首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of various polymers to inhibit the crystallization of amorphous felodipine was studied in amorphous molecular dispersions. Spin-coated films of felodipine with poly(vinylpyrrolidone) (PVP), hydroxypropylmethylcellulose acetate succinate (HPMCAS), and hydroxypropylmethylcellulose (HPMC) were prepared and used for measurement of the nucleation rate and to probe drug-polymer intermolecular interactions. Bulk solid dispersions were prepared by a solvent evaporation method and characterized using thermal analysis. It was found that each polymer was able to significantly decrease the nucleation rate of amorphous felodipine even at low concentrations (3-25% w/w). Each polymer was found to affect the nucleation rate to a similar extent at an equivalent weight fraction. For HPMC and HPMCAS, thermal analysis indicated that the glass transition temperature (T(g)) of the solid dispersions were not significantly different from that of felodipine alone, whereas an increase in T(g) was observed for the PVP containing solid dispersions. Infrared spectroscopic studies indicated that hydrogen bonding interactions were formed between felodipine and each of the polymers. These interactions were stronger between felodipine and PVP than for the other polymers. It was speculated that, at the concentrations employed, the polymers reduce the nucleation rate through increasing the kinetic barrier to nucleation.  相似文献   

2.
The effectiveness of different polymers, alone or in combination, in inhibiting the crystallization of celecoxib (CEX) from amorphous solid dispersions (ASDs) exposed to different temperatures and relative humidities was evaluated. It was found that polyvinylpyrrolidone (PVP) and PVP-vinyl acetate formed stronger or more extensive hydrogen bonding with CEX than cellulose-based polymers. This, combined with their better effectiveness in raising the glass transition temperature (Tg) of the dispersions, provided better physical stabilization of amorphous CEX against crystallization in the absence of moisture when compared with dispersions formed with cellulose derivatives. In ternary dispersions containing 2 polymers, the physical stability was minimally impaired by the presence of a cellulose-based polymer when the major polymer present was PVP. On exposure to moisture, stability of the CEX ASDs was strongly affected by both the dispersion hygroscopicity and the strength of the intermolecular interactions. Binary and ternary ASDs containing PVP appeared to undergo partial amorphous–amorphous phase separation when exposed 94% relative humidity, followed by crystallization, whereas other binary ASDs crystallized directly without amorphous–amorphous phase separation.  相似文献   

3.
Amorphous solid dispersions are used as a strategy to improve the bioavailability of poorly water-soluble compounds. When formulating with a polymer, it is important not only for the polymer to stabilize against crystallization in the solid state, but also to improve the dissolution profile through inhibiting crystallization from the supersaturated solution generated by dissolution of the amorphous material. In this study, the dissolution profiles of solid dispersions of felodipine formulated with poly(vinylpyrrolidone) (PVP), hydroxypropyl methylcellulose (HPMC) or hydroxypropyl methylcellulose acetate succinate (HPMCAS) were compared. In addition, concentration versus time profiles were evaluated for the supersaturated solutions of felodipine in the presence and absence of the polymers. HPMCAS was found to maintain the highest level of supersaturation for the greatest length of time for both the dissolution and solution crystallization experiments, whereas PVP was found to be the least effective crystallization inhibitor. All polymers appeared to reduce the crystal growth rates of felodipine at an equivalent supersaturation and this mechanism most likely contributes to the enhanced solution concentration values observed during dissolution of the amorphous solid dispersions.  相似文献   

4.
Purpose To compare the physical stability of amorphous molecular level solid dispersions of nifedipine and felodipine, in the presence of poly(vinylpyrrolidone) (PVP) and small amounts of moisture. Methods Thin amorphous films of nifedipine and felodipine and amorphous molecular level solid dispersions with PVP were stored at various relative humidities (RH) and the nucleation rate was measured. The amount of water sorbed at each RH was measured using isothermal vapor sorption and glass transition temperatures (T g) were determined using differential scanning calorimetry. The solubility of each compound in methyl pyrrolidone was measured as a function of water content. Results Nifedipine crystallizes more easily than felodipine at any given polymer concentration and in the presence of moisture. The glass transition temperatures of each compound, alone and in the presence of PVP, are statistically equivalent at any given water content. The nifedipine systems are significantly more hygroscopic than the corresponding felodipine systems. Conclusions Variations in the physical stability of the two compounds could not be explained by differences in T g. However, the relative physical stability is consistent with differences in the degree of supersaturation of each drug in the solid dispersion, treating the polymer and water as a co-solvent system for each drug compound.  相似文献   

5.
The physical stability of amorphous molecular level solid dispersions will be influenced by the miscibility of the components. The goal of this work was to understand the effects of temperature and relative humidity on the miscibility of a model amorphous solid dispersion. Infrared spectroscopy was used to evaluate drug–polymer hydrogen bonding interactions in amorphous solid dispersions of felodipine and poly(vinyl pyrrolidone) (PVP). Samples were analyzed under stressed conditions: high temperature and high relative humidity. The glass transition temperature (Tg) of select systems was studied using differential scanning calorimetry (DSC). Atomic force microscopy (AFM) and transmission electron microscopy (TEM) were used to further investigate moisture-induced changes in solid dispersions. Felodipine-PVP solid dispersions showed evidence of adhesive hydrogen bonding interactions at all compositions studied. The drug–polymer intermolecular interactions were weakened and/or less numerous on increasing the temperature, but persisted up to the melting temperature of the drug. Changes in the hydrogen bonding interactions were found to be reversible with changes in temperature. In contrast, the introduction of water into amorphous molecular level solid dispersions at room temperature irreversibly disrupted interactions between the drug and the polymer resulting in amorphous-amorphous phase separation followed by crystallization. DSC, AFM, and TEM results provided further evidence for the occurrence of moisture induced immiscibility. In conclusion, it appears that felodipine-PVP solid dispersions are susceptible to moisture-induced immiscibility when stored at a relative humidity ≥75%. In contrast, the solid dispersions remained miscible on heating. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:169–185, 2010  相似文献   

6.
Purpose. To measure the water vapor absorption behavior of sucrose-poly(vinyl pyrrolidone) (PVP) and sucrose-poly(vinyl pyrrolidone co-vinyl acetate) (PVP/VA) mixtures, prepared as amorphous solid solutions and as physical mixtures, and the effect of absorbed water on the amorphous properties, i.e., crystallization and glass transition temperature, Tg, of these systems. Methods. Mixtures of sucrose and polymer were prepared by co-lyophilization of aqueous sucrose-polymer solutions and by physically mixing amorphous sucrose and polymer. Absorption isotherms for the individual components and their mixtures were determined gravimetrically at 30°C as a function of relative humidity. Following the absorption experiments, mixtures were analyzed for evidence of crystallization using X-ray powder diffraction. For co-lyophilized mixtures showing no evidence of crystalline sucrose, Tg was determined as a function of water content using differential scanning calorimetry. Results. The absorption of water vapor was the same for co-lyophilized and physically mixed samples under the same conditions and equal to the weighted sums of the individual isotherms where no sucrose crystallization was observed. The crystallization of sucrose in the mixtures was reduced relative to sucrose alone only when sucrose was molecularly dispersed (co-lyophilized) with the polymers. In particular, when co-lyophilized with sucrose at a concentration of 50%, PVP was able to maintain sucrose in the amorphous state for up to three months, even when the Tg was reduced well below the storage temperature by the absorbed water. Conclusions. The water vapor absorption isotherms for co-lyophilized and physically mixed amorphous sucrose-PVP and sucrose-PVP/VA mixtures at 30°C are similar despite interactions between sugar and polymer which are formed when the components are molecularly dispersed with one another. In the presence of absorbed water the crystallization of sucrose was reduced only by the formation of a solid-solution, with PVP having a much more pronounced effect than PVP/VA. The effectiveness of PVP in preventing sucrose crystallization when significant levels of absorbed water are present was attributed to the molecular interactions between sucrose, PVP and water.  相似文献   

7.

Purpose  

The objective of this study was to investigate the effects of polymer type and storage relative humidity (RH) on the crystallization kinetics of felodipine from amorphous solid dispersions.  相似文献   

8.
Amorphous formulations of APIs in polymers tend to absorb water from the atmosphere. This absorption of water can induce API recrystallization, leading to reduced long-term stability during storage. In this work, the phase behavior of different formulations was investigated as a function of relative humidity. Indomethacin and naproxen were chosen as model APIs and poly(vinyl pyrrolidone) (PVP) and poly(vinyl pyrrolidone-co-vinyl acetate) (PVPVA64) as excipients. The formulations were prepared by spray drying. The water sorption in pure polymers and in formulations was measured at 25 °C and at different values of relative humidity (RH = 25%, 50% and 75%). Most water was absorbed in PVP-containing systems, and water sorption was decreasing with increasing API content. These trends could also be predicted in good agreement with the experimental data using the thermodynamic model PC-SAFT. Furthermore, the effect of absorbed water on API solubility in the polymer and on the glass-transition temperature of the formulations was predicted with PC-SAFT and the Gordon–Taylor equation, respectively. The absorbed water was found to significantly decrease the API solubility in the polymer as well as the glass-transition temperature of the formulation. Based on a quantitative modeling of the API/polymer phase diagrams as a function of relative humidity, appropriate API/polymer compositions can now be selected to ensure long-term stable amorphous formulations at given storage conditions.  相似文献   

9.
To clarify the contribution of drug-polymer interaction to the physical stability of amorphous solid dispersions, we studied the crystallization rates of nitrendipine (NTR) enantiomers with identical physicochemical properties in the presence of hydroxypropylmethylcellulose (HPMC), hydroxypropylmethylcellulose phthalate (HPMCP) and polyvinylpyrrolidone (PVP). The overall crystallization rate at 60°C and the nucleation rate at 50-70°C of (+)-NTR were lower than those of (-)-NTR in the presence of 10-20% HPMC or HPMCP. In contrast, similar crystallization profiles were observed for the NTR enantiomers in solid dispersions containing PVP. The similar glass transition temperatures for solid dispersions of (-)-NTR and (+)-NTR suggested that the molecular mobility of the amorphous matrix did not differ between the enantiomers. These results indicate that the interaction between the NTR enantiomers and HPMC or HPMCP is stereoselective, and that differences in the stereoselective interaction create differences in physical stability between (-)-NTR and (+)-NTR at 50-70°C. However, no difference in physical stability between the enantiomers was obvious at 40°C. Loss of the difference in physical stability between the NTR enantiomers suggests that the stereoselective interaction between NTR and the polymers may not contribute significantly to the physical stabilization of amorphous NTR at 40°C.  相似文献   

10.
Purpose The objective of this study was to investigate thermodynamic and kinetic factors contributing to differences in the isothermal nucleation rates of two structurally related calcium channel blockers, nifedipine and felodipine, both alone and in the presence of poly(vinylpyrrolidone) (PVP).Materials and Methods Thin films of amorphous systems were cast onto glass slides and the nucleation rate was determined using optical microscopy. Enthalpy, entropy, and free energy of crystallization of the pure compounds were measured using differential scanning calorimetery (DSC). Molecular mobility and glass transition temperature of each amorphous system were characterized using DSC and hydrogen bonding patterns were analyzed with infrared spectroscopy. The composition dependence of the thermodynamic activity of the amorphous drug in the presence of the polymer was estimated using Flory‐Huggins lattice theory.Results Nifedipine crystallized more readily than felodipine from the metastable amorphous form both alone and in the presence of PVP despite having a similar glass transition temperature and molecular mobility. Nifedipine was found to have a larger enthalpic driving force for crystallization and a lower activation energy for nucleation.Conclusions The properties of the metastable form alone did not explain the greater propensity for nifedipine crystallization. When considering the physical stability of amorphous systems, it is important to also consider the properties of the crystalline counterpart.  相似文献   

11.
The main aim of the study was to investigate the mechanisms of the stabilizing effect of poly(vinylpyrrolidone) (PVP) on amorphous albendazole (ABZ). Solid dispersions of ABZ with PVP polymers and with a copolymer containing poly(vinylacetate) (PVP/VA) were prepared using the solvent casting method. The effects of PVP molecular weight, composition and content on the crystallization of ABZ from the amorphous state were investigated using differential scanning calorimetry. Stability of the amorphous drug with respect to isothermal crystallization was studied at different polymer concentrations and storage temperatures. Solid dispersions were found to be X-ray amorphous and exhibited a single glass transition temperature (Tg). Onset of crystallization and extent of inhibition increased with concentration and molecular weight of the homopolymer. In spite of its having a higher molecular weight, replacement of about 40% of vinylpyrrolidone monomers with vinylacetate groups (as in the copolymer) resulted in reduced inhibition of crystallization. ABZ crystallized from the amorphous state in the absence of polymer even when stored below the Tg. The solvent casting method greatly reduced the requirement for polymer to achieve X-ray amorphous solid dispersions. Such dispersions exhibited a significant increase in induction time and reduction in the rate of crystallization at polymer concentrations as low as 5% and at temperatures as high as 70 degrees C. Factors other than mobility, such as drug-polymer hydrogen bonding' were also found to be involved in crystallization inhibition.  相似文献   

12.
Nanothermal analysis (NTA) supported by atomic force microscopy imaging has been used to study the changes that occur at the surfaces of solid dispersions of the drug felodipine and the water soluble polymer, polyvinylpyrrolidone (PVP) on exposure to standard pharmaceutical environmental stress conditions. Exposure to relative humidities above 75% (at 40 °C) was sufficient to achieve phase separation of the drug and polymer into areas which displayed a glass transition temperature consistent with pure drug and polymer over a period of a few days. Higher values of humidity at 25 °C (e.g. 95%RH) were also sufficient to cause such phase separation within a day. Extended studies of up to two months showed an eventual crystallization of the drug. NTA is shown to be effective at the early detection of instabilities in solid dispersions and the quantifiable identification of the relative composition of phase separated domains based upon their glass transition temperatures. The combined nanoscale analytical approach employed here is able to systematically study the influence of storage conditions and different drug loadings and to evaluate physical stability as a function of environmental conditions.  相似文献   

13.
In this study, the stabilization effects of three polymers on four model drugs (felodipine, fenofibrate, carbamazepine, and celecoxib) under saturated humidity were investigated. Three different types of thin films (solid dispersions, drug films with a polymer film coating and drug films laid on top of polymer coated surfaces) were prepared and compared with films containing the drug alone. ATR-FTIR spectroscopy, polarised light microscopy (PLM), scanning electron microscopy (SEM) and nano-thermal analysis (nano-TA) were performed on the model systems after storage under saturated humidity. The recrystallisation tendency of the drug in the drug containing thin films was found to be strongly related to the intrinsic crystallization tendency of the drug film alone and the strength of drug–polymer interactions. Additionally, under high humidity, the glass transition temperature of the polymer is no longer an indicator of its drug stabilization capability. Instead, it is the hygroscobicity of the polymer that appears to be the most important parameter. Amongst the polymers tested in this study, EUDRAGIT E PO was found to have the greatest inhibitory effect on crystallization, whilst PVP K30 was found to have the least protective effect; presumably because of its hygroscopic nature.  相似文献   

14.
PURPOSE: To understand the phase behavior and the degree and mechanism of the solid solubility in amorphous molecular dispersions by the use of thermal analysis. METHODS: Amorphous molecular dispersions of trehalose-dextran and trehalose-PVP were prepared by co-lyophilization. The mixtures were exposed to 23 degrees C, 40 degrees C, and 50 degrees C [75% relative humidity (RH)] and 23 degrees C (69% RH) storage conditions, respectively. Thermal analysis was conducted by modulated differential scanning calorimeter (MDSC). RESULTS: Upon exposure to moisture, two glass transition temperatures (TgS), one for phase-separated amorphous trehalose (Tg1) and the other for polymer-trehalose mixture (Tg2), were observed. With time, Tg2 increased and reached to a plateau (Tg(eq)), whereas Tg1 disappeared. The disappearance of Tg1 was attributed to crystallization of the phase-separated amorphous trehalose. It was observed that Tg(eq) was always less than Tg of pure polymer. The lower Tg(eq) when compared to Tg of pure polymer may be the result of solubility of a fraction of trehalose in the polymers chosen. The miscible fraction of trehalose was estimated to be 12% and 18% wt/wt in dextran at 50 degrees C/75% RH and 23 degrees C/75% RH, respectively, and 10% wt/wt in PVP at 23 degrees C/69% RH. CONCLUSIONS: Mixing behavior of trehalose-dextran and trehalose-PVP dispersions were examined both experimentally and theoretically. A method determining the "extent of molecular miscibility," referred to as "solid solubility," was developed and mechanistically and thermodynamically analyzed. Solid dispersions prepared at trehalose concentrations below the "solid solubility limit" were physically stable even under accelerated stability conditions.  相似文献   

15.
The objective of this study was to investigate the effect of different polymeric carriers in solid dispersions with an active pharmaceutical ingredient (API) on their water vapour sorption equilibria and the influence of the API–polymer interactions on the dissolution rate of the API. X-ray diffraction, scanning electron microscopy (SEM), moisture sorption analysis, infrared (IR) spectroscopy and dissolution tests were performed on various API–polymer systems (Valsartan as API with Soluplus, PVP and Eudragit polymers) after production of amorphous solid dispersions by spray drying. The interactions between the API and polymer molecules caused the water sorption isotherms of solid dispersions to deviate from those of ideal mixtures. The moisture sorption isotherms were lower in comparison with the isotherms of physical mixtures in all combinations with Soluplus and PVP. In contrast, the moisture sorption isotherms of solid dispersions containing Eudragit were significantly higher than the corresponding physical mixtures. The nature of the API–polymer interaction was explained by shifts in the characteristic bands of the IR spectra of the solid dispersions compared to the pure components. A correlation between the dissolution rate and the water sorption properties of the API–polymer systems has been established.  相似文献   

16.
The aim of this study was to investigate the potential of poly(vinylpyrrolidone) (PVP) to inhibit the crystallisation of amorphous lactose during storage of the composites up to 6 months. Short-term stability was assessed by microcalorimetry over 10 days and long-term stability by storage in desiccators with different relative humidities for 3 and 6 months. The solid-state structure of the particles after storage was analysed by differential scanning calorimetry. It was found that the presence of PVP increased the critical relative humidity (RH) for crystallisation relative to the pure lactose and both the proportion and the molecular weight of the PVP affected the stabilisation of the amorphous phase. The difference in critical RH between the materials increased over time. The T(g) of the materials was generally reduced due to the absorption of water and it is suggested that the inhibiting effect therefore is related mainly to a specific interaction between lactose and PVP, rather than to a counteracting effect of the polymer on the moisture induced depression of T(g).  相似文献   

17.

Purpose

The aims of this study were twofold. First, to evaluate the effectiveness of selected polymers in inhibiting solution crystallization of celecoxib. Second, to compare the release rate and crystallization tendency of celecoxib amorphous solid dispersions (ASDs) formulated with a single polymer, or binary polymer combinations.

Methods

The effectiveness of polymers, polyvinylpyrrolidone (PVP), hydroxypropylmethyl cellulose (HPMC) or HPMC acetate succinate (HPMCAS), in maintaining supersaturation of celecoxib solutions was evaluated by performing nucleation induction time measurements. Crystallization kinetics of ASD suspensions were monitored using Raman spectroscopy. Dissolution experiments were carried out under non-sink conditions.

Results

Pure amorphous celecoxib crystallized rapidly through both matrix and solution pathways. Matrix and solution crystallization was inhibited when celecoxib was molecularly mixed with a polymer, resulting in release of the drug to form supersaturated solutions. Cellulosic polymers were more effective than PVP in maintaining supersaturation. Combining a cellulosic polymer and PVP enabled improved drug release and stability to crystallization.

Conclusions

Inclusion of an effective solution crystallization inhibitor as a minor component in ternary dispersions resulted in prolonged supersaturation following dissolution. This study shows the feasibility of formulation strategies for ASDs where a major polymer component is used to achieve one key property e.g. release, while a minor polymer component is added to prevent crystallization.
  相似文献   

18.
Purpose. To measure solid-state features of amorphous molecular dispersions of indomethacin and various molecular weight grades of poly(vinylpyrrolidone), PVP, and poly(vinylpyrrolidone-co-vinylacetate), PVP/VA, in relation to isothermal crystallization of indomethacin at 30°C Methods. The glass transition temperatures (Tg) of molecular dispersions were measured using differential scanning calorimetry (DSC). FT-IR spectroscopy was used to investigate possible differences in interactions between indomethacin and polymer in the various dispersions. The enthalpy relaxation of 5% w/w and 30% w/w polymer dispersions was determined following various aging times. Quantitative isothermal crystallization studies were carried out with pure indomethacin and 5% w/w polymers in drug as physical mixtures and molecular dispersions. Results. All coprecipitated mixtures exhibited a single glass transition temperature. All polymers interacted with indomethacin in the solid state through hydrogen bonding and in the process eliminated the hydrogen bonding associated with the carboxylic acid dimers of indomethacin. Molecular mobility at 16.5°C below Tg was reduced relative to indomethacin alone, at the 5% w/w and 30% w/w polymer level. No crystallization of indomethacin at 30°C was observed in any of the 5% w/w polymer molecular dispersions over a period of 20 weeks. Indomethacin alone and in physical mixtures with various polymers completely crystallized to the form at this level within 2 weeks. Conclusions. The major basis for crystal inhibition of indomethacin at 30°C at the 5% w/w polymer level in molecular dispersions is not related to polymer molecular weight and to the glass transition temperature, and is more likely related to the ability to hydrogen bond with indomethacin and to inhibit the formation of carboxylic acid dimers that are required for nucleation and growth to the crystal form of indomethacin.  相似文献   

19.
Indomethacin, lacidipine, nifedipine and tolbutamide are poorly soluble in water and may show dissolution-related low oral bioavailability. This study describes the formulation and characterization of these drugs as glass solutions with the amorphous polymers polyvinylpyrrolidone (PVP) and polyvinylpyrrolidone-co-vinyl acetate by melt extrusion. The extrudates were compared with physical mixtures of drug and polymer. X-ray powder diffraction, thermal analysis, infrared spectroscopy, scanning electron microscopy, HPLC, moisture analysis and dissolution were used to examine the physicochemical properties and chemical stability of the glass solutions prepared by melt extrusion at a 1:1 drug/polymer ratio. Depending on the temperature used, melt extrusion produced amorphous glass solutions, with markedly improved dissolution rates compared with crystalline drug. A significant physico-chemical interaction between drug and polymer was found for all extrudates. This interaction was caused by hydrogen bonding (H-bonding) between the carbonyl group of the pyrrole ring of the polymer and a H-donor group of the drug. Indomethacin also showed evidence of H-bonding when physical mixtures of amorphous drug and PVP were prepared. After storage of the extrudates for 4-8 weeks at 25 degrees C/75% relative humidity (RH) only indomethacin/polymer (1:1) extrudate remained totally amorphous. All extrudates remained amorphous when stored at 25 degrees C/< 10% RH. Differences in the physical stability of drug/polymer extrudates may be due to differences in H-bonding between the components.  相似文献   

20.
Solid dispersions were prepared by a melting method from the water-insoluble model drugs carbamazepine and nifedipine and polyethylene glycol 1500 (PEG 1500) or 1:1 mixtures of PEG 1500 and the polymers polyvinylpyrrolidone (PVP 30, PVP 12), polyvinylpyrrolidone-co-vinylacetate (PVPVA) and Eudragit EPO (Eudragit) in order to combine advantages of the different carrier polymers (recrystallization inhibition, processability and stability). The solid dispersions were characterized by dissolution, powder X-ray diffractometry and microscopy directly after preparation and after storage for 3 and 6 months at 25 °C/0% relative humidity (RH) or 3 months at 40 °C/75% RH. More than 80% drugs were released from all solid dispersions within 20 min. The dissolution rate of carbamazepine decreased in the order of PEG 1500 > PEG 1500/Eudragit > PEG 1500/PVP 30 > PEG 1500/PVPVA > PEG 1500/PVP 12. The dissolution rank order was not directly correlated to the amorphous/crystalline state of the drugs, but rather to the properties of the PEG 1500/polymer compositions. Nifedipine was released in the order of PEG 1500 > PEG 1500/PVPVA > PEG 1500/PVP 30 > PEG 1500/PVP 12 > PEG 1500/Eudragit. Amorphous nifedipine was present in all PEG 1500/polymer dispersions except in pure PEG 1500 solid dispersion. The significant increase in dissolution rate of PEG 1500 solid dispersions was due to the reduced crystallinity of the drug and the excellent solubilisation properties of PEG 1500. After 6 months storage at 25 °C/0% RH, the solid dispersions released both drugs in the order PEG 1500/PVPVA > PEG 1500/PVP 30 > PEG 1500/PVP 12 > PEG 1500/Eudragit > PEG 1500. The stabilized amorphous state of the drug resulted in stable dissolution profiles of PEG 1500/PVPVA, PEG 1500/PVP 30 and PEG 1500/PVP 12 when compared to the PEG 1500 solid dispersions, which contained a higher amount of crystalline drug. The solid dispersions with PEG 1500/PVPVA or PEG 1500/PVP stored for 3 months at 40 °C/75% RH showed phase separation due to the hygroscopic properties of the polymers. The influence of 10% (w/w) of the solubilisers polyoxyl 40 hydrogenated castor oil (Cremophor), macrogol-15-hydroxystearate (Solutol) and fatty alcohol alkoxylate (Pluronic) on the dissolution rate and the physical state of the drug was significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号