首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Toll-like receptors (TLRs) signal through two main pathways: a myeloid differentiation factor (MyD)88-dependent pathway that acts via nuclear factor kappaB (NF-kappaB) to induce proinflammatory cytokines such as tumour necrosis factor-alpha (TNF-alpha) and a MyD88-independent pathway that acts via type I interferons to increase the expression of interferon-inducible genes. Repeated signalling through TLR4 and a number of other TLRs has been reported to result in a reduction in the subsequent proinflammatory cytokine response, a phenomenon known as TLR tolerance. In this study we have shown that, whilst NF-kappaB activation and production of TNF-alpha and interleukin-12 by murine RAW264.7 and J774.2 cells in response to stimulation by TLR4, -5, -7 or -9, was reduced by prior stimulation with TLR4, -5, -7 or -9 ligands, the primary stimulation of TLR3, which does not use the MyD88 pathway, did not reduce the TNF-alpha or interleukin-12 responses to subsequent TLR stimulation. The response to TLR3 stimulation was not diminished by prior TLR ligand exposure. Furthermore, the production of interferon-beta (IFN-beta) following stimulation of TLR3 or -4, which is MyD88-independent, was increased by prior activation of TLR4, -5, -7 or -9. In contrast, TLR9 ligand-induced IFN-beta production, which is MyD88-dependent, was tolerized by prior TLR stimulation. These results are consistent with differential regulation of MyD88-dependent and MyD88-independent cytokine production following serial activation of TLRs.  相似文献   

3.
4.
The inflammatory response to prosthetic implant-derived wear particles is the primary cause of bone loss and aseptic loosening of implants, but the mechanisms by which macrophages recognize and respond to particles remain unknown. Studies of innate immunity demonstrate that Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPS). All TLRs signal through myeloid differentiation factor 88 (MyD88), except TLR3 which signals through TIR domain containing adapter inducing interferon-beta (TRIF), and TLR4 which signals through both MyD88 and TRIF. We hypothesized that wear-debris particles may act as PAMPs/DAMPs and activate macrophages via TLRs. To test this hypothesis, we first demonstrated that inhibition of MyD88 decreases polymethylmethacrylate (PMMA) particle-induced production of TNF-α in RAW 264.7 macrophages. Next we compared particle-induced production of TNF-α among MyD88 knockout (MyD88(-/-)), TRIF knockout (TRIF(-/-)), and wild type (WT) murine macrophages. Relative to WT, disruption of MyD88 signaling diminished, and disruption of TRIF amplified the particle-induced production of TNF-α. Gene expression data indicated that this latter increase in TNF-α was due to a compensatory increase in expression of MyD88 associated components of the TLR pathway. Finally, using an in?vivo model, MyD88(-/-) mice developed less particle-induced osteolysis than WT mice. These results indicate that the response to PMMA particles is partly dependent on MyD88, presumably as part of TLR signaling; MyD88 may represent a therapeutic target for prevention of wear debris-induced periprosthetic osteolysis.  相似文献   

5.
Synergy between Toll-like receptor (TLR) and adenosine A2A receptor (A2AR) signaling switches macrophages from production of inflammatory cytokines such as tumor necrosis factor-alpha to production of the angiogenic growth factor vascular endothelial growth factor (VEGF). We show in this study that this switch critically requires signaling through MyD88, IRAK4, and TRAF6. Macrophages from mice lacking MyD88 (MyD88(-/-)) or IRAK4 (IRAK4(-/-)) lacked responsiveness to TLR agonists and did not respond to A2AR agonists by expressing VEGF. Suppression of TRAF6 expression with siRNA in RAW264.7 macrophages also blocked their response to TLR and A2AR agonists. Excisional skin wounds in MyD88(-/-) mice healed at a markedly slower rate than wounds in wild-type MyD88(+/+) mice, showing delayed contraction, decreased and delayed granulation tissue formation, and reduced new blood vessel density. Although macrophages accumulated to higher levels in MyD88(-/-) wounds than in controls, expression of VEGF and HIF1-alpha mRNAs was elevated in MyD88(+/+) wounds. CGS21680, an A2AR agonist, promoted repair in MyD88(+/+) wounds and stimulated angiogenesis but had no significant effect on healing of MyD88(-/-) wounds. These results suggest that the synergistic interaction between TLR and A(2A)R signaling observed in vitro that switches macrophages from an inflammatory to an angiogenic phenotype also plays a role in wound healing in vivo.  相似文献   

6.
7.
Ding A  Yu H  Yang J  Shi S  Ehrt S 《Immunology》2005,116(3):381-389
Macrophages respond to Mycobacterium tuberculosis by regulating expression of gene products that initiate a host innate response to this micro-organism. In this study, we report that exposure of murine peritoneal macrophages to heat-killed Mycobacterium tuberculosis (HK-Mtb) led to an increase in secretory leucocyte protease inhibitor (SLPI) gene expression and protein secretion in a time- and dose-dependent manner. HK-Mtb-induced SLPI mRNA expression was sensitive neither to a protein synthesis inhibitor, cycloheximide, nor to an actin polymerization blocker, cytochalasin D. Treatment of macrophages with interferon (IFN)-gamma inhibited HK-Mtb-induced SLPI expression. RAW264.7 cells stably expressing SLPI produced a reduced level of tumour necrosis factor (TNF) in response to HK-Mtb as compared with mock transfectants. Aerosol infection of mice with live M. tuberculosis resulted in an induction of SLPI gene expression in infected lungs. Macrophages from Toll-like receptor 4 (TLR4)-/- or MyD88-/- mice responded to M. tuberculosis similarly to wild-type macrophages by exhibiting increased SLPI expression. In contrast, macrophages from TLR2-/- mice were incapable of inducing SLPI in response to M. tuberculosis. This induction signifies the presence of a TLR2-dependent but MyD88-independent M. tuberculosis signalling pathway, suggesting involvement of adaptor protein(s) other than MyD88 in M. tuberculosis-mediated induction of SLPI.  相似文献   

8.
The role of MyD88 and TLR4 in the LPS-mimetic activity of Taxol   总被引:11,自引:0,他引:11  
Taxol can mimic bacterial lipopolysaccharide (LPS) by activating mouse macrophages in a cell cycle-independent, LPS antagonist-inhibitable manner. Macrophages from C3H/HeJ mice, which have a spontaneous mutation in Toll-like receptor 4 (TLR4), are hyporesponsive to both LPS and Taxol, suggesting that LPS and Taxol may share a signaling pathway involving TLR4. To determine whether TLR4 and its interacting adaptor molecule MyD88 are necessary for Taxol's LPS mimetic actions, we examined Taxol responses of primary macrophages from genetically defective mice lacking either TLR4 (C57BL/10ScNCr) or MyD88 (MyD88 knockout). When stimulated with Taxol, macrophages from wild-type mice responded robustly by secreting both TNF and NO, while macrophages from either TLR4-deficient C57BL/10ScNCr mice or MyD88 knockout mice produced only minimal amounts of TNF and NO. Taxol-induced NF-kappa B-driven luciferase activity was reduced after transfection of RAW 264.7 macrophages with a dominant negative version of mouse MyD88. Taxol-induced microtubule-associated protein kinase (MAPK) activation and NF-kappa B nuclear translocation were absent from TLR4-null macrophages, but were preserved in MyD88 knockout macrophages with a slight delay in kinetics. Neither Taxol-induced NF-kappa B activation, nor I kappa B degradation was affected by the presence of phosphatidylinositol 3-kinase inhibitors. These results suggest that Taxol and LPS not only share a TLR4/MyD88-dependent pathway in generating inflammatory mediators, but also share a TLR4-dependent/MyD88-independent pathway leading to activation of MAPK and NF-kappa B.  相似文献   

9.
The biological response to endotoxin mediated through the Toll-like receptor 4 (TLR4)-MD-2 receptor complex is directly related to lipid A structure or configuration. Endotoxin structure may also influence activation of the MyD88-dependent and -independent signaling pathways of TLR4. To address this possibility, human macrophage-like cell lines (THP-1, U937, and MM6) or murine macrophage RAW 264.7 cells were stimulated with picomolar concentrations of highly purified endotoxins. Harvested supernatants from previously stimulated cells were also used to stimulate RAW 264.7 or 23ScCr (TLR4-deficient) macrophages (i.e., indirect induction). Neisseria meningitidis lipooligosaccharide (LOS) was a potent direct inducer of the MyD88-dependent pathway molecules tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta), monocyte chemoattractant protein 1 (MCP-1), macrophage inflammatory protein 3alpha (MIP-3alpha), and the MyD88-independent molecules beta interferon (IFN-beta), nitric oxide, and IFN-gamma-inducible protein 10 (IP-10). Escherichia coli 55:B5 and Vibrio cholerae lipopolysaccharides (LPSs) at the same pmole/ml lipid A concentrations induced comparable levels of TNF-alpha, IL-1beta, and MIP-3alpha, but significantly less IFN-beta, nitric oxide, and IP-10. In contrast, LPS from Salmonella enterica serovars Minnesota and Typhimurium induced amounts of IFN-beta, nitric oxide, and IP-10 similar to meningococcal LOS but much less TNF-alpha and MIP-3alpha in time course and dose-response experiments. No MyD88-dependent or -independent response to endotoxin was seen in TLR4-deficient cell lines (C3H/HeJ and 23ScCr) and response was restored in TLR4-MD-2-transfected human embryonic kidney 293 cells. Blocking the MyD88-dependent pathway by DNMyD88 resulted in significant reduction of TNF-alpha release but did not influence nitric oxide release. IFN-beta polyclonal antibody and IFN-alpha/beta receptor 1 antibody significantly reduced nitric oxide release. N. meningitidis endotoxin was a potent agonist of both the MyD88-dependent and -independent signaling pathways of the TLR4 receptor complex of human macrophages. E. coli 55:B5 and Vibrio cholerae LPS, at the same picomolar lipid A concentrations, selectively induced the MyD88-dependent pathway, while Salmonella LPS activated the MyD88-independent pathway.  相似文献   

10.
Hypoferremia, associated with immune system activation, involves a marked reduction in the levels of circulating iron, coupled with iron sequestration within macrophages. Toll-like receptor (TLR) signaling plays an important role in the development of the hypoferremic response, but how downstream signaling events affect genes involved in iron metabolism is incompletely understood. We investigated the involvement of MyD88-dependent (MyD88) and MyD88-independent (TRIF) TLR signaling in the development of hypoferremia. Using MyD88-deficient and TRIF-deficient mice, we show that MyD88 and TRIF signaling pathways are critical for up-regulation by lipopolysaccharide (LPS) of the iron regulator hepcidin. In addition, MyD88 signaling is required for the induction of lipocalin 2 secretion and iron sequestration in the spleen. Activation of TLR4 and TLR3 signaling through LPS and polyinosinic:polycytidylic acid [poly(I:C)] treatments resulted in rapid down-regulation of HFE protein [encoded by the hemochromatosis gene (Hfe)] and ferroportin [encoded by solute carrier family 40 (iron-regulated transporter), member 1 (Slc40a1)] expression in the spleen, independent of MyD88 or TRIF signaling and proinflammatory cytokine production. However, lack of MyD88 signaling significantly impaired the hypoferremic response triggered by LPS, indicating that ferroportin and HFE protein down-regulation alone are insufficient to maintain hypoferremia. The extent of the hypoferremic response was found to be limited by initial, basal iron levels. Together, these results suggest that targeting specific TLR signaling pathways by affecting the function of adaptor molecules may provide new strategies to counteract iron sequestration within macrophages during inflammation.  相似文献   

11.
12.
The widespread distribution of Toll-like receptors (TLRs) and their ligands raises the question whether they contribute to the production of inflammatory and tissue destructive molecules in rheumatoid arthritis (RA). We examined the expression and function of TLR2 and TLR4 and their downstream signaling adaptors MyD88 and Mal/TIRAP in synovial membrane cultures from RA tissue. Both TLR2 and TLR4 were detected by flow cytometry, and stimulation with TLR2 and TLR4 ligands augmented the spontaneous production of tumor necrosis factor-alpha, interleukin (IL)-6, and IL-8, indicating that TLR2 and TLR4 are functional in these cultures. In addition, overexpression of dominant-negative forms of MyD88 and Mal/TIRAP significantly down-regulated the spontaneous production of cytokines tumor necrosis factor-alpha, IL-6, and vascular endothelial growth factor, and enzymes MMP-1, MMP-2, MMP-3, and MMP-13 in RA synovial membrane cell cultures. Because TLR2 and TLR4 require both MyD88 and Mal/TIRAP for signaling, this study suggests that TLR function may regulate the expression of these factors in the RA synovium. Conditioned media from synovial membrane cell cultures stimulated human macrophages in a MyD88- and Mal-dependent manner, suggesting the release of a TLR ligand(s) from these cells. Thus, TLRs not only protect against infection but may also promote the inflammatory and destructive process in RA.  相似文献   

13.
14.
15.
Little is known of how Toll-like receptor (TLR) ligands are processed after recognition by TLRs. This study was therefore designed to investigate how the TLR2 ligand FSL-1 is processed in macrophages after recognition by TLR2. FSL-1 was internalized into the murine macrophage cell line, RAW264.7. Both chlorpromazine and methyl-β-cyclodextrin, which inhibit clathrin-dependent endocytosis, reduced FSL-1 uptake by RAW264.7 cells in a dose-dependent manner but nystatin, which inhibits caveolae- and lipid raft-dependent endocytosis, did not. FSL-1 was co-localized with clathrin but not with TLR2 in the cytosol of RAW264.7 cells. These results suggest that internalization of FSL-1 is clathrin dependent. In addition, FSL-1 was internalized by peritoneal macrophages from TLR2-deficient mice. FSL-1 was internalized by human embryonic kidney 293 cells transfected with CD14 or CD36 but not by the non-transfected cells. Also, knockdown of CD14 or CD36 in the transfectants reduced FSL-1 uptake. In this study, we suggest that (i) FSL-1 is internalized into macrophages via a clathrin-dependent endocytic pathway, (ii) the FSL-1 uptake by macrophages occurs irrespective of the presence of TLR2, and (iii) CD14 and CD36 are responsible for the internalization of FSL-1.  相似文献   

16.
Herpes simplex virus 1 (HSV-1), a large DNA virus from the Herpesviridae family, is the major cause of sporadic lethal encephalitis and blindness in humans. Recent studies have shown the importance of Toll-like receptors (TLRs) in the immune response to HSV-1 infection. Myeloid differentiation factor 88 (MyD88) is a critical adaptor protein that is downstream to mediated TLR activation and is essential for the production of inflammatory cytokines. Here, we studied the relationship between MyD88 and HSV-1 using a purified HSV-1 isolated from a natural oral recurrent human infection. We observed the activation of TLR-2 by HSV-1 in vitro using Chinese hamster ovary cells stably transfected with a reporter gene. Interestingly, we found that only peritoneal macrophages from MyD88-/- mice, but not macrophages from TRL2-/- or from wild-type mice, were unable to produce tumor necrosis factor-alpha in response to HSV-1 exposure. Additionally, although TLR2-/- mice showed no enhanced susceptibility to intranasal infection with HSV-1, MyD88-/- mice were highly susceptible to infection and displayed viral migration to the brain, severe neuropathological signs of encephalitis, and 100% mortality by day 10 after infection. Together, our results suggest that innate resistance to HSV-1 is mediated by MyD88 and may rely on activation of multiple TLRs.  相似文献   

17.
Mycobacteria-infected macrophages are poor responders to interferon-gamma (IFN-gamma), resulting in decreased expression of IFN-gamma-induced genes. In the present study, we examined the inhibition of IFN-gamma-induced gene expression by Mycobacterium tuberculosis and four different Mycobacterium avium strains in mouse RAW264.7 macrophages. Gamma-irradiated M. tuberculosis inhibited mRNA expression of a panel of six different IFN- gamma-induced genes. All four of the M. avium strains completely inhibited IFN-gamma-induced expression of MHC class II Aalpha and Ebeta mRNA. However, the Mac101 strain, which is serovar 1, inhibited IFN-gamma induction of IFN regulatory factor-1 (IRF-1) and guanylate-binding protein-1 (GBP-1) mRNA to a greater extent than the other M. avium strains, which are serovar 2. In this study, we also show that mycobacteria inhibit gene expression by both toll-like receptor 2 (TLR2)-dependent and independent pathways. The inhibition of IFN-gamma-induced gene expression by M. avium was reduced but not completely blocked in macrophages from TLR2(/) mice. IFN-gamma-induced gene expression was also inhibited by mycobacteria in RAW264.7 cells expressing dominantnegative TLR2 or myeloid differentiation factor 88 (MyD88), further indicating the existence of a pathway independent of TLR2 and MyD88. These data suggest that mycobacteria inhibit IFN-gamma-induced gene expression by multiple pathways involving both TLR2 and non-TLR receptors.  相似文献   

18.
Recognition of Gram-positive bacteria by Toll-like receptor 2 (TLR2) induces activation of proinflammatory pathways. In mice, sensitization with the Gram-positive Propionibacterium acnes followed by a challenge with the TLR4 ligand, lipopolysaccharide (LPS), results in fulminant hepatic failure. Here, we investigated the role of TLR2 in liver sensitization to LPS-induced injury. Stimulation of Chinese hamster ovary cells and peritoneal macrophages with heat-killed P. acnes required expression of TLR2 but not of TLR4, suggesting that P. acnes was a TLR2 ligand. Cell activation by P. acnes was myeloid differentiation primary-response protein 88 (MyD88)-dependent, and it was augmented by coexpression of CD14 in mouse peritoneal macrophages. In vitro, P. acnes behaved as a TLR2 ligand and induced TLR4 hetero- and TLR2 homotolerance in peritoneal macrophages. In vivo priming of wild-type mice with P. acnes, but not with the selective TLR2 ligands peptidoglycan and lipotheicoic acid, resulted in hepatocyte necrosis, hyperelevated serum levels of tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-6, interferon-gamma (IFN-gamma), and IL-12 (p40/p70), and increased RNA expression of proinflammatory cytokines (IL-12p40, IL-1alpha, IL-6, IL-1beta, IL-18, IFN-gamma) in the liver after a LPS challenge. Furthermore, P. acnes priming sensitized TLR2-deficient (TLR2-/-) but not MyD88-/- mice to LPS-induced injury, evidenced by hepatocyte necrosis, increased levels of serum TNF-alpha, IFN-gamma, IL-6, and liver proinflammatory cytokine mRNA expression. IFN-gamma, a cytokine sensitizing to endotoxin, was induced by P. acnes in splenocytes of TLR2-/- and TLR9-/- but not MyD88-/- mice. These results suggest that although P. acnes triggers TLR2-mediated cell activation, TLR2-independent but MyD88-dependent mechanisms mediate in vivo sensitization by P. acnes for LPS-induced liver injury.  相似文献   

19.
Exposure of macrophages to lipopolysaccharide (LPS) induces a hypo-responsive state to a second challenge with LPS that is termed LPS tolerance. LPS tolerance is also induced by pre-exposure to lipopeptides and lipoteichoic acid, which trigger Toll-like receptor (TLR) 2-mediated signaling. LPS signaling involves at least two pathways: a MyD88-dependent cascade that is essential for production of inflammatory cytokines and a MyD88-independent cascade that mediates the expression of IFN-inducible genes. We analyzed the induction of LPS tolerance by several microbial components in mouse peritoneal macrophages. Pre-exposure to LPS led to impaired activation of both the pathways. In contrast, mycoplasmal lipopeptides did not affect the MyD88-independent pathway, but impaired the MyD88-dependent signaling by inhibiting LPS-mediated activation of IL-1 receptor-associated kinase (IRAK) 1. The induction of LPS tolerance by recently identified TLR ligands was analyzed. Pretreatment with double-stranded RNA, which triggers the activation of TLR3, led to defective activation of the MyD88-independent, but not the MyD88-dependent, pathway. Imidazoquinoline compounds, which are recognized by TLR7, had no effect on the MyD88-independent pathway, but inhibited LPS-induced activation of MyD88-dependent signaling through down-regulation of IRAK1 expression. Thus, each microbial component induced LPS tolerance in macrophages.  相似文献   

20.
Bacillus anthracis is a spore-forming, gram-positive organism that is the causative agent of the disease anthrax. Recognition of Bacillus anthracis by the host innate immune system likely plays a key protective role following infection. In the present study, we examined the role of TLR2, TLR4, and MyD88 in the response to B. anthracis. Heat-killed Bacillus anthracis stimulated TLR2, but not TLR4, signaling in HEK293 cells and stimulated tumor necrosis factor alpha (TNF-alpha) production in C3H/HeN, C3H/HeJ, and C57BL/6J bone marrow-derived macrophages. The ability of heat-killed B. anthracis to induce a TNF-alpha response was preserved in TLR2-/- but not in MyD88-/- macrophages. In vivo studies revealed that TLR2-/- mice and TLR4-deficient mice were resistant to challenge with aerosolized Sterne strain spores but MyD88-/- mice were as susceptible as A/J mice. We conclude that, although recognition of B. anthracis occurs via TLR2, additional MyD88-dependent pathways contribute to the host innate immune response to anthrax infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号