 2 can form a 1D chiral chain by Cu–O and W/Cu–O–W/Cu bonds, respectively, and further obtain a 3D-supramolecular framework through hydrogen bonding interaction. Meanwhile, due to the asymmetry of chiral compound 1, optical second-harmonic generation (SHG) was used to investigate the second-order nonlinear optical effect and it was found that the observed SHG efficiency of compound 1 is 0.3 times that of urea. To further investigate the chiral properties, d-1 and l-1 were used in the electrochemical enantioselective sensing of d-/l-tartaric acid (d-/l-tart) molecules, respectively, which demonstrates that d-1 and l-1 have a good application prospect in sensing chiral substances.

A pair of temperature-controlled chiral compounds, d- and l-[Cu(en)2(H2O)]2{[Cu(en)(H2O)2][SiCuW11O39]}·5H2O (en = ethanediamine) are isolated by hydrothermal method, having a good application prospect in sensing d-/l-tartaric acid.  相似文献   

10.
Stereocomplex (SC) formation was reported for the first time for enantiomeric alternating copolymers consisting of repeating units with two types of chiral centers, poly(lactic acid-alt-2-hydroxybutanoic acid)s [P(LA-alt-2HB)s]. l,l-Configured poly(l-lactic acid-alt-l-2-hydroxybutanoic acid) [P(LLA-alt-l-2HB)] and d,d-configured poly(d-lactic acid-alt-d-2-hydroxybutanoic acid) [P(DLA-alt-d-2HB)] were amorphous. Blends of P(LLA-alt-l-2HB) and P(DLA-alt-d-2HB) were crystallizable and showed typical SC-type wide-angle X-ray diffraction profiles similar to those reported for stereocomplexed blends of poly(l-lactic acid) and poly(d-lactic acid) homopolymers and of poly(l-2-hydroxybutanoic acid) and poly(d-2-hydroxybutanoic acid) homopolymers, and of l,l-configured poly(l-lactic acid-co-l-2-hydroxybutanoic acid) [P(LLA-co-l-2HB)] and d,d-configured poly(d-lactic acid-co-d-2-hydroxybutanoic acid) [P(DLA-co-d-2HB)] random copolymers. The melting temperature values and melting enthalpy values at 100% crystallinity for stereocomplexed solvent-evaporated and precipitated P(LLA-alt-l-2HB)/P(DLA-alt-d-2HB) blends were correspondingly 187.5 and 187.9 °C, and 98.1 and 91.8 J g−1. Enantiomeric polymer blending of P(LLA-alt-l-2HB) and P(DLA-alt-d-2HB) can confer crystallizability by stereocomplexation and the biodegradable materials with a wide variety of physical properties and biodegradability are highly expected to be prepared by synthesis of alternating copolymers of various combinations of two types of chiral α-substituted 2-hydroxyalkanoic acid monomers and their SC crystallization.

Stereocomplex formation was reported for alternating copolymers of chiral α-substituted 2-hydroxyalkanoic acids which can be utilized for preparation of biodegradable materials with a variety of physical properties and biodegradability.  相似文献   

11.
12.
This study describes the long-distance diastereomeric effect on thermoresponsive properties in water-soluble diastereomeric polyurethanes (PUs) composed of an l-lysine ethyl ester diisocyanate and a trimethylene glycol l-/d-tartrate ester, which have differences in spatial arrangements of the ethyl esters in the mirror image. The PUs based on l-lysine and l-/d-tartrate ester, named l-PU and d-PU, were synthesized with various number average molecular weights from 4700 to 13 100. In turbidimetry, l-PU showed a steep phase transition from 100%T to 0%T within about 10 °C at 4 g L−1, whereas d-PU did not change completely to 0%T transmittance even at 80 °C at 4 g L−1. In addition, the thermoresponsive properties of l-PU were less affected by concentration than those of d-PU. This long-distance diastereomeric effect on thermoresponsive behavior between l-PU and d-PU appeared in common among 6 samples with 4700 to 13 100 number average molecular weight. In the dynamic light scattering experiments at each transmittance, the hydrodynamic diameter (Dh) of l-PU increased up to 1000 nm, while the Dh of d-PU remained almost at 200–300 nm. The C Created by potrace 1.16, written by Peter Selinger 2001-2019 O stretching vibration of FT-IR spectra showed that d-PU has more hydrogen-bonded ester groups than L-PU. Thus, we speculated that the difference in the retention of polymer chains in the micelle to promote intermicellar bridging generates the long-distance diastereomeric effect.

The long-distance diastereomeric effect on thermoresponsive properties in a polyurethane system consisting of chiral monomers was reported.  相似文献   

13.
The production of analytical amounts of azido sugars is used as a means of verifying catalytic acid/base mutations of retaining glycosidase, but application of this process to preparative synthesis has not been reported. The catalytic acid/base mutant of Thermoanaerobacterium xylanolyticus GH116 β-glucosidase, TxGH116D593A, catalyzed the gram scale production of 1-azido-β-d-glucose (1) from p-nitropheyl-β-d-glucopyranoside (pNPGlc) and azide via a transglucosylation reaction. Overnight reaction of the enzyme with pNPGlc and NaN3 in aqueous MES buffer (pH 5.5) at 55 °C produced 1 (3.27 g), which was isolated as a white foamy solid in 96% yield. This 1 was successfully utilized for the synthesis of fifteen 1,2,3-triazole-β-d-glucosyl derivatives (2–16) containing a variety of functional groups, via click chemistry.

The retaining β-glucosidase acid/base mutant TxGH116D593A catalyzed the production of 1-azido-β-d-glucose for synthesis of 15 1,2,3-triazole β-glucosyl derivatives.  相似文献   

14.
d-Amino acids are key intermediates required for the synthesis of important pharmaceuticals. However, establishing a universal enzymatic method for the general synthesis of d-amino acids from cheap and readily available precursors with few by-products is challenging. In this study, we constructed and optimized a cascade enzymatic route involving l-amino acid deaminase and d-amino acid dehydrogenase for the biocatalytic stereoinversions of l-amino acids into d-amino acids. Using l-phenylalanine (l-Phe) as a model substrate, this artificial biocatalytic cascade stereoinversion route first deaminates l-Phe to phenylpyruvic acid (PPA) through catalysis involving recombinant Escherichia coli cells that express l-amino acid deaminase from Proteus mirabilis (PmLAAD), followed by stereoselective reductive amination with recombinant meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum (StDAPDH) to produce d-phenylalanine (d-Phe). By incorporating a formate dehydrogenase-based NADPH-recycling system, d-Phe was obtained in quantitative yield with an enantiomeric excess greater than 99%. In addition, the cascade reaction system was also used to stereoinvert a variety of aromatic and aliphatic l-amino acids to the corresponding d-amino acids by combining the PmLAAD whole-cell biocatalyst with the StDAPDH variant. Hence, this method represents a concise and efficient route for the asymmetric synthesis of d-amino acids from the corresponding l-amino acids.

An efficient one-pot biocatalytic cascade was developed for synthesis of d-amino acids from readily available l-amino acids via stereoinversion.  相似文献   

15.
Within wounds, microorganisms predominantly exist as biofilms. Biofilms are associated with chronic infections and represent a tremendous clinical challenge. As antibiotics are often ineffective against biofilms, use of dispersal agents as adjunctive, topical therapies for the treatment of wound infections involving biofilms has gained interest. We evaluated in vitro the dispersive activity of d-amino acids (d-AAs) on biofilms from clinical wound isolates of Staphylococcus aureus and Pseudomonas aeruginosa; moreover, we determined whether combinations of d-AAs and antibiotics (clindamycin, cefazolin, oxacillin, rifampin, and vancomycin for S. aureus and amikacin, colistin, ciprofloxacin, imipenem, and ceftazidime for P. aeruginosa) enhance activity against biofilms. d-Met, d-Phe, and d-Trp at concentrations of ≥5 mM effectively dispersed preformed biofilms of S. aureus and P. aeruginosa clinical isolates, an effect that was enhanced when they were combined as an equimolar mixture (d-Met/d-Phe/d-Trp). When combined with d-AAs, the activity of rifampin was significantly enhanced against biofilms of clinical isolates of S. aureus, as indicated by a reduction in the minimum biofilm inhibitory concentration (MBIC) (from 32 to 8 μg/ml) and a >2-log reduction of viable biofilm bacteria compared to treatment with antibiotic alone. The addition of d-AAs was also observed to enhance the activity of colistin and ciprofloxacin against biofilms of P. aeruginosa, reducing the observed MBIC and the number of viable bacteria by >2 logs and 1 log at 64 and 32 μg/ml in contrast to antibiotics alone. These findings indicate that the biofilm dispersal activity of d-AAs may represent an effective strategy, in combination with antimicrobials, to release bacteria from biofilms, subsequently enhancing antimicrobial activity.  相似文献   

16.
d-psicose is one of the rare sugars present in small quantities in commercial carbohydrates and agricultural products. In this study, we investigated the effects of d-psicose on the activities of α-amylases and α-glucosidases in vitro, and evaluated the effects of d-psicose on the in vivo postprandial glycemic response using rats. In the in vitro study, d-psicose potently inhibited the intestinal sucrase and maltase, however, slightly inhibited the intestinal and salivary α-amylase activities. Male Wistar rats (6 months old) were administrated 2 g/kg of sucrose, maltose or soluble starch together with 0.2 g/kg of d-psicose or d-fructose. The d-psicose significantly inhibited the increment of plasma glucose concentration induced by sucrose or maltose. The starch-induced glycemic response tended to be suppressed by d-psicose, however the suppression was not significant. These results suggest that d-psicose inhibits intestinal sucrase and maltase activities and suppresses the plasma glucose increase the normally occurs after sucrose and maltose ingestion. Thus, d-psicose may be useful in preventing postprandial hyperglycemia in diabetic patients when foods containing sucrose and maltose are ingested.  相似文献   

17.
We have recently cloned a DNA fragment containing a gene cluster that is responsible for the biosynthesis of an antituberculosis antibiotic, d-cycloserine. The gene cluster is composed of 10 open reading frames, designated dcsA to dcsJ. Judging from the sequence similarity between each putative gene product and known proteins, DcsC, which displays high homology to diaminopimelate epimerase, may catalyze the racemization of O-ureidoserine. DcsD is similar to O-acetylserine sulfhydrylase, which generates l-cysteine using O-acetyl-l-serine with sulfide, and therefore, DcsD may be a synthase to generate O-ureido-l-serine using O-acetyl-l-serine and hydroxyurea. DcsG, which exhibits similarity to a family of enzymes with an ATP-grasp fold, may be an ATP-dependent synthetase converting O-ureido-d-serine into d-cycloserine. In the present study, to characterize the enzymatic functions of DcsC, DcsD, and DcsG, each protein was overexpressed in Escherichia coli and purified to near homogeneity. The biochemical function of each of the reactions catalyzed by these three proteins was verified by thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), and, in some cases, mass spectrometry. The results from this study demonstrate that by using a mixture of the three purified enzymes and the two commercially available substrates O-acetyl-l-serine and hydroxyurea, synthesis of d-cycloserine was successfully attained. These in vitro studies yield the conclusion that DcsD and DcsG are necessary for the syntheses of O-ureido-l-serine and d-cycloserine, respectively. DcsD was also able to catalyze the synthesis of l-cysteine when sulfide was added instead of hydroxyurea. Furthermore, the present study shows that DcsG can also form other cyclic d-amino acid analogs, such as d-homocysteine thiolactone.  相似文献   

18.
Sinorhizobium sp. d-tagatose 3-epimerase (sDTE) catalyzes the conversion of d-tagatose to d-sorbose. It also recognizes d-fructose as a substrate for d-allulose production. The optimal temperature and pH of the purified sDTE was 50 °C and 8.0, respectively. Based on the sDTE homologous model, Glu154, Asp187, Gln213, and Glu248, form a hydrogen bond network with the active-site Mn2+ and constitute the catalytic tetrad. The amino acid residues around O-1, -2, and -3 atoms of the substrates (d-tagatose/d-fructose) are strictly conserved and thus likely regulate the catalytic reaction. However, the residues at O-4, -5, and -6, being responsible for the substrate-binding, are different. In particular, Arg65 and Met9 were found to form a unique interaction with O-4 of d-fructose and d-tagatose. The whole cells with recombinant sDTE showed a higher bioconversion rate of 42.5% in a fed-batch bioconversion using d-fructose as a substrate, corresponding to a production of 476 g L−1d-allulose. These results suggest that sDTE is a potential industrial biocatalyst for the production of d-allulose in fed-batch mode.

Sinorhizobium sp. d-tagatose 3-epimerase (sDTE) catalyzes the conversion of d-tagatose to d-sorbose.  相似文献   

19.
Malvastrum coromandelianum L. (Garcke) is extensively used in traditional medicinal systems to treat various ailments. In the present study, an alkali-soluble polysaccharide (MAP) was isolated from the leaves of M. coromandelianum in 1.15% (w/w) yield. MAP was composed of l-rhamnose, l-arabinose, d-xylose, d-glucose and d-galactose in a 1.00 : 6.04 : 19.88 : 1.07 : 3.03 molar ratio along with d-glucuronic acid (1.95). Methylation/linkage analysis revealed a backbone of →4)-β-d-Xylp(1→ (30.09 mol%) with a side chain of →3)-α-l-Araf(1→ (15.21 mol%) residues. The structure of MAP was elucidated by a combination of degradative and derivatization techniques, including hydrolysis, alditol acetate derivatization, methylation, GC-MS, partial hydrolysis, ESI-MS and NMR (1D, 2D) spectral analysis. Based on correlation analysis, MAP was found to be an arabinoxylan comprising a backbone of →4)-β-d-linked Xylp(1→ with branching at O-2 by a →3)-α-l-Araf(1→ and →3)-β-d-Xylp(1→ chain. MAP also exhibited ferric ion reducing activity, with a reducing power of 0.914 ± 0.01 (R2 = 0.972) at 1 mg mL−1 concentration, which showed dose-dependent behavior. MAP can be utilized as a potential antioxidant.

The structure of MAP was studied by degradative, derivatization and spectroscopic methods, and it was found to be an arabinoxylan comprising a backbone of →4)-β-d-linked Xylp(1→ with branching at O-2 by →3)-α-l-Araf(1→ and →3)-β-d-Xylp(1→ chains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号