首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shen HC  Peng H  Usas A  Gearhart B  Cummins J  Fu FH  Huard J 《BONE》2004,34(6):982-992
Muscle-based gene therapy and tissue engineering hold great promise for improving bone healing. However, the relative advantage of muscle-derived stem cells (MDSCs) or primary muscle-derived cells (MDCs) remains to be defined. We compared the ability of MDSCs and different subpopulations of MDCs (PP1 and PP3) to induce bone formation via ex vivo gene therapy. We were able to efficiently transduce the MDSCs and all the other evaluated populations of MDCs (efficiency of TRANSDUCTION = approximately 80%) by using a retroviral vector expressing human bone morphogenetic protein 4 (BMP4). All the transduced cell populations secreted high levels of BMP4 (140–300 ng/106 cells/24 h), but the MDSCs differentiated toward the osteogenic lineage more effectively than did the other muscle cell populations, as indicated by the expression of alkaline phosphatase, an early osteogenic marker. von Kossa staining indicated that mineralized bone formed as early as 7 days after implantation of any of the BMP4-expressing cell populations into immunocompetent syngeneic mice; however, MDSCs expressing BMP4 produced significantly more bone than did the other MDC populations, as evidenced by both histomorphometry and biochemical analysis. Further investigation revealed that MDSCs expressing BMP4 persisted for a significantly longer period of time at the bone forming sites than did the other BMP4-expressing MDC populations. Additionally, MDSCs expressing BMP4 triggered a smaller infiltration of CD4 lymphocytes within the bone forming areas than did the other MDC populations expressing BMP4. Finally, we demonstrated that MDSCs expressing BMP4 can heal a critical-sized skull bone defect in immunocompetent mice. In summary, this study shows that MDSCs are better than primary MDCs for use as cellular vehicles in BMP4-based ex vivo gene therapy to improve bone healing. The advantage of MDSCs may be attributable, at least in part, to their lower immunogenicity and higher capacity for in vivo survival.  相似文献   

2.
The identification of bone morphogenetic proteins (BMPs) has stimulated intense interest in BMP delivery approaches. Ex vivo BMP-2 gene delivery has recently been described using skeletal muscle-derived cells. Skeletal muscle-derived cells, because of proven efficient transgene delivery and osteocompetence, represent an attractive cell population on which to base ex vivo BMP-2 gene delivery. However, the early in vivo fate of BMP-2-expressing muscle-derived cells is unknown. This study investigates the in vivo effects of BMP-2 secretion on skeletal muscle-derived cells in terms of cell survival and cell differentiation. The first experiment compared survival of BMP-2-expressing cells with control cells during the first 48 h after in vivo implantation. The results demonstrate that BMP-2 secretion did not adversely affect cell survival 8, 24, or 48 h after intramuscular implantation. The second experiment histologically compared the fate of BMP-2-expressing muscle-derived cells to the same cells not expressing BMP-2. The results show that BMP-2 expression prevented in vivo myogenic differentiation and promoted osteogenic differentiation of the transduced cells. This study further supports the existence of osteoprogenitor cells residing within skeletal muscle. Moreover, it is demonstrated that BMP-2 secretion does not adversely affect early cell survival of muscle-derived cells. These data are important for future investigations into BMP-2 gene delivery approaches to the musculoskeletal system.  相似文献   

3.
Background Ex vivo gene therapy can induce bone formation when delivery cells carrying the bone morphogenetic protein (BMP) gene are used. The hypothesis for this study was that the cell-mediated gene therapy could improve the healing of bony lesions with severe soft tissue damage.Method An animal model with a femoral osteotomy lesion associated with soft tissue damage was developed in rats. Muscle-derived cells, genetically engineered to express BMP4, were inserted within the osteotomy gap. Cells genetically engineered to express LacZ were used for the control group. The groups were subdivided with regard to the fixation method: stable and unstable fixation. The rats were killed for histological and radiographic evaluation 3 and 6 weeks post-surgery.Results No callus formation was found in the control group at any time point, whereas sufficient callus formation appeared in the treatment group after 6 weeks. A bridging callus with woven bone and hypertrophic chondrocytes was achieved in the treatment group when a stable fixation was used, but failed to appear in unstable fixation.Conclusion The combination of muscle-derived cells expressing BMP4 and a stable fixation were able to bridge the bone defect within 6 weeks, but with prolonged osteochondral ossification. Therefore, the ex vivo gene therapy could be an efficient biological approach to improve the treatment of bone lesions with severe soft tissue damage.  相似文献   

4.
This study compared the osteogenic differentiation of F-MDSCs and M-MDSCs. Interestingly, M-MDSCs expressed osteogenic markers and underwent mineralization more readily than F-MDSCs; a characteristic likely caused by more osteoprogenitor cells within the M-MDSCs than the F-MDSCs and/or an accelerated osteogenic differentiation of M-MDSCs. INTRODUCTION: Although therapies involving stem cells will require both female and male cells, few studies have investigated whether sex-related differences exist in their osteogenic potential. Here, we compared the osteogenic differentiation of female and male mouse skeletal muscle-derived stem cells (F- and M-MDSCs, respectively), a potential cell source for orthopedic tissue engineering. MATERIALS AND METHODS: F- and M-MDSCs were stimulated with bone morphogenetic protein (BMP)4, followed by quantification of alkaline phosphatase (ALP) activity and expression of osteogenic genes. F- and M-MDSCs were also cultured as pellets in osteogenic medium to evaluate mineralization. Single cell-derived colonies of F- and M-MDSCs were stimulated with BMP4, stained for ALP, and scored as either Low ALP+ or High ALP+ to detect the presence of osteoprogenitor cells. F- and M-MDSCs were transduced with a BMP4 retrovirus (MDSC-BMP4 cells) and used for the pellet culture and single cell-derived colony formation assays. As well, F- and M-MDSC-BMP4 cells were implanted in the intramuscular pocket of sex-matched and sex-mismatched hosts, and bone formation was monitored radiographically. RESULTS AND CONCLUSIONS: When stimulated with BMP4, both F- and M-MDSCs underwent osteogenic differentiation, although M-MDSCs had a significantly greater ALP activity and a larger increase in the expression of osteogenic genes than F-MDSCs. In the pellet culture assay, M-MDSCs showed greater mineralization than F-MDSCs. BMP4 stimulation of single cell-derived colonies from M-MDSCs showed higher levels of ALP than those from F-MDSCs. Similar results were obtained with the MDSC-BMP4 cells. In vivo, F-MDSC-BMP4 cells displayed variability in bone area and density, whereas M-MDSC-BMP4 cells showed a more consistent and denser ectopic bone formation. More bone formation was also seen in male hosts compared with female hosts, regardless of the sex of the implanted cells. These results suggest that M-MDSCs may contain more osteoprogenitor cells than F-MDSCs, which may have implications in the development of cellular therapies for bone healing.  相似文献   

5.
Fractures in osteoporotic bones or segment defects are problematic bone lesions with a reduced biological capability of regeneration. We tested the hypothesis that cell-mediated ex vivo gene therapy to deliver BMP4 can heal critically sized defects and improve bone healing in osteoporotic rats. Primary muscle-derived cells were isolated from the hindlimb muscle of rats and retrovirally transduced to express bone morphogenic protein 4 (BMP4). The bone formation was evaluated following local application of these cells in critically sized defects and in fractures of osteoporotic bones. Radiographic analysis revealed bridging callus formation in a critically sized defect in all specimens using muscle-derived cells expressing BMP4 at 12 weeks. These findings were confirmed by histological evaluation, which revealed callus bone formation with good integration to the distal and proximal bone. Following treatment with muscle-derived cells expressing BMP4, the bone healing process in the osteoporotic bone was improved to the level similar to that of normal bone. The ex vivo gene therapy could be a promising tool for the treatment of osteoporotic fractures and critically sized defects. The reduced number of complications (nonunions, loss of reduction, and fragment dislocation), shortening of hospitalization period, and improvement of bone strength are decisive advocates for this treatment option.  相似文献   

6.
We studied the interaction between VEGF and BMP2 during bone formation and bone healing. Results indicate that VEGF antagonist inhibited BMP2-elicited bone formation, whereas the delivery of exogenous VEGF enhanced BMP2-induced bone formation and bone healing through modulation of angiogenesis. INTRODUCTION: Angiogenesis is closely associated with bone formation during normal bone development and is important for the bone formation elicited by BMP4. However, it remains unknown whether vascular endothelial growth factor (VEGF) also interacts with other BMPs, especially BMP2, in bone formation and bone healing. MATERIALS AND METHODS: For this study, mouse muscle-derived stem cells were transduced to express BMP2, VEGF, or VEGF antagonist (sFlt1). We studied the angiogenic process during endochondral bone formation elicited by BMP2, a prototypical osteogenic BMP. Using radiographic and histologic analyses, we also evaluated the interaction between VEGF and BMP2 during bone formation and bone healing. RESULTS: Our results indicate that BMP2-elicited bone formation comprises two phases of angiogenesis, with an early phase occurring before the appearance of hypertrophic cartilage, followed by a late phase coupled with the appearance of hypertrophic cartilage. Our finding that the administration of sFlt1, a specific antagonist of VEGF, significantly inhibited BMP2-induced bone formation and the associated angiogenesis indicates that endogenous VEGF activity is important for bone formation. Furthermore, we found that the delivery of exogenous VEGF enhanced BMP2-induced bone formation and bone healing by improving angiogenesis, which in turn led to accelerated cartilage resorption and enhanced mineralized bone formation. Our findings also indicate that the ratio between VEGF and BMP2 influences their synergistic interaction, with a higher proportion of VEGF leading to decreased synergism. Our study also revealed unique VEGF-BMP2 interactions that differ from the VEGF-BMP4 interactions that we have described previously. CONCLUSIONS: This study, along with previously published work, shows that VEGF interacts synergistically with both BMP4 and BMP2 but elicits substantially different effects with these two BMPs.  相似文献   

7.
8.
Allografts are important alternatives to autografts for treating defects after major bone loss. Bone growth factors have both local autocrine and paracrine effects and regulate the growth, proliferation, and differentiation of osteoprogenitor cells. To study the effects of prolonged, continuous, local delivery of growth factors on bone growth, we developed a new microelectromechanical system (MEMS) drug delivery device. Bone marrow cells from mice were seeded on mouse allograft discs and cultured in osteogenic media with osteogenic protein 1 (OP-1) and/or basic fibroblast growth factor (FGF-2) delivered from MEMS devices for 6 weeks. We monitored bone formation by changes of bone volume using micro-CT scanning and release of osteocalcin using ELISA. The data suggest the MEMS devices delivered constant concentrations of OP-1 and FGF-2 to the media. Bone marrow cells grew on the allografts and increased bone volume. Addition of OP-1 increased bone formation whereas FGF-2 decreased bone formation. Local delivery of growth factors over a prolonged period modulated the differentiation of osteoprogenitor cells on allograft bone. One of more of the authors (SBG) have received funding from the Musculoskeletal Transplant Foundation. Each author certifies that his or her institution has approved the animal protocol for this investigation and that all investigations were conducted in conformity with ethical principles of research.  相似文献   

9.
Efficacious bone regeneration could revolutionize the clinical management of many bone and musculoskeletal disorders. Bone morphogenetic proteins (BMPs) can regulate the differentiation of mesenchymal stem cells into cartilage, bone, tendon/ligament, and fat lineages. Early data documented the osteogenic potential of rhBMP2 and rhBMP7/OP-1. However, prior to this work that summarized several of our recent studies, no comprehensive analysis had been undertaken to characterize relative osteogenic activity of all BMPs. Using recombinant adenoviruses expressing 14 BMPs, we have demonstrated that, besides BMP2 and BMP7, BMP6 and BMP9 exhibit the highest osteogenic activity both in vitro and in vivo. We further demonstrated that several BMPs may exert synergistic effect on osteogenic differentiation, and that osteogenic BMPs produce a distinct set of molecular fingerprints during osteogenic differentiation. The reported work should expand our current understanding of BMP functions during osteogenic differentiation. It is conceivable that osteogenic BMPs (i.e., BMP2, 4, 6, 7, and 9) may be used to formulate synergistic pairs among themselves and/or with other less osteogenic BMPs for efficacious bone regeneration in clinical settings.  相似文献   

10.
The role of cell type in bone healing mediated by ex vivo gene therapy   总被引:3,自引:0,他引:3  
Background The ideal cellular vehicle for use in cell-mediated gene therapy to enhance bone healing has not yet been identified. The purpose of this study was to compare the capacity of two types of cells transduced with retro-bone morphogenetic protein 4 (BMP4)—muscle-derived cells (MDCs) and unfractioned bone marrow stromal cells (BMSCs).Method Primary rat MDCs and unfractioned rat BMSCs were transduced with a retrovirus to express BMP4. A 7-mm, critical-sized femur defect was created in adult rats, and 5×106 transduced cells were implanted into the femoral defect. Bone healing was monitored radiographically and histologically at 4, 8, and 12 weeks post-implantation.Results All specimens in the MDC-BMP4 group and BMSC-BMP4 group showed a bridging callus at 8 and 12 weeks. At 12 weeks post-implantation the calluses of the MDC-BMP4 femora displayed significantly higher bone photodensity than the BMSC-BMP4 femora (P<0.05). Histomorphometry revealed no difference between the two treatment groups. However, non-union between newly formed and original bone was observed in none of the MDC femora but in six femora from the BMSC-BMP4 group.Conclusion Both MDCs and unfractioned BMSCs can improve healing of a critical-sized bone defect following transduction of the cells with retroBMP4. However, MDCs appear to yield superior results when compared with BMSCs in terms of improved healing of segmental defects.  相似文献   

11.
BACKGROUND: Cells that express bone morphogenetic protein-2 (BMP-2) can now be prepared by transduction with adenovirus containing BMP-2 cDNA. Skeletal muscle tissue contains cells that differentiate into osteoblasts on stimulation with BMP-2. The objectives of this study were to prepare BMP-2-expressing muscle-derived cells by transduction of these cells with an adenovirus containing BMP-2 cDNA and to determine whether the BMP-2-expressing muscle-derived cells would elicit the healing of critical-sized bone defects in mice. METHODS: Primary cultures of muscle-derived cells from a normal male mouse were transduced with adenovirus encoding the recombinant human BMP-2 gene (adBMP-2). These cells (5 yen 10(5)) were implanted into a 5-mm-diameter critical-sized skull defect in female SCID (severe combined immunodeficiency strain) mice with use of a collagen sponge as a scaffold. Healing in the treatment and control groups was examined grossly and histologically at two and four weeks. Implanted cells were identified in vivo with use of the Y-chromosome-specific fluorescent in situ hybridization (FISH) technique, and their differentiation into osteogenic cells was demonstrated by osteocalcin immunohistochemistry. RESULTS: Skull defects treated with muscle cells that had been genetically engineered to express BMP-2 had >85% closure within two weeks and 95% to 100% closure within four weeks. Control groups in which the defect was not treated (group 1), treated with collagen only (group 2), or treated with collagen and muscle cells without adBMP-2 (group 3) showed at most 30% to 40% closure of the defect by four weeks, and the majority of the skull defects in those groups showed no healing. Analysis of injected cells in group 4, with the Y-chromosome-specific FISH technique showed that the majority of the transplanted cells were located on the surfaces of the newly formed bone, but a small fraction (approximately 5%) was identified within the osteocyte lacunae of the new bone. Implanted cells found in the new bone stained immunohistochemically for osteocalcin, indicating that they had differentiated in vivo into osteogenic cells. CONCLUSIONS: This study demonstrates that cells derived from muscle tissue that have been genetically engineered to express BMP-2 elicit the healing of critical-sized skull defects in mice. The cells derived from muscle tissue appear to enhance bone-healing by differentiating into osteoblasts in vivo. Clinical Relevance: Ex vivo gene therapy with muscle-derived cells that have been genetically engineered to express BMP-2 may be used to treat nonhealing bone defects. In addition, muscle-derived cells appear to include stem cells, which are easily obtained with muscle biopsy and could be used in gene therapy to deliver BMP-2.  相似文献   

12.
Y Zhang  C Wu  T Luo  S Li  X Cheng  RJ Miron 《BONE》2012,51(4):704-713
Gene therapy has garnished tremendous awareness for the repair of osseous defects. It exhibits high efficiency gene transfer and osteogenic differentiation potential making it well suitable for the sustained delivery of growth factors to local tissues. In the present study a simplified solution-based in situ biomimetic synthesis method is demonstrated for bone morphogenetic protein 7 (BMP7) adenovirus combined with silk fibroin scaffolds. This scaffold not only provides the three dimensional space for bone ingrowth, but also releases the BMP7 adenovirus which targets its secretion by host cells in vivo. Scaffolds were tested both in vitro for their osteogenic potential as well as in vivo in a critical-size calvarial defect in mice. Scaffolds loaded with bone morphogenetic protein 7 adenovirus (adBMP7) were able to sustain release of adBMP7 for up to 21days and support cell proliferation and differentiation to bone forming osteoblasts. Calvarial defects treated with scaffolds containing adBMP7 significantly induced new bone formation in vivo. To demonstrate immuno-compatibility with host tissues, IL-2, IL-6 and TNF-α were measured up to 4weeks post-implantation. Although these scaffolds demonstrated an initial pro-inflammatory response, levels of IL-2, IL-6 and TNF-α returned to baseline control values at either 2 or 4weeks post-implantation demonstrating long term compatibility for growth factor delivery via gene therapy. The results from the present study indicate the promise of gene delivery scaffold systems for robust, low cost, and high quality bone tissue engineering applications.  相似文献   

13.
Neurofibromatosis type I (NF1) is an autosomal dominant disease with an incidence of 1/3000, caused by mutations in the NF1 gene, which encodes the RAS/GTPase‐activating protein neurofibromin. Non‐bone union after fracture (pseudarthrosis) in children with NF1 remains a challenging orthopedic condition to treat. Recent progress in understanding the biology of neurofibromin suggested that NF1 pseudarthrosis stems primarily from defects in the bone mesenchymal lineage and hypersensitivity of hematopoietic cells to TGFβ. However, clinically relevant pharmacological approaches to augment bone union in these patients remain limited. In this study, we report the generation of a novel conditional mutant mouse line used to model NF1 pseudoarthrosis, in which Nf1 can be ablated in an inducible fashion in osteoprogenitors of postnatal mice, thus circumventing the dwarfism associated with previous mouse models where Nf1 is ablated in embryonic mesenchymal cell lineages. An ex vivo–based cell culture approach based on the use of Nf1flox/flox bone marrow stromal cells showed that loss of Nf1 impairs osteoprogenitor cell differentiation in a cell‐autonomous manner, independent of developmental growth plate–derived or paracrine/hormonal influences. In addition, in vitro gene expression and differentiation assays indicated that chronic ERK activation in Nf1‐deficient osteoprogenitors blunts the pro‐osteogenic property of BMP2, based on the observation that only combination treatment with BMP2 and MEK inhibition promoted the differentiation of Nf1‐deficient osteoprogenitors. The in vivo preclinical relevance of these findings was confirmed by the improved bone healing and callus strength observed in Nf1osx?/? mice receiving Trametinib (a MEK inhibitor) and BMP2 released locally at the fracture site via a novel nanoparticle and polyglycidol‐based delivery method. Collectively, these results provide novel evidence for a cell‐autonomous role of neurofibromin in osteoprogenitor cells and insights about a novel targeted approach for the treatment of NF1 pseudoarthrosis. © 2014 American Society for Bone and Mineral Research.  相似文献   

14.
The distribution and staining intensity of bone morphogenetic proteins (BMPs) 2, 4, 6, and 7 were assessed by immunohistochemistry in ectopic bone induced in Nu/Nu mice by Saos-2 cell derived implants. Devitalized Saos-2 cells or their extracts can induce endochondral bone formation when implanted subcutaneously into Nu/Nu mice. BMP staining was mostly cytoplasmic. The most intense BMP staining was seen in hypertrophic and apoptotic chondrocytes, osteoprogenitor cells such as periosteal and perivascular cells, and osteoblasts. BMP staining in osteocytes and osteoclasts was variable, ranging from undetectable to intensely stained, and from minimal to moderately stained in megakaryocytes of the induced bone marrow. BMP-2, 4, 6, and 7 staining in Saos-2 implant-induced bone indicates the following: (1) Saos-2 cell products promote expression of BMPs by host osteoprogenitor cells, which in turn, leads to bone and marrow formation at ectopic sites; (2) strong BMP staining is seen in maturing chondrocytes, and thus may play a role in chondrocyte differentiation and/or apoptosis; (3) BMP expression in perivascular and periosteal cells indicates that osteoprogenitor cells also express BMP; (4) BMP release by osteoclasts may promote osteoblastic differentiation at sites of bone remodeling. These new data can be useful in understanding the role of BMPs in promoting clinical bone repair and in various pathologic conditions.  相似文献   

15.
After intramuscular implantation, BMP4-expressing NIH/3T3 fibroblasts and BMP4-expressing C2C12 myoblasts can promote ectopic cartilage and bone formation. Fibroblasts tend to undergo chondrogenesis, whereas myoblasts primarily undergo osteogenesis. These results suggest that endochondral bone formation may involve different cell types, a finding that could have major implications for the tissue engineering of bone and cartilage. INTRODUCTION: The delivery of BMP4 through cell-based gene therapy can trigger ectopic endochondral bone formation in skeletal muscle. We hypothesized that, when stimulated with or transduced to express BMP4, different types of cells residing within skeletal muscle might participate in different stages of endochondral bone formation. MATERIALS AND METHODS: We compared the responses of a fibroblast cell line (NIH/3T3), a myoblast cell line (C2C12), primary fibroblasts, and primary myoblasts to BMP4 stimulation in vitro. We then transduced the four cell populations to express BMP4 and compared their ability to promote ectopic endochondral bone formation in skeletal muscle. RESULTS: Under the influence of BMP4 in vitro and in vivo, NIH/3T3 cells differentiated toward both chondrogenic and osteogenic lineages, whereas most C2C12 cells underwent primarily osteogenic differentiation. NIH/3T3 cells genetically modified to express BMP4 induced delayed but more robust cartilage formation than did genetically modified C2C12 cells, which promoted rapid ossification. These differences in terms of the timing and amount of cartilage and bone formation persisted even after we introduced a retrovirus encoding dominant negative Runx2 (DNRunx2) into the C2C12 cells, which interferes with the function of Runx2. Superior osteogenic potential was also displayed by the primary myoblasts in vitro and in vivo compared with the primary fibroblasts. The different proliferation abilities and differentiation potentials exhibited by these cells when influenced by BMP4 may at least partially explain the differing roles that BMP4-expressing myogenic cells and BMP4-expressing fibroblastic cells play in endochondral bone formation. CONCLUSIONS: Our findings suggest that the process of endochondral bone formation in skeletal muscle after delivery of BMP4 involves different cell types, including fibroblastic cells, which are more involved in the chondrogenic phases, and myoblastic cells, which are primarily involved in osteogenesis. These findings could have important implications for the development of tissue engineering applications focused on bone and cartilage repair.  相似文献   

16.
Bone marrow-derived mesenchymal stem cells (BMDMSC) hold promise for targeted osteogenic differentiation and can be augmented by delivery of genes encoding bone morphogenetic proteins (BMP). The feasibility of promoting osteogenic differentiation of BMDMSC was investigated using two BMP genes in monolayer and three-dimensional alginate culture systems. Cultured BMDMSC were transduced with E1-deleted adenoviral vectors containing either human BMP2 or BMP6 coding sequence under cytomegalovirus (CMV) promoter control [17:1 multiplicities of infection (moi)] and either sustained in monolayer or suspended in 1 mL 1.2% alginate beads for 22 days. Adenovirus (Ad)-BMP-2 and Ad-BMP-6 transduction resulted in abundant BMP-2 and BMP-6 mRNA and protein expression in monolayer culture and BMP-2 protein expression in alginate cultures. Ad-BMP-2 and Ad-BMP-6 transduced BMDMSC in monolayer had earlier and robust alkaline phosphatase-positive staining and mineralization and were sustained for a longer duration with better morphology scores than untransduced or Ad-beta-galactosidase-transduced cells. Ad-BMP-2- and, to a lesser degree, Ad-BMP-6-transduced BMDMSC suspended in alginate demonstrated greater mineralization than untransduced cells. Gene expression studies at day 2 confirmed an inflammatory response to the gene delivery process with upregulation of interleukin 8 and CXCL2. Upregulation of genes consistent with response to BMP exposure and osteogenic differentiation, specifically endochondral ossification and extracellular matrix proteins, occurred in BMP-transduced cells. These data support that transduction of BMDMSC with Ad-BMP-2 or Ad-BMP-6 can accelerate osteogenic differentiation and mineralization of stem cells in culture, including in three-dimensional culture. BMP-2-transduced stem cells suspended in alginate culture may be a practical carrier system to support bone formation in vivo. BMP-6 induced a less robust cellular response than BMP-2, particularly in alginate culture.  相似文献   

17.
This study evaluated healing of equine metatarsal osteotomies and ostectomies in response to percutaneous injection of adenoviral (Ad) bone morphogenetic protein (BMP)‐2, Ad‐BMP‐6, or beta‐galactosidase protein vector control (Ad‐LacZ) administered 14 days after surgery. Radiographic and quantitative computed tomographic assessment of bone formation indicated greater and earlier mineralized callus in both the osteotomies and ostectomies of the metatarsi injected with Ad‐BMP‐2 or Ad‐BMP‐6. Peak torque to failure and torsional stiffness were greater in osteotomies treated with Ad‐BMP‐2 than Ad‐BMP‐6, and both Ad‐BMP‐2‐ and Ad‐BMP‐6‐treated osteotomies were greater than Ad‐LacZ or untreated osteotomies. Gene expression of ostectomy mineralized callus 8 weeks after surgery indicated upregulation of genes related to osteogenesis compared to intact metatarsal bone. Expression of transforming growth factor beta‐1, cathepsin H, and gelsolin‐like capping protein were greater in Ad‐BMP‐2‐ and Ad‐BMP‐6‐treated callus compared to Ad‐LacZ‐treated or untreated callus. Evidence of tissue biodistribution of adenovirus in distant organs was not identified by quantitative PCR, despite increased serum antiadenoviral vector antibody. This study demonstrated a greater relative potency of Ad‐BMP‐2 over Ad‐BMP‐6 in accelerating osteotomy healing when administered in this regimen, although both genes were effective at increasing bone at both osteotomy and ostectomy sites. © 2008 Orthopaedic Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:764–771, 2008  相似文献   

18.
BACKGROUND: The heterotopic ossification of muscles, tendons, and ligaments is a common problem faced by orthopaedic surgeons. We investigated the ability of Noggin (a BMP [bone morphogenetic protein] antagonist) to inhibit heterotopic ossification. METHODS: Part 1: A retroviral vector carrying the gene encoding human Noggin was developed and used to transduce muscle-derived stem cells. Part 2: Cells transduced with BMP-4 were implanted into both hind limbs of mice along with either an equal number, twice the number, or three times the number of Noggin-expressing muscle-derived stem cells (treated limb) or with nontransduced muscle-derived stem cells (control limb). At four weeks, the mice were killed and radiographs were made to look for evidence of heterotopic ossification. Part 3: Eighty milligrams of human demineralized bone matrix was implanted into the hind limbs of SCID (severe combined immunodeficiency strain) mice along with 100,000, 500,000, or 1,000,000 Noggin-expressing muscle-derived stem cells (treated limbs) or nontransduced muscle-derived stem cells (control limbs). At eight weeks, the mice were killed and radiographs were made. Part 4: Immunocompetent mice underwent bilateral Achilles tenotomy along with the implantation of 1,000,000 Noggin-expressing muscle-derived stem cells (treated limbs) or nontransduced muscle-derived stem cells (control limbs). At ten weeks, the mice were killed and radiographs were made. RESULTS: Part 1: An in vitro BMP inhibition assay demonstrated that Noggin was expressed by muscle-derived stem cells at a level of 280 ng per million cells per twenty-four hours. Part 2: Three varying doses of Noggin-expressing muscle-derived stem cells inhibited the heterotopic ossification elicited by BMP-4-expressing muscle-derived stem cells. Heterotopic ossification was reduced in a dose-dependent manner by 53%, 74%, and 99%, respectively (p < 0.05). Part 3: Each of three varying doses of Noggin-expressing muscle-derived stem cells significantly inhibited the heterotopic ossification elicited by demineralized bone matrix. Heterotopic ossification was reduced by 91%, 99%, and 99%, respectively (p < 0.05). Part 4: All eleven animals that underwent Achilles tenotomy developed heterotopic ossification at the site of the injury in the control limbs. In contrast, the limbs treated with the Noggin-expressing muscle-derived stem cells had a reduction in the formation of heterotopic ossification of 83% and eight of the eleven animals had no radiographic evidence of heterotopic ossification (p < 0.05). CONCLUSIONS: The delivery of Noggin mediated by muscle-derived stem cells can inhibit heterotopic ossification caused by BMP-4, demineralized bone matrix, and trauma in an animal model. Clinical Relevance: Gene therapy to deliver Noggin may become a powerful method to inhibit heterotopic ossification in targeted areas of the body.  相似文献   

19.
The development of new clinically applicable methods for the delivery of bone morphogenic protein (BMP) is an area of intensive research. Cell-mediated gene therapy approaches are being explored as a potential delivery vehicle. Primary muscle-derived cells isolated from an adult mouse were transduced with an adenoviral-BMP-2 construct. These cells were injected into the triceps surae of severe combined immune deficient (SCID) mice where they induced heterotopic bone formation. BMP-2 expression by these muscle-derived cell constructs was measured in vitro to estimate in vivo BMP-2 delivery. In vitro expression of BMP-2 by 3 x l0(5) muscle-derived cells was 87.89 ng/72 h. These results suggest that the efficiency of muscle cell-based gene delivery of BMP-2 exceeds the direct delivery of recombinant BMP-2 protein.  相似文献   

20.
Intermittent parathyroid hormone (PTH) 1-34 treatment stimulates bone formation, but the molecular mechanisms mediating this effect have not been previously studied in humans. Thus, we used magnetic activated cell sorting to isolate hematopoietic lineage negative (lin-)/alkaline phosphatase positive (AP+) osteoprogenitor cells from bone marrow of 20 postmenopausal women treated with PTH (1-34) for 14 days and 19 control subjects. Serum PINP and CTX increased in PTH-treated subjects (by 97% and 30%, respectively, P<0.001). Bone marrow lin-/AP+ cells from PTH-treated subjects showed an increase in the RANKL/OPG mRNA ratio (by 7.5-fold, P=0.011) and in the mRNAs for c-fos (a known PTH-responsive gene, by 42%, P=0.035) and VEGF-C (by 57%, P=0.046). Gene Set Enrichment Analysis (GSEA, testing for changes in pre-specified pathways) demonstrated that PTH had no effect on osteoblast proliferation, apoptosis, or differentiation markers. However, PTH treatment resulted in a significant decrease (GSEA P-value, 0.005) in a panel of BMP target genes in the lin-/AP+ cells. Our findings thus identify several future directions for studying mechanisms of PTH action in humans. First, given the increasing evidence that PTH induces angiogenesis, the role of increased VEGF-C production by bone marrow osteoprogenitor cells in mediating this effect and the anabolic response to PTH warrants further study. Second, while the observed inhibition of BMP target gene expression by PTH is not consistent with the anabolic effects of PTH on bone and requires further validation, these data do generate the hypothesis that an inhibition of BMP signaling by PTH may, over time, limit the availability of mature osteoblasts on bone surfaces and thereby contribute to the observed waning of the anabolic response to PTH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号