首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Epigenetic abnormalities including abnormal histone methyltransferase activity contribute to breast cancer pathogenesis. An example is over expression of the polycomb repressive complex (PRC) 2 member enhancer of zeste homolog 2 (EZH2) which is linked to epigenetic silencing and poor prognosis. Recent evidence shows that S-adenosylhomocysteine (AdoHcy) hydrolase inhibitors (AHI) such as 3-deazaneplanocin A (DZNep) modulate chromatin through indirect inhibition of histone methyltransferases including EZH2. We investigated the biological effects of AdoHcy hydrolase inhibition using DZNep and its structural analogues 3-deazaadenosine (DZA) and neplanocin A (Nep A) in breast cancer cells. EZH2 protein expression was decreased and dose dependent growth inhibition occurred with variable potencies in MCF7, MDA-MB-231 and SKBr3 breast cancer cells. Cellular proliferation was inhibited through G2/M cell cycle arrest and apoptosis. In addition breast cancer cells accumulated cytoplasmic lipid droplets in response to AdoHcy hydrolase inhibition consistent with a differentiating effect. Each analogue induced a similar pattern of biological activity against breast cancer cells but with differences in potency (DZA > DZNep > Nep A). Co-administration with the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) induced synergistic inhibition of breast cancer cell proliferation. Furthermore, the relatively AHI resistant human epidermal growth factor receptor 2 (HER2) positive cell line SKBr3 underwent synergistic growth inhibition in response to co-treatment with the HER2 directed therapeutic antibody trastuzumab. In conclusion, AHI induce growth inhibition, cell cycle arrest, apoptosis and differentiation in breast cancer cells and synergise with HDAC and HER2 inhibition. Targeting histone methyltransferase activity might be of therapeutic value in breast cancer.  相似文献   

2.

Purpose

The histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA) enhances taxol-induced antitumor effects against some human cancer cells. The aim of this study is to investigate whether SAHA can enhance taxol-induced cell death against human breast cancer cells and to illustrate the mechanism in detail.

Methods

A panel of eight human breast cancer cell lines and an immortalized human breast epithelial cell line were used to determine the inhibitory effects of SAHA, taxol, or their combination by MTT assay. The effects of SAHA with or without taxol on cell cycle distributions, apoptosis, and protein expressions were also examined. The inhibitory effects on tumor growth were characterized in vivo in BALB/c nude mice bearing a breast cancer xenograft model.

Results

Taxol-resistant and multi-resistant breast cancer cells were as sensitive to SAHA as taxol-sensitive breast cancer cells. A dose-dependent synergistic growth inhibition was found in all the tested breast cancer cell lines treated with the SAHA/taxol combinations. The synergetic effect was also observed in the in vivo xenograft tumor model. The cell cycle analysis and apoptosis assay showed that the synergistic effects resulted from enhanced G2/M arrest and apoptosis.

Conclusions

SAHA increased the anti-tumor effects of taxol in breast cancer in vitro and in vivo. The combination of SAHA and taxol may have therapeutic potential in the treatment of breast cancer.  相似文献   

3.
4.
5.
Prostaglandin E2 (PGE2) is an important pro‐angiogenic and pro‐proliferative cytokine and the key enzymes modulating its levels, cyclooxygenase (COX)‐2 and 15‐hydroxyprostaglandin dehydrogenase (15‐PGDH) play important opposing roles in carcinogenesis. Previously we found loss of 15‐PGDH expression in lung cancer and its reactivation leads to strong in vivo tumor‐suppressive effect via an antiangiogenic mechanism. Here, we find that HDAC inhibitors (HDACI), such as trichostatin A (TSA) and vorinostat could reactivate 15‐PGDH expression but overall induce PGE2 generation and this is the result of concomitant induction of COX‐1 and ‐2 leading to functional promotion of endothelial cell proliferation and capillary formation. Direct TSA treatment inhibits endothelial cell proliferation and capillary formation in our study in line with prior reports as HDACIs have been shown to directly inhibit angiogenesis. The elevation of PGE2 levels induced by HDACI is potently neutralized by indomethacin (INN) or Celecoxib co‐treatment and accordingly, angiogenesis is more effectively inhibited when using conditioned medium of co‐treatment than either alone confirming that this effect is mediated via the PGE2 axis. Accordingly, blockage of EP2/4 receptors mitigates the stimulation of angiogenesis by excessive PGE2 generation mediated by TSA. In this study, we identify a potentially adverse effect of HDACIs through induction of both 15‐PGDH and COX‐2 leading to elevated PGE2 levels and thereby stimulation of angiogenesis. Co‐treatment of TSA and INN shows more potent anti‐angiogenic effects by inducing 15‐PGDH and inhibiting COX‐2. Overall, our results suggest that combined HDACI and COX inhibition should be explored clinically to achieve more meaningful benefits from HDACI therapy in lung cancer. © 2011 Wiley Periodicals, Inc.  相似文献   

6.
Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression   总被引:17,自引:0,他引:17  
Fulda S  Meyer E  Debatin KM 《Oncogene》2002,21(15):2283-2294
Primary or acquired resistance to current treatment protocols remains a major concern in clinical oncology and may be caused by defects in apoptosis programs. Since recent data suggest that TRAIL can bypass apoptosis resistance caused by Bcl-2, we further investigated the role of Bcl-2 in TRAIL-induced apoptosis. Here we report that overexpression of Bcl-2 conferred protection against TRAIL in neuroblastoma, glioblastoma or breast carcinoma cell lines. Bcl-2 overexpression reduced TRAIL-induced cleavage of caspase-8 and Bid indicating that caspase-8 was activated upstream and also downstream of mitochondria in a feedback amplification loop. Importantly, Bcl-2 blocked cleavage of caspases-9, -7 and -3 into active subunits and cleavage of the caspase substrates DFF45 or PARP. Also, Bcl-2 blocked cleavage of XIAP and overexpression of XIAP conferred resistance against TRAIL indicating that apoptosis was also amplified through a feedforward loop between caspases and XIAP. In contrast, in SKW lymphoblastoid cells, TRAIL-induced activation of caspase-8 directly translated into full activation of caspases, cleavage of XIAP, DFF45 or PARP and apoptosis independent of Bcl-2 overexpression, although Bcl-2 similarly inhibited loss of mitochondrial membrane potential and the release of cytochrome c, AIF and Smac from mitochondria in all cell types. By demonstrating a cell type dependent regulation of the TRAIL signaling pathway at different level, e.g. by Bcl-2 and by XIAP, these findings may have important clinical implication. Thus, strategies targeting the molecular basis of resistance towards TRAIL may be necessary in some tumors for cancer therapy with TRAIL.  相似文献   

7.
8.
Circadian gene mPer2 overexpression induces cancer cell apoptosis   总被引:2,自引:0,他引:2  
The Period2 gene, an indispensable component of the circadian clock, not only modulates circadian oscillations, but also regulates organic function. We examined whether overexpression of the mouse Period2 gene (mPer2) in tumor cells influences cell growth and induces apoptosis. Overexpression of PERIOD2 in the mouse Lewis lung carcinoma cell line (LLC) and mammary carcinoma cell line (EMT6) results in reduced cellular proliferation and rapid apoptosis, but not in NIH 3T3 cells. Overexpressed mPER2 also altered the expression of apoptosis-related genes. The mRNA and protein levels of c-Myc, Bcl-X(L) and Bcl-2 were downregulated, whereas the expression of p53 and bax was upregulated in mPER2-overexpressing LLC cells compared with control cells transferred with empty plasmid. Our results suggest that the circadian gene mPeriod2 may play an important role in tumor suppression by inducing apoptotic cell death, which is attributable to enhanced pro-apoptotis signaling and attenuated anti-apoptosis processes.  相似文献   

9.
Ryu JK  Lee WJ  Lee KH  Hwang JH  Kim YT  Yoon YB  Kim CY 《Cancer letters》2006,237(1):143-154
A novel hybrid synthetic histone deacetylase inhibitor, SK-7041, was synthesized from hydroaxamic acid of trichostatin A (TSA) and pyridyl ring of MS-275. TSA and SK-7041 both induced apoptosis and G2-M cell cycle arrest in pancreatic cancer cell lines. The expressions of p21 and cyclin D2 were up-regulated and that of cyclin B1 was down-regulated by TSA or SK-7041. The expression levels of Mcl-1 and Bcl-XL but not those of Bcl-2, Bax, and Bak were suppressed by TSA or SK-7041 treatment. SK-7041 or TSA induced apoptosis and G2-M cell cycle arrest by up-regulating p21 and down-regulating cyclin B1, Mcl-1, and Bcl-XL.  相似文献   

10.
Resveratrol has been shown to induce anti-proliferation and apoptosis of human cancer cell lines. In the present study, we determined the effect of high intracellular levels of the anti-apoptosis protein Bcl-2 on caspase-3 activation, PLC-gamma1 degradation and cytochrome c release during resveratrol-induced apoptosis. For this, we used U937/vector and U937/Bcl-2 cells, which were generated by transfection of the cDNA of the Bcl-2 gene. As compared with U937/vector, U937/Bcl-2 cells exhibited a 4-fold greater expression of Bcl-2. Treatment with 60 or 100 microM resveratrol for 24 h produced morphological features of apoptosis and DNA fragmentation in U937/vector cells, respectively. This was associated with caspase-3 activation and PLC-gamma1 degradation. In contrast, resveratrol-induced caspase-3 activation and PLC-gamma1 degradation and apoptosis were significantly inhibited in U937/Bcl-2 cells. Bcl-2 overexpressing cells exhibited less cytochrome c release and sustained expression levels of the IAP proteins during resveratrol-induced apoptosis. In addition, these findings indicate that Bcl-2 inhibits resveratrol-induced apoptosis by a mechanism that interferes with cytochrome c release and activity of caspase-3 that is involved in the execution of apoptosis.  相似文献   

11.
12.
Sodium butyrate (NaBu), a potent histone deacetylase inhibitor, modulates the expression of a large number of genes. The purpose of this study was to determine whether this dietary agent could induce apoptosis in MCF-7 cells, a breast cancer cell line that lacks caspase-3 activity, and to identify the mechanisms that underlie NaBu toxicity in these cells. Cell viability assessed by the activity of mitochondrial succinate dehydrogenase (MTT assay) revealed a dose-dependent reduction of MCF-7 cellular growth in response to NaBu treatment. Restoring caspase-3 function by transfection did not modify NaBu toxicity in these cells. Following a 24-h exposure, NaBu-induced cell growth arrest in G2/M phase in a dose-dependent fashion in association with stable expression of CDC25A, a G1-specific regulator of the cell cycle. The anti-proliferative effects of NaBu were accompanied by diminished expression of p53. Similarly, mRNA encoding c-Myc, a well-known regulator of p53, was decreased in NaBu-treated cells, while p21(Waf1/Cip1) mRNA was increased. Furthermore, bax mRNA level was up-regulated whereas a decline in Bcl-2 both protein and mRNA levels were detected in NaBu-treated cells. Apoptosis was observed following a treatment with 2 mM NaBu, reflected by Annexin-V staining and by the cleavage of poly(ADP-ribose) polymerase, whereas DNA laddering was absent. Apoptosis was associated with a pronounced depletion of intracellular glutathione levels. Finally, NaBu treatment significantly increased the activities of several antioxidant enzymes, including glutathione reductase, glutathione peroxidase, and catalase. Together, these data suggest that the pro-apoptotic effects of NaBu observed in MCF-7 cells are associated with oxidative stress.  相似文献   

13.
Neuroblastoma (NB) is the most common solid extracranial tumor in children. Here we showed that trichostatin A, a histone deacetylase inhibitor (HDACi), decreases cell viability in three NB cell lines of different phenotypes. The treatment leads to G2/M-phase arrest, apoptosis and autophagy. Autophagy induction accompanies apoptosis in the most proliferative, N-Myc overexpressing cells. In contrast, autophagy precedes apoptosis and acts as a protective mechanism in the less proliferative, non-N-Myc overexpressing cells. Therefore, the autophagy induction is a relevant event in the NB response to HDACis, and it should be considered in the design of new treatments for this malignancy.  相似文献   

14.
Macroautophagy (autophagy), a process for lysosomal degradation of organelles and long-lived proteins, has been linked to various pathologies including cancer and to the cellular response to anticancer therapies. In the human estrogen receptor positive MCF7 breast adenocarcinoma cell line, treatment with the endocrine therapeutic tamoxifen was shown previously to induce cell cycle arrest, cell death, and autophagy. To investigate specifically the role of autophagy in tamoxifen treated breast cancer cell lines, we used a siRNA approach, targeting three different autophagy genes, Atg5, Beclin-1, and Atg7. We found that knockdown of autophagy, in combination with tamoxifen in MCF7 cells, results in decreased cell viability concomitant with increased mitochondrial-mediated apoptosis. The combination of autophagy knockdown and tamoxifen treatment similarly resulted in reduced cell viability in the breast cancer cell lines, estrogen receptor positive T-47D and tamoxifen-resistant MCF7-HER2. Together, these results indicate that autophagy has a primary pro-survival role following tamoxifen treatment, and suggest that autophagy knockdown may be useful in a combination therapy setting to sensitize breast cancer cells, including tamoxifen-resistant breast cancer cells, to tamoxifen therapy. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
组蛋白去乙酰化酶抑制剂(histone deacetylase inhibitors,HDACIs)作为第一个成功用于癌症治疗的表观遗传学相关药物,能够有效解除对抑癌基因转录的阻滞,已成为极具潜力的抗癌药物。近年来,HDACIs在乳腺癌治疗领域中的临床研究逐渐开展,已有个别HDACIs在大型临床研究中表现出较强的抗癌活性。本文针对HDACIs在乳腺癌治疗领域开展的临床研究作一综述,有利于临床医师更好的了解HDACIs在乳腺癌治疗中的现状与进展。  相似文献   

16.
We previously demonstrated that the PPARγ agonist Troglitazone (TRG), a potent antiproliferative agent, in combination with the anthracycline antibiotic Doxorubicin (DOX), is an effective killer of multiple drug resistant (MDR) human cancer cells. Cell killing was accompanied by increased global histone H3 acetylation. Presently, we investigated the epigenetic and cell killing effects of TRG in estrogen receptor (ER) positive MCF7 breast cancer cells. MCF7 cells were treated with the Thiazolidinediones (TZDs) TRG and Ciglitazone (CIG), the non-TZD PPARγ agonist 15PGJ2, and the histone deacetylase inhibitors (HDACi’s) Trichostatin A (TSA), sodium butyrate and PXD101. Using MTT cell viability assays, Western analyzes and mass spectrometry, we showed a dose-dependent increase in cell killing in TRG and HDACi treated cells, that was associated with increased H3 lysine 9 (H3K9) and H3K23 acetylation, H2AX and H3S10 phosphorylation, and H3K79 mono- and di-methylation. These effects were mediated through an ER independent pathway. Using HDAC activity assays, TRG inhibited HDAC activity in cells and in cell lysates, similar to that observed with TSA. Furthermore, TRG and TSA induced a slower migrating HDAC1 species that was refractory to HDAC2 associations. Lastly, TRG and the HDACi’s decreased total and phosphorylated AKT levels. These findings suggest that TRG’s mode of killing may involve downregulation of PI3K signaling through HDAC inhibition, leading to increased global histone post-translational modifications.  相似文献   

17.

Introduction

Thoracic malignancies and human breast cancer (HBC) continue to be aggressive solid tumors that are poor responders to the existing conventional standard chemotherapeutic approaches. Malignant pleural mesothelioma (MPM) is an asbestos-related tumor of the thoracic pleura that lacks effective treatment options. Altered ubiquitin proteasome pathway is frequently encountered in many malignancies including HBC and MPM and thus serves as an important target for therapeutic intervention strategies. Although proteasome inhibitor Velcade (Bortezomib) has been under clinical investigation for a number of cancers, limited preclinical studies with this agent have thus far been conducted in HBC and MPM malignancies.

Purpose

To study the biological and molecular responses of MPM and HBC cells to Velcade treatments, and to identify mechanisms involved in transducing growth inhibitory effects of this agent.

Methods

Flow-cytometric analyses coupled with western immunoblotting and gene-array methodologies were utilized to determine mechanisms of Velcade-dependent growth suppression of five MPM (H2595, H2373, H2452, H2461, and H2714) and two breast cancer (MDA MB-468, SKBR-3) cell lines.

Results

Our data revealed significant reduction in cell growth properties that were dose and time dependent. Velcade treatment resulted in G2M phase arrest, increased expression of cyclin-dependent kinase inhibitor p21 and pro-apoptotic protein Bax. Pretreatment of mesothelioma cells with Velcade showed synergistic effect with cisplatin combination regimens. High-throughput gene expression profiling among Velcade treated and untreated mesothelioma cell lines resulted in identification of novel transducers of apoptosis such as CARP-1, XAF1, and Troy proteins.

Conclusions

Velcade targets cell cycle and apoptosis signaling to suppress MPM and HBC growth in part by activating novel transducers of apoptosis. This pilot study has paved way for further in-depth analysis of the downstream target molecules associated with presensitization of mesothelioma cells in finding effective therapeutic treatment options for both mesothelioma and recalcitrant breast cancers.  相似文献   

18.
19.
Optimal reexpression of most genes silenced through promoter methylation requires the sequential application of DNA methyltransferase inhibitors followed by histone deacetylase inhibitors in tumor cell cultures. Patients with myelodysplastic syndrome or acute myeloid leukemia (AML) were treated with the methyltransferase inhibitor 5-azacitidine (aza-CR) followed by the histone deacetylase inhibitor sodium phenylbutyrate. Major responses associated with cytogenetic complete response developed in patients receiving prolonged dosing schedules of aza-CR. Bisulfite sequencing of the p15 promoter in marrow DNA during the first cycle of treatment showed heterogeneous allelic demethylation in three responding patients, suggesting ongoing demethylation within the tumor clone, but no demethylation in two nonresponders. Six of six responding patients with pretreatment methylation of p15 or CDH-1 promoters reversed methylation during the first cycle of therapy (methylation-specific PCR), whereas none of six nonresponders showed any demethylation. Gene demethylation correlated with the area under the aza-CR plasma concentration-time curve. Administration of both drugs was associated with induction of acetylation of histones H3 and H4. This study provides the first demonstration that molecular mechanisms responsible for responses to DNA methyltransferase/histone deacetylase inhibitor combinations may include reversal of aberrant epigenetic gene silencing. The promising percentage of major hematologic responses justifies the testing of such combinations in prospective randomized trials.  相似文献   

20.
Histone deacetylase (HDAC) inhibitors have antiproliferative activity against human cancer cells via cell cycle arrest, differentiation, and apoptosis. However, no report has focused on the apoptotic potential of HDAC inhibitors in refractory human pancreatic cancer. This study was designed to examine the apoptotic potential of FR901228, a novel HDAC inhibitor, in five human pancreatic cancer cell lines: Capan-1, BxPC-3, HPAF, Panc-1, and MIAPaCa-2. FR901228 markedly inhibited the proliferation of all five cell lines (IC50: 1-500 nM), with the greatest effect in MIAPaCa-2 cells. Treatment of each cell line with FR901228 (10-100 nM) caused cell cycle arrest at the G1 or G2/M phase and subsequent apoptosis. FR901228 induced expression of hyperacetylated histone H3 after 3 h of treatment and overexpression of p21Waf-1 after 6 h. In addition, FR901228 induced apoptosis by activating caspase-3, which led to cleavage of p21Waf-1 into a 15-kDa breakdown product and drove cancer cells from cell cycle arrest into apoptosis. FR901228 also decreased the protein level of survivin dramatically. Our results show that FR901228 markedly inhibits the growth of pancreatic cancer cells, not only through cell cycle arrest, but also through subsequent apoptosis; this was accompanied by caspase-3 activation, survivin degradation, and p21Waf-1 cleavage. FR901228 may prove clinically useful as an agent for refractory pancreatic cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号