首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Translational effects of the RNA leader and Tat protein of human immunodeficiency virus type 1 (HIV-1) were investigated in rabbit reticulocyte lysate. Hybrid RNA species with natural or mutated HIV-1 leader fused to human interferon- gamma mRNA were produced in vitro from recombinant plasmids. HIV-1 leader RNA was found to inhibit translation through two mechanisms. A 3-fold trans-inhibition of translation was demonstrated by mixing hybrid HIV-1 leader RNA with indicator interferon mRNA. By comparison, HIV-1 leader caused a 50-fold cis-inhibition in lysate in which two trans-inhibitory factors, double-stranded RNA-dependent protein kinase and (2'-5')oligoadenylate synthetase, were suppressed. In contrast, purified HIV-1 Tat protein produced in Escherichia coli enhanced by 4-fold translation from HIV-1 leader-interferon mRNA but not from interferon mRNA lacking HIV sequences or from total poly(A)+ RNA. Translation of mRNA containing either a single base substitution in the loop of the "trans-acting responsive" sequence (TAR) or an alternative stem-loop in TAR was nevertheless stimulated by Tat. The enhancement of translation by Tat was largely due to relief of cis-inhibition, since the effect was found even in lysate in which double-stranded RNA-dependent protein kinase was inhibited with 2-aminopurine. These results suggest that translation is an important level of control in the replication cycle of HIV-1.  相似文献   

2.
Discovery of sequence-specific silencing by activating the RNA interference (RNAi) pathway has led to exciting new strategies for treating infection with human immunodeficiency virus type 1 (HIV-1). Of the HIV-1 subtypes, C is especially common in areas of the world that are worst affected. Although prone to mutation, genome plasticity of this subtype is limited in functionally important regions. We identified conserved sequences within the HIV-1 subtype C gag open reading frame and assessed whether they are suitable targets for inhibition of viral replication by RNA Pol III-driven small hairpin RNAs (shRNAs). Initially, the efficacy of each of a panel of 10 shRNAs against HIV-1 was determined using a reporter assay. shRNAs A and B, which targeted the 5 end of gag, were most effective and were used to assess inhibition of replication in cultured cells of two R5 isolates (Du151 and Du422) and one X4 virus (SW7). These shRNAs diminished intracellular HIV-1 gag RNA and HIV-1 protein concentrations as well as p24 secretion by up to 80% without inducing an interferon response. However, shRNA-mediated knockdown efficacy against each of these viral isolates varied slightly. These data show successful activation of RNAi to inhibit the replication of biologically distinct HIV-1 subtype C isolates. The effector shRNAs described here are potential candidates for gene therapy applications against the most common global subtype of HIV-1.  相似文献   

3.
4.
The full-length RNA of human immunodeficiency virus type 1 (HIV-1) serves both as a messenger (mRNA) to direct the translation of Pr55(gag) proteins and as genomic or viral particle RNA (vpRNA) to be packaged into virions. In this study, we have assessed a putative cis-acting effect of Pr55(gag) translation on HIV-1 RNA packaging. To pursue this subject, we have measured the relative competence of two distinct types of HIV-1 RNA for being packaged by virus particles under conditions in which only one of them is permissive for production of Pr55(gag). Not surprisingly, wild-type BH10 RNA was packaged at far higher efficiency than that associated with mutant viral RNA that was deleted of RNA packaging signals and incapable of Pr55(gag) production. However, when production of Pr55(gag) was eliminated from the wild-type BH10 viral RNA by insertion of stop codons either in matrix (MA) or in capsid (CA) sequences, regardless of retention of wild-type RNA packaging signals, these Pr55(gag)-deficient viral RNAs were packaged at low levels similar to those observed with viral RNA species that lack RNA packaging signals and are capable of Pr55(gag) generation. Moreover, loss of Pr55(gag) production did not affect stability of the relevant viral RNA; this observation rules out the possibility that lowered packaging efficiency associated with Pr55(gag)-deficient HIV-1 RNA is a result of reduced RNA stability. Taken together, our data demonstrate that cis translation of Pr55(gag) is needed for efficient packaging of HIV-1 RNA.  相似文献   

5.
6.
Tat is a potent activator of gene expression in human immunodeficiency virus type 1 (HIV-1). Activation by Tat requires a cis-acting element, the transactivation response (TAR) site, located in the viral long terminal repeat and the 5' end of all viral mRNAs. Sequences in TAR RNA can fold into a specific stem-loop structure, and certain features of the stem-loop are essential for Tat-mediated transactivation. In Xenopus oocytes, TAR sequences can inhibit the translation of 3' cis-linked mRNAs. However, coinjection of Tat and the TAR-containing RNA into oocyte nuclei relieves this translational inhibition [Braddock, M., Chambers, A., Wilson, W., Esnout, M. A., Adams, S.E. & Kingsman, S.M. (1989) Cell 58, 269-279]. We report here that the intramolecular TAR stem-loop structure is a substrate for the double-stranded RNA (dsRNA)-modifying activity, which converts adenosines to inosines. This activity is located in the nuclei of Xenopus oocytes. The specificity and extent of modification of adenosines in TAR is dependent on Tat. We propose that the dsRNA-modifying activity may be one of the cellular proteins that interacts with TAR in the nucleus. The possible role of TAR RNA modification in the expression of HIV-1 is discussed.  相似文献   

7.
8.
9.
An HIV-1 and HIV-2 cross-reactive cytotoxic T-cell epitope.   总被引:2,自引:0,他引:2  
The HLA-B27-restricted HIV gag cytotoxic T-lymphocyte (CTL) epitope, 265-279, is highly conserved amongst HIV-1 isolates, only one, HIV-1ELI, having a single amino acid substitution. Over the same region HIV-2 differs by five amino acids. As a broadly cross-protective AIDS vaccine should protect against infection from all isolates of HIV-1 and HIV-2, we tested CTL specific for the HIV-1 265-279 epitope with peptide analogues from HIV-1ELI, HIV-2 and two simian immunodeficiency virus (SIV) isolates, and with recombinant vaccinia viruses expressing the respective gag genes, to determine whether there was any cross-reactivity for this CTL epitope. CTL from the HIV-1-infected donor could recognize the HIV-1ELI peptide, the HIV-2 peptide and recombinant vaccinia virus-infected target and one of the two SIV peptide-treated targets. Epitopes that exhibit such cross-reactivity may be valuable in vaccine design.  相似文献   

10.
The HIV-1 regulatory proteins Rev and Tat are expressed early in the virus life cycle and thus may be important targets for the immune control of HIV-1-infection and for effective vaccines. However, the extent to which these proteins are targeted in natural HIV-1 infection as well as precise epitopes targeted by human cytotoxic T lymphocytes (CTL) remain to be defined. In the present study, 57 HIV-1-infected individuals were screened for responses against Tat and Rev by using overlapping peptides spanning the entire Tat and Rev proteins. CD8+ T cell responses against Tat and Rev were found in up to 19 and 37% of HIV-1-infected individuals, respectively, indicating that these regulatory proteins are important targets for HIV-1-specific CTL. Despite the small size of these proteins, multiple CTL epitopes were identified in each. These data indicate that Tat and Rev are frequently targeted by CTL in natural HIV-1 infection and may be important targets for HIV vaccines.  相似文献   

11.
The polymerase chain reaction (PCR) assay for plasma human immunodeficiency virus type 1 (HIV-1) ribonucleic acid (RNA) inadequately quantitates virus load for some non-B HIV-1 subtypes because of genetic diversity in the gag region targeted by the PCR primers. Unexpectedly low or undetectable plasma HIV-1 RNA findings by PCR were a clue to non-B HIV-1 infections in patients in whom plasma HIV-1 RNA was found to be substantially higher when determined by a branched-chain deoxyribonucleic acid assay.  相似文献   

12.
Retrovirus assembly and maturation involve folding and transport of viral proteins to the virus assembly site followed by subsequent proteolytic cleavage of the Gag polyprotein within the nascent virion. We report that inhibiting proteasomes severely decreases the budding, maturation, and infectivity of HIV. Although processing of the Env glycoproteins is not changed, proteasome inhibitors inhibit processing of Gag polyprotein by the viral protease without affecting the activity of the HIV-1 viral protease itself, as demonstrated by in vitro processing of HIV-1 Gag polyprotein Pr55. Furthermore, this effect occurs independently of the virus release function of the HIV-1 accessory protein Vpu and is not limited to HIV-1, as proteasome inhibitors also reduce virus release and Gag processing of HIV-2. Electron microscopy analysis revealed ultrastructural changes in budding virions similar to mutants in the late assembly domain of p6(gag), a C-terminal domain of Pr55 required for efficient virus maturation and release. Proteasome inhibition reduced the level of free ubiquitin in HIV-1-infected cells and prevented monoubiquitination of p6(gag). Consistent with this, viruses with mutations in PR or p6(gag) were resistant to detrimental effects mediated by proteasome inhibitors. These results indicate the requirement for an active proteasome/ubiquitin system in release and maturation of infectious HIV particles and provide a potential pharmaceutical strategy for interfering with retrovirus replication.  相似文献   

13.
Chemokines and chemokine receptors play important roles in HIV-1 infection and tropism. CCR5 is the major macrophage-tropic coreceptor for HIV-1 whereas CXC chemokine receptor 4 (CXCR4) serves the counterpart function for T cell-tropic viruses. An outstanding biological mystery is why only R5-HIV-1 is initially detected in new seroconvertors who are exposed to R5 and X4 viruses. Indeed, X4 virus emerges in a minority of patients and only in the late stage of disease, suggesting that early negative selection against HIV-1-CXCR4 interaction may exist. Here, we report that the HIV-1 Tat protein, which is secreted from virus-infected cells, is a CXCR4-specific antagonist. Soluble Tat selectively inhibited the entry and replication of X4, but not R5, virus in peripheral blood mononuclear cells (PBMCs). We propose that one functional consequence of secreted Tat is to select against X4 viruses, thereby influencing the early in vivo course of HIV-1 disease.  相似文献   

14.
Homology-dependent RNA silencing occurs in many eukaryotic cells. We reported recently that nodaviral infection triggers an RNA silencing-based antiviral response (RSAR) in Drosophila, which is capable of a rapid virus clearance in the absence of expression of a virus-encoded suppressor. Here, we present further evidence to show that the Drosophila RSAR is mediated by the RNA interference (RNAi) pathway, as the viral suppressor of RSAR inhibits experimental RNAi initiated by exogenous double-stranded RNA and RSAR requires the RNAi machinery. We demonstrate that RNAi also functions as a natural antiviral immunity in mosquito cells. We further show that vaccinia virus and human influenza A, B, and C viruses each encode an essential protein that suppresses RSAR in Drosophila. The vaccinia and influenza viral suppressors, E3L and NS1, are distinct double-stranded RNA-binding proteins and essential for pathogenesis by inhibiting the mammalian IFN-regulated innate antiviral response. We found that the double-stranded RNA-binding domain of NS1, implicated in innate immunity suppression, is both essential and sufficient for RSAR suppression. These findings provide evidence that mammalian virus proteins can inhibit RNA silencing, implicating this mechanism as a nucleic acid-based antiviral immunity in mammalian cells.  相似文献   

15.
The L-A double-stranded RNA (dsRNA) virus of Saccharomyces cerevisiae has two open reading frames (ORFs). ORF1 encodes the 80-kDa major coat protein (gag). ORF2, which is expressed only as a 180-kDa fusion protein with ORF1, encodes a single-stranded RNA-binding domain and has the consensus sequence for RNA-dependent RNA polymerases of (+)-strand and double-stranded RNA viruses (pol). We show that the 180-kDa protein is formed by -1 ribosomal frame-shifting by a mechanism indistinguishable from that of retro-viruses. Analysis of the "slippery site" suggests that a low probability of unpairing of the aminoacyl-tRNA from the 0-frame codon at the ribosomal A site reduces the efficiency of frameshifting more than the reluctance of a given tRNA to have its wobble base mispaired. Frameshifting of L-A requires a pseudoknot structure just downstream of the shift site. The efficiency of the L-A frameshift site is 1.8%, similar to the observed molar ratio in viral particles of the 180-kDa fusion protein to the major coat protein.  相似文献   

16.
Human immunodeficiency virus-1 (HIV-1) Tat, a nuclear transactivator of viral gene expression, has the unusual property of being released by infected cells. Recent studies suggest that extracellular Tat is partially sequestered by heparan sulfate proteoglycans. As a consequence, Tat is concentrated on the cell surface and protected from proteolytic degradation, thus remaining in a biologically active form. We show that Tat binds the surfaces of both HIV-1-infected and surrounding uninfected cells. We provide evidence for a specific interaction between Tat and the HIV-1 glycoprotein 120 (gp120) envelope protein, which enhances virus attachment and entry into cells. We map the interacting sites of both Tat and gp120 and show that synthetic peptides mimicking the gp120 site inhibit HIV-1 infection. Our data demonstrate that membrane-associated Tat is a novel modulator of virus entry and suggest that the Tat-gp120 interaction represents a critical step in HIV-1 spreading during the course of infection.  相似文献   

17.
18.
The effects of two peptidyl-transferase inhibitors, anisomycin and sparsomycin, on ribosomal frameshifting efficiencies and the propagation of yeast double-stranded RNA viruses were examined. At sublethal doses in yeast cells these drugs specifically alter the efficiency of −1, but not of +1, ribosomal frameshifting. These compounds promote loss of the yeast L-A double-stranded RNA virus, which uses a programmed −1 ribosomal frameshift to produce its Gag-Pol fusion protein. Both of these drugs also change the efficiency of −1 ribosomal frameshifting in yeast and mammalian in vitro translation systems, suggesting that they may have applications to control the propagation of viruses of higher eukaryotes, which also use this translational regulatory mechanism. Our results offer a new set of antiviral agents that may potentially have a broad range of applications in the clinical, veterinary, and agricultural fields.  相似文献   

19.
20.
Infection with human immunodeficiency virus type 1 (HIV-1) is characterized by dysfunction of HIV-1-specific T cells. To control the virus, antigen-loaded dendritic cells (DCs) might be useful to boost and broaden HIV-specific T-cell responses. In the present study, monocyte-derived DCs from nontreated HIV-1-seropositive patients were electroporated with codon-optimized ("humanized") mRNA encoding consensus HxB-2 (hHXB-2) Gag protein. These DCs elicited a strong HIV-1 Gag-specific interferon-gamma (IFN-gamma) response by an HLA-A2-restricted CD8+ T-cell line. Moreover, hHXB-2 gag mRNA-electroporated DCs also triggered IFN-gamma secretion by autologous peripheral blood mononuclear cells (PBMCs), CD4+ T cells, and CD8+ T cells from all patients tested. Next, a novel strategy was developed using autologous virus sequences. Significant specific IFN-gamma T-cell responses were induced in all patients tested by DCs electroporated with patients' autologous polymerase chain reaction (PCR)-amplified and in vitro-transcribed proviral and plasma viral mRNA encoding either Gag or Env. The stimulatory effect was seen on PBMCs, CD8+ T cells, and CD4+ T cells, demonstrating both major histocompatibility complex (MHC) class I and MHC class II antigen presentation. Moreover, a significant interleukin-2 (IL-2) T-cell response was induced by DCs electroporated with hHxB-2 or proviral gag mRNA. These findings open a major perspective for the development of patient-specific immunotherapy for HIV-1 disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号