首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gap junctions, which mediate rapid intercellular communication, consist of connexins, small transmembrane proteins that belong to a large family of proteins found throughout the species. Mutations in the GJB2 gene, encoding Connexin 26, can cause nonsyndromic autosomal recessive or dominant hearing loss with or without skin manifestations. A 3-yr-old Korean female and her mother presented to our clinic with diffuse hyperkeratosis of the palms and soles (May 3, 2007). Skin biopsies from the soles of both patients demonstrated histopathological evidence of palmoplantar keratoderma. The patient and a number of her maternal family members also had congenital hearing loss. The combination of congenital hearing loss and palmoplantar keratoderma, inherited as an autosomal dominant trait, led us to test for a mutation in the GJB2 gene in both patients. The results showed the R75W mutation of the GJB2 gene in both. In conclusion, the simultaneous occurrence of a GJB2 mutation in a mother and daughter suggests that R75W mutation cause autosomal dominant hearing loss presenting with palmoplantar keratoderma. To the best of our knowledge, this is the first report of a GJB2 mutation associated with syndromic autosomal dominant hearing loss and palmoplantar keratoderma in a Korean family.  相似文献   

2.
The GJB2 gene located on chromosome 13q12 and encoding the connexin 26 (Cx26) protein, a transmembrane protein involved in cell-cell attachment of almost all tissues, including the skin, causes autosomal recessive and sometimes dominant nonsyndromic sensorineural hearing loss. GJB2 mutations have also been identified in syndromic disorders exhibiting hearing loss associated with skin problems. Recently, a new mutation, p.G130V in the GJB2 gene has been reported as causative for Vohwinkel syndrome. In this case the p.G130V mutation was found in two patients (son and father) with palmoplantar keratoderma. The father also showed also skin constrictions of the 2nd and 3rd toes of the right foot. Here, we report on another family with palmoplantar keratoderma associated with a dominant form of hearing loss confirming the genotype-phenotype correlation between the mutation p.G130V and the skin abnormalities observed in syndromic disorders with hearing loss as described by [Snoeckx et al. (2005) Hum Mutat 26:60-65].  相似文献   

3.
Dominant mutations in the GJB2 gene encoding connexin 26 (Cx26) can cause non-syndromic hearing impairment alone or in association with palmoplantar keratoderma (PPK). We have identified the novel G224A (R75Q) mutation in the GJB2 gene in a four-generation family from Turkey with autosomal dominant inherited hearing impairment and PPK. The age of onset and progression of hearing loss were found to be variable among affected family members, but all of them had more severe impairment at higher hearing frequencies. Interestingly, the novel R75Q mutation affects the same amino acid residue as described recently in a small family (R75W) with profound prelingual hearing loss and PPK. However, the R75W mutation was also observed in a control individual without PPK and unknown hearing status. Therefore, the nature of the R75W mutation remains ambiguous. Our molecular findings provide further evidence for the importance of the conserved R75 in Cx26 for the physiological function of the inner ear and the epidermal cells of the skin.  相似文献   

4.
Gap junctions are intercellular channels that mediate rapid intercellular communication. They consist of connexins, small transmembrane proteins that belong to a large family found throughout the animal kingdom. In the skin, several connexins are expressed and are involved in the regulation of epidermal growth and differentiation. One of the skin expressed gap junction genes is GJB2, which codes for connexin 26 and is associated with a wide variety of keratinisation disorders. Here, we report on a family with a novel GJB2 mutation (p.His73Arg) causing a syndrome of focal palmoplantar keratoderma with severe progressive sensorineural hearing impairment, a phenotype reminiscent of Vohwinkel syndrome. Using fluorescent connexin fusion proteins, we show that the mutation induces a transport defect similar to that found for the Vohwinkel syndrome mutation p.Asp66His. Co-transfection into cells expressing wild type connexin26 shows that the mutant has a dominant negative effect on connexin trafficking. We suggest that there may be a weak genotype-phenotype correlation for mutations in GJB2.  相似文献   

5.
Mutations in the GJB2 gene encoding connexin26 (CX26) account for up to 50% of cases of autosomal recessive hearing loss. In contrast, only one GJB2 mutation has been reported to date in an autosomal dominant form of isolated prelingual hearing loss. We report here a novel heterozygous 605G→T mutation in GJB2 in all affected members of a large family with late childhood onset of autosomal dominant isolated hearing loss. The resulting C202F substitution, which lies in the fourth (M4) transmembrane domain of CX26, may impair connexin oligomerisation. Finally, our study suggests that GJB2 should be screened for heterozygous mutations in patients with autosomal dominant isolated hearing impairment, whatever the severity of the disease.


Keywords: C202F mutation; connexin26 gene (GJB2); autosomal dominant hearing loss  相似文献   

6.
We report a mutation in the connexin 26 gene (Cx26) in a consanguineous Moroccan family linked to the DFNA3/DFNB1 locus on human chromosome 13q11-q12. Affected subjects display congenital, bilateral, sensorineural hearing loss. We have previously identified Cx26 mutations in consanguineous Pakistani families. This current finding indicates that Cx26 mutations are not restricted to ethnically and geographically distinct populations. This is an important observation since it will help to determine the overall contribution of connexin 26 mutations to autosomal deafness in different populations.  相似文献   

7.
Although more than 50% of recessive non-syndromic deafness is attributed to mutations in the connexin 26 (Cx26) gene, only a few reported families have shown dominant transmission of the trait. The W44C mutation was originally reported in two families from the same geographic region of France, which exhibited dominant non-syndromic hearing loss. In this report, we describe a third family with early-onset severe-to-profound non-syndromic hearing loss segregating with the W44C mutation. Our observation places W44C among recurrent mutations in the Cx26 gene and emphasizes the importance of screening for this as well as other Cx26 mutations in autosomal dominant families.  相似文献   

8.
A family is presented with autosomal dominant progressive palmoplantar hyperkeratosis, which is invariably associated with a slowly progressive, bilateral, high frequency, sensorineural hearing loss. The family show no other ectodermal abnormality. The differential diagnosis and possible mechanisms are discussed. This family appears to represent a unique variant in the hyperkeratosis-deafness association.  相似文献   

9.
A family with five members who have variable findings of leuconychia, knuckle pads, hearing loss, and palmoplantar hyperkeratosis is described. The findings in these subjects are compared with those noted in previously reported patients with Bart-Pumphrey syndrome. The range of disorders which include knuckle pads as part of the phenotype is reviewed.  相似文献   

10.
Mutations in the connexin 26 (Cx26) gene (GJB2) are associated with autosomal nonsyndromic sensorineural hearing loss. This study describes mutations in the Cx26 gene in cases of familial and sporadic hearing loss (HL) by gene sequencing and identifies the allelic frequency of the most common mutation leading to HL (35delG) in the population of eastern Austria. For this purpose we have developed and applied a molecular beacon based real-time mutation detection assay. Mutation frequencies in the Cx26 gene of individuals from affected families (14 out of 46) and sporadic cases (11 out of 40) were 30.4% and 27.5%, respectively. In addition to known disease related alterations, a novel mutation 262 G-->T (A88S) was also identified. 35delG accounted for almost 77% of all Cx26 mutations detected and displayed an allelic frequency in the normal hearing population of 1.7% (2 out of 120). The high prevalence of the 35delG mutation in eastern Austria would therefore allow screening of individuals and family members with Cx26 dependent deafness by a highly specific and semi-automated method.  相似文献   

11.
Gap junctions, which consist of connexins, are intercellular channels that mediate rapid intercellular communication. In the skin, connexins are involved in the regulation of epidermal growth and differentiation. GJB2 encodes connexin26, which is an important skin-expressed gap junction protein. Mutations in GJB2 cause a wide variety of unique disorders, but despite extensive research, their mechanisms of action are poorly understood. The identification of novel diseases caused by mutations in GJB2 may help to illuminate the genotype-phenotype correlation and elucidate the function of different regions of the protein. Here, we report the first account of a family with a GJB2 missense mutation in the second extracellular domain (p.Ser183Phe) that causes skin abnormalities in addition to sensorineural hearing loss. Using fluorescent connexin26-EGFP fusion proteins, we showed that the mutation induces a partial protein transport defect that cannot be rescued by wild-type protein. Dye-transfer experiments using a parachute assay revealed channel functionality. Although p.Ser183Phe affects the second extracellular domain, mutations in the first extracellular domain also lead to focal palmoplantar keratoderma and likewise perturb protein transport in a dominant-negative manner. Therefore, we hypothesize that focal palmoplantar keratoderma in gap junction skin disease may be specifically associated with connexin trafficking defects as well as with mutations affecting its extracellular domains, thus broadening the spectrum of GJB2-associated diseases.  相似文献   

12.
Hereditary deafness affects about 1 in 2000 children and mutations in the GJB2 gene are the major cause in various ethnic groups. GJB2 encodes connexin26, a putative channel component in cochlear gap junction. However, the pathogenesis of hearing loss caused by the GJB2 mutations remains obscure. The generation of a mouse model to study the function of connexin26 during hearing has been hampered by the fact that Gjb2 knockout mice are embryonic lethal. To establish viable model mice we generated transgenic mice expressing a mutant connexin26 with R75W mutation that was identified in a deaf family with autosomal-dominant inheritance. The previous expression analysis revealed that the R75W connexin26 inhibited the gap channel function of the co-expressed normal connexin26 in a dominant-negative fashion. We established two lines of transgenic mice that showed severe to profound hearing loss, deformity of supporting cells, failure in the formation of the tunnel of Corti and degeneration of sensory hair cells. Despite robust expression of the transgene, no obvious structural change was observed in the stria vascularis or spiral ligament that is rich in connexin26 and generates the endolymph. The high resting potential in cochlear endolymph essential for hair cell excitation was normally sustained. These results suggest that the GJB2 mutation disturbs homeostasis of cortilymph, an extracellular space surrounding the sensory hair cells, due to impaired K(+) transport by supporting cells, resulting in degradation of the organ of Corti, rather than affecting endolymph homeostasis in mice and probably in humans.  相似文献   

13.
Congenital sensorineural hearing loss affects approximately 1/1,000 live births. Mutations in the gene encoding connexin26 (GJB2) have been described as a major cause of genetic nonsyndromic hearing impairment. Additionally, another gap junction gene, connexin30 (GJB6), was found to be responsible for hereditary hearing loss. We have studied 134 patients with severe to profound hearing loss or deafness and 13 patients with mild to moderate nonsyndromic sensorineural hearing loss in order to evaluate the prevalence of connexin26 and connexin30 mutations in Germany. Mutations in the connexin26 gene were found in 30 patients (22%) with profound to severe hearing impairment whereas only one novel single nucleotide polymorphism (396G-->A) in the connexin30 gene was detected. Among the 13 patients with mild to moderate hearing loss neither mutations in the connexin26 nor in the connexin30 gene could be detected. These results demonstrate that mutations in the connexin26 gene are also a frequent cause of hereditary non-syndromic hearing loss in Germany. Therefore a screening of mutations in the connexin26 gene should be performed in every case of non-syndromic hearing loss of unknown origin.  相似文献   

14.
Mutations in the GJB2 gene encoding the gap junction protein Connexin 26 have been associated with autosomal recessive as well as dominant nonsyndromic hearing loss. Owing to the involvement of connexins in skin homeostasis, GJB2 mutations have also been associated with syndromic forms of hearing loss showing various skin manifestations. We report an assortatively mating hearing impaired family of south Indian origin with three affected members spread over two generations, having p.R75Q mutation in the GJB2 gene in the heterozygous condition. The inheritance pattern was autosomal dominant with mother and son being affected. Dermatological and histopathologic examinations showed absence of palmoplantar keratoderma. To the best of our knowledge, this is the first report from India on p.R75Q mutation in the GJB2 gene with nonsyndromic hearing loss.  相似文献   

15.
Oculo-dento-digital dysplasia (ODDD, OMIM no.164210) is a pleiotropic disorder caused by mutations in the GJA1 gene that codes for the gap junction protein connexin 43. While the gene is highly expressed in skin, ODDD is usually not associated with skin symptoms. We recently described a family with ODDD and palmoplantar keratoderma. Interestingly, mutation carriers had a novel dinucleotide deletion in the GJA1 gene that resulted in truncation of part of the C-terminus. We speculated, that truncation of the C-terminus may be uniquely associated with skin disease in ODDD. Here, we describe a patient with ODDD and palmar hyperkeratosis caused by a novel dinucleotide deletion that truncates most of the connexin 43 C-terminus. Thus, our findings support the notion that such mutations are associated with the occurrence of skin symptoms in ODDD and provide the first evidence for the existence of a genotype-phenotype correlation.  相似文献   

16.
Connexin 26 (Cx26), encoded by the GJB2 gene, is a key protein involved in the formation of gap junctions in epithelial organs including the inner ear and palmoplantar epidermis. Pathogenic variants in GJB2 are responsible for approximately 50% of inherited sensorineural deafness. The majority of these variants are associated with autosomal recessive inheritance; however, rare reports of dominantly co‐segregating variants have been published. Since we began offering GJB2 testing in 2003, only about 2% of detected GJB2 variants from our laboratory have been classified as dominant. Here we report three novel dominant GJB2 variants (p.Thr55Ala, p.Gln57_Pro58delinsHisSer, and p.Trp44Gly); two associated with syndromic sensorineural hearing loss and one with nonsyndromic hearing loss. In the kindred with the p.Thr55Ala variant, the proband and his father present with only leukonychia as a cutaneous finding of their syndromic hearing loss. This phenotype has been previously documented in conjunction with palmoplantar hyperkeratosis, but isolated leukonychia is a novel finding likely associated with the unique threonine to alanine change at codon 55 (other variants at this codon have been reported in cases of nonsyndromic hearing loss). This report contributes to the short list of GJB2 variants associated with autosomal dominant hearing loss, highlights the variability of skin and nail findings associated with such cases, and illustrates the occurrence of both syndromic and nonsyndromic presentations with changes in the same gene.  相似文献   

17.
Mutations in GJB2, encoding connexin 26 (Cx26), cause both autosomal dominant and autosomal recessive nonsyndromic hearing loss (ARNSHL) at the DFNA3 and DFNB1 loci, respectively. Most of the over 100 described GJB2 mutations cause ARNSHL. Only a minority has been associated with autosomal dominant hearing loss. In this study, we present two families with autosomal dominant nonsyndromic hearing loss caused by a novel mutation in GJB2 (p.Asp46Asn). Both families were ascertained from the same village in northern Iran consistent with a founder effect. This finding implicates the D46N missense mutation in Cx26 as a common cause of deafness in this part of Iran mandating mutation screening of GJB2 for D46N in all persons with hearing loss who originate from this geographic region.  相似文献   

18.
DFNA2 is a complex locus. Two hearing loss genes have been identified at this site: GJB3, the gene that encodes the gap junction protein connexin 31, and KCNQ4, a voltage-gated potassium channel gene. A third gene has previously been postulated to explain the hearing loss in an Indonesian family linked to the region but devoid of mutation in either known gene (Van Hauwe et al. [1999: Nat Genet 21:263]). We have identified a large five-generation family with nonsyndromic, autosomal dominant progressive high-frequency hearing loss. The hearing impairment maps to 1p34, the site of the DFNA2 locus. Two-point linkage analysis of microsatellite markers spanning the locus resulted in a lod score of 6.6 at D1S391 at theta = 0. We have investigated both identified deafness genes in affected and unaffected family members and have not found any disease-causing mutations, suggesting that another hearing impairment gene resides at the DFNA2 locus.  相似文献   

19.
Recently, mutations in two gap junction genes, GJB2 and GJB3 (encoding Connexin 26 and Connexin 31, respectively), have been shown to underlie either inherited hearing loss and skin disease or both disorders. In this study, we have extended our analysis of a small family in which palmoplantar keratoderma and various forms of deafness is segregating. In addition to the previously described sequence variant M34T in GJB2, two other sequence variants were identified: D66H also in GJB2 and R32W in GJB3. As D66H segregated with the skin disease, it is likely to underlie the palmoplantar keratoderma. The other two gap junction variants identified may contribute to the type of hearing impairment and the variable severity of the skin disease in the family.  相似文献   

20.
Recently, mutations in two gap junction genes, GJB2 and GJB3 (encoding Connexin 26 and Connexin 31, respectively), have been shown to underlie either inherited hearing loss and skin disease or both disorders. In this study, we have extended our analysis of a small family in which palmoplantar keratoderma and various forms of deafness is segregating. In addition to the previously described sequence variant M34T in GJB2, two other sequence variants were identified: D66H also in GJB2 and R32W in GJB3. As D66H segregated with the skin disease, it is likely to underlie the palmoplantar keratoderma. The other two gap junction variants identified may contribute to the type of hearing impairment and the variable severity of the skin disease in the family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号