首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parallel imaging is a robust method for accelerating the acquisition of magnetic resonance imaging (MRI) data, and has made possible many new applications of MR imaging. Parallel imaging works by acquiring a reduced amount of k-space data with an array of receiver coils. These undersampled data can be acquired more quickly, but the undersampling leads to aliased images. One of several parallel imaging algorithms can then be used to reconstruct artifact-free images from either the aliased images (SENSE-type reconstruction) or from the undersampled data (GRAPPA-type reconstruction). The advantages of parallel imaging in a clinical setting include faster image acquisition, which can be used, for instance, to shorten breath-hold times resulting in fewer motion-corrupted examinations. In this article the basic concepts behind parallel imaging are introduced. The relationship between undersampling and aliasing is discussed and two commonly used parallel imaging methods, SENSE and GRAPPA, are explained in detail. Examples of artifacts arising from parallel imaging are shown and ways to detect and mitigate these artifacts are described. Finally, several current applications of parallel imaging are presented and recent advancements and promising research in parallel imaging are briefly reviewed.  相似文献   

2.
Multipoint water-fat separation methods have received renewed interest because they provide uniform separation of water and fat despite the presence of B0 and B1 field inhomogeneities. Unfortunately, full-resolution reconstruction of partial k-space acquisitions has been incompatible with these methods. Conventional homodyne reconstruction and related algorithms are commonly used to reconstruct partial k-space data sets by exploiting the Hermitian symmetry of k-space in order to maximize the spatial resolution of the image. In doing so, however, all phase information of the image is lost. The phase information of complex source images used in a water-fat separation acquisition is necessary to decompose water from fat. In this work, homodyne imaging is combined with the IDEAL (iterative decomposition of water and fat with echo asymmetry and least squares estimation) method to reconstruct full resolution water and fat images free of blurring. This method is extended to multicoil steady-state free precession and fast spin-echo applications and examples are shown.  相似文献   

3.
Parallel imaging reconstruction has been successfully applied to magnetic resonance spectroscopic imaging (MRSI) to reduce scan times. For undersampled k‐space data on a Cartesian grid, the reconstruction can be achieved in image domain using a sensitivity encoding (SENSE) algorithm for each spectral data point. Alternative methods for reconstruction with undersampled Cartesian k‐space data are the SMASH and GRAPPA algorithms that do the reconstruction in the k‐space domain. To reconstruct undersampled MRSI data with arbitrary k‐space trajectories, image‐domain‐based iterative SENSE algorithm has been applied at the cost of long computing times. In this paper, a new k‐space domain‐based parallel spectroscopic imaging reconstruction with arbitrary k‐space trajectories using k‐space sparse matrices is applied to MRSI with spiral k‐space trajectories. The algorithm achieves MRSI reconstruction with reduced memory requirements and computing times. The results are demonstrated in both phantom and in vivo studies. Spectroscopic images very similar to that reconstructed with fully sampled spiral k‐space data are obtained at different reduction factors. Magn Reson Med 61:267–272, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
PURPOSE: To develop and optimize a new modification of GRAPPA (generalized autocalibrating partially parallel acquisitions) MR reconstruction algorithm named "Robust GRAPPA." MATERIALS AND METHODS: In Robust GRAPPA, k-space data points were weighted before the reconstruction. Small or zero weights were assigned to "outliers" in k-space. We implemented a Slow Robust GRAPPA method, which iteratively reweighted the k-space data. It was compared to an ad hoc Fast Robust GRAPPA method, which eliminated (assigned zero weights to) a fixed percentage of k-space "outliers" following an initial estimation procedure. In comprehensive experiments the new algorithms were evaluated using the perceptual difference model (PDM), whereby image quality was quantitatively compared to the reference image. Independent variables included algorithm type, total reduction factor, outlier ratio, center filling options, and noise across multiple image datasets, providing 10,800 test images for evaluation. RESULTS: The Fast Robust GRAPPA method gave results very similar to Slow Robust GRAPPA, and showed significant improvements as compared to regular GRAPPA. Fast Robust GRAPPA added little computation time compared with regular GRAPPA. CONCLUSION: Robust GRAPPA was proposed and proved useful for improving the reconstructed image quality. PDM was helpful in designing and optimizing the MR reconstruction algorithms.  相似文献   

5.
Parallel MRI reconstruction in k-space has several advantages, such as tolerance to calibration data errors and efficient non-Cartesian data processing. These benefits largely accrue from the approximation that a given unsampled k-space datum can be synthesized from only a few local samples. In this study, several aspects of parallel MRI reconstruction in k-space are studied: the design of optimized reconstruction kernels, the effect of regularization on image error, and the accuracy of different k-space-based parallel MRI methods. Reconstruction of parallel MRI data in k-space is posed as the problem of approximating the pseudoinverse with a sparse matrix. The error of the approximation is used as an optimization criterion to find reconstruction kernels optimized for the given coil setup. An efficient algorithm for automatic selection of reconstruction kernels is described. Additionally, a total error metric is introduced for validation of the reconstruction kernel and choice of regularization parameters. The new methods yield reduced reconstruction and noise errors in both simulated and real data studies when compared with existing methods. The new methods may be useful for reduction of image errors, faster data processing, and validation of parallel MRI reconstruction design for a given coil system and k-space trajectory.  相似文献   

6.
The focal underdetermined system solver (FOCUSS) was originally designed to obtain sparse solutions by successively solving quadratic optimization problems. This article adapts FOCUSS for a projection reconstruction MR imaging problem to obtain high resolution reconstructions from angular under-sampled radial k-space data. We show that FOCUSS is effective for projection reconstruction MRI, since medical images are usually sparse in some sense and the center region of the undersampled radial k-space samples still provides a low resolution, yet meaningful, image essential for the convergence of FOCUSS. The new algorithm is successfully applied for synthetic data as well as in vivo brain imaging obtained by under-sampled radial spin echo sequence.  相似文献   

7.
Most k-space-based parallel imaging reconstruction techniques, such as Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA), necessitate the acquisition of regularly sampled Cartesian k-space data to reconstruct a nonaliased image efficiently. However, non-Cartesian sampling schemes offer some inherent advantages to the user due to their better coverage of the center of k-space and faster acquisition times. On the other hand, these sampling schemes have the disadvantage that the points acquired generally do not lie on a grid and have complex k-space sampling patterns. Thus, the extension of Cartesian GRAPPA to non-Cartesian sequences is nontrivial. This study introduces a simple, novel method for performing Cartesian GRAPPA reconstructions on undersampled non-Cartesian k-space data gridded using GROG (GRAPPA Operator Gridding) to arrive at a nonaliased image. Because the undersampled non-Cartesian data cannot be reconstructed using a single GRAPPA kernel, several Cartesian patterns are selected for the reconstruction. This flexibility in terms of both the appearance and number of patterns allows this pseudo-Cartesian GRAPPA to be used with undersampled data sets acquired with any non-Cartesian trajectory. The successful implementation of the reconstruction algorithm using several different trajectories, including radial, rosette, spiral, one-dimensional non-Cartesian, and zig-zag trajectories, is demonstrated.  相似文献   

8.
Clinical imaging with structural MRI routinely relies on multiple acquisitions of the same region of interest under several different contrast preparations. This work presents a reconstruction algorithm based on Bayesian compressed sensing to jointly reconstruct a set of images from undersampled k‐space data with higher fidelity than when the images are reconstructed either individually or jointly by a previously proposed algorithm, M‐FOCUSS. The joint inference problem is formulated in a hierarchical Bayesian setting, wherein solving each of the inverse problems corresponds to finding the parameters (here, image gradient coefficients) associated with each of the images. The variance of image gradients across contrasts for a single volumetric spatial position is a single hyperparameter. All of the images from the same anatomical region, but with different contrast properties, contribute to the estimation of the hyperparameters, and once they are found, the k‐space data belonging to each image are used independently to infer the image gradients. Thus, commonality of image spatial structure across contrasts is exploited without the problematic assumption of correlation across contrasts. Examples demonstrate improved reconstruction quality (up to a factor of 4 in root‐mean‐square error) compared with previous compressed sensing algorithms and show the benefit of joint inversion under a hierarchical Bayesian model. Magn Reson Med, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

9.
Dynamic contrast-enhanced (DCE) MRI is a powerful technique to probe an area of interest in the body. Here a temporally constrained reconstruction (TCR) technique that requires less k-space data over time to obtain good-quality reconstructed images is proposed. This approach can be used to improve the spatial or temporal resolution, or increase the coverage of the object of interest. The method jointly reconstructs the space-time data iteratively with a temporal constraint in order to resolve aliasing. The method was implemented and its feasibility tested on DCE myocardial perfusion data with little or no motion. The results obtained from sparse k-space data using the TCR method were compared with results obtained with a sliding-window (SW) method and from full data using the standard inverse Fourier transform (IFT) reconstruction. Acceleration factors of 5 (R = 5) were achieved without a significant loss in image quality. Mean improvements of 28 +/- 4% in the signal-to-noise ratio (SNR) and 14 +/- 4% in the contrast-to-noise ratio (CNR) were observed in the images reconstructed using the TCR method on sparse data (R = 5) compared to the standard IFT reconstructions from full data for the perfusion datasets. The method has the potential to improve dynamic myocardial perfusion imaging and also to reconstruct other sparse dynamic MR acquisitions.  相似文献   

10.
A novel method for iterative reconstruction of images from undersampled MRI data acquired by multiple receiver coil systems is presented. Based on Projection onto Convex Sets (POCS) formalism, the method for SENSitivity Encoded data reconstruction (POCSENSE) can be readily modified to include various linear and nonlinear reconstruction constraints. Such constraints may be beneficial for reconstructing highly and overcritically undersampled data sets to improve image quality. POCSENSE is conceptually simple and numerically efficient and can reconstruct images from data sampled on arbitrary k-space trajectories. The applicability of POCSENSE for image reconstruction with nonlinear constraining was demonstrated using a wide range of simulated and real MRI data.  相似文献   

11.
Sparse MRI: The application of compressed sensing for rapid MR imaging.   总被引:32,自引:0,他引:32  
The sparsity which is implicit in MR images is exploited to significantly undersample k-space. Some MR images such as angiograms are already sparse in the pixel representation; other, more complicated images have a sparse representation in some transform domain-for example, in terms of spatial finite-differences or their wavelet coefficients. According to the recently developed mathematical theory of compressed-sensing, images with a sparse representation can be recovered from randomly undersampled k-space data, provided an appropriate nonlinear recovery scheme is used. Intuitively, artifacts due to random undersampling add as noise-like interference. In the sparse transform domain the significant coefficients stand out above the interference. A nonlinear thresholding scheme can recover the sparse coefficients, effectively recovering the image itself. In this article, practical incoherent undersampling schemes are developed and analyzed by means of their aliasing interference. Incoherence is introduced by pseudo-random variable-density undersampling of phase-encodes. The reconstruction is performed by minimizing the l(1) norm of a transformed image, subject to data fidelity constraints. Examples demonstrate improved spatial resolution and accelerated acquisition for multislice fast spin-echo brain imaging and 3D contrast enhanced angiography.  相似文献   

12.
This study describes a new approach to reconstruct data that has been corrupted by unfavorable magnetization evolution. In this new framework, images are reconstructed in a weighted least squares fashion using all available data and a measure of consistency determined from the data itself. The reconstruction scheme optimally balances uncertainties from noise error with those from data inconsistency, is compatible with methods that model signal corruption, and may be advantageous for more accurate and precise reconstruction with many least squares-based image estimation techniques including parallel imaging and constrained reconstruction/compressed sensing applications. Performance of the several variants of the algorithm tailored for fast spin echo and self-gated respiratory gating applications was evaluated in simulations, phantom experiments, and in vivo scans. The data consistency weighting technique substantially improved image quality and reduced noise as compared to traditional reconstruction approaches.  相似文献   

13.
A method that determines the information necessary to reconstruct a single vascular image from a time-resolved CE-MRA exam is presented. Raw k-space data are used to approximate the time course of the contrast passage prior to image reconstruction. The resulting k-space contrast curve is used to select the data corresponding to peak arterial enhancement. These data are reconstructed and immediately presented for physician review, with the entire time-series of images available at a later time for more detailed diagnosis. This approach dramatically reduces the latency between acquisition of large 4D (3D plus time) data sets and presentation of a diagnostic quality time frame. This algorithm has proven successful in the imaging of several anatomical regions and-in exams that do not require a breath hold-permits the use of an acquisition method that produces a contrast-enhanced angiogram without a timing scan.  相似文献   

14.
Coil-by-coil image reconstruction with SMASH.   总被引:1,自引:0,他引:1  
The SiMultaneous Acquisition of Spatial Harmonics (SMASH) technique uses linear combinations of undersampled datasets from the component coils of an RF coil array to reconstruct fully sampled composite datasets in reduced imaging times. In previously reported implementations, SMASH reconstructions were designed to reproduce the images that would otherwise be obtained by simple sums of fully gradient encoded component coil images. This strategy has left SMASH images vulnerable to phase cancellation artifacts when the sensitivities of RF coil array elements are not suitably phase-aligned. In fully gradient encoded imaging schemes these artifacts can be eliminated using a variety of methods for combining the individual coil images, including matched filter combinations as well as sum of squares combinations. Until now, these reconstruction schemes have been unavailable to SMASH reconstructions as SMASH produced a final composite image directly from the raw component coil k-space datasets. This article demonstrates a modification to SMASH that allows reconstruction of a full set of accelerated individual component coil images by fitting component coil sensitivity functions to a complete set of spatial harmonics tailored for each coil in the array. Standard component coil combinations applied to the individual reconstructed images produce final composite images free of phase cancellation artifacts.  相似文献   

15.
A new k-space direct matrix inversion (DMI) method is proposed here to accelerate non-Cartesian SENSE reconstructions. In this method a global k-space matrix equation is established on basic MRI principles, and the inverse of the global encoding matrix is found from a set of local matrix equations by taking advantage of the small extension of k-space coil maps. The DMI algorithm's efficiency is achieved by reloading the precalculated global inverse when the coil maps and trajectories remain unchanged, such as in dynamic studies. Phantom and human subject experiments were performed on a 1.5T scanner with a standard four-channel phased-array cardiac coil. Interleaved spiral trajectories were used to collect fully sampled and undersampled 3D raw data. The equivalence of the global k-space matrix equation to its image-space version, was verified via conjugate gradient (CG) iterative algorithms on a 2x undersampled phantom and numerical-model data sets. When applied to the 2x undersampled phantom and human-subject raw data, the decomposed DMI method produced images with small errors (< or = 3.9%) relative to the reference images obtained from the fully-sampled data, at a rate of 2 s per slice (excluding 4 min for precalculating the global inverse at an image size of 256 x 256). The DMI method may be useful for noise evaluations in parallel coil designs, dynamic MRI, and 3D sodium MRI with fixed coils and trajectories.  相似文献   

16.
MR diffusion tensor imaging (DTI) is a promising tool for characterizing the microstructure of ordered tissues. However, its practical applications are hampered by relatively low signal-to-noise-ratio and spatial and temporal resolution. Reduced-encoding imaging (REI) via k-space sharing with constrained reconstruction has previously been shown to be effective for accelerating DTI, although the implementation was based on rectilinear k-space sampling. Due to the intrinsic oversampling of central k-space and allowance for isotropic downsampling, projection-reconstruction (PR) imaging may be better suited for REI. In this study, regularization procedures, including radial filtering and baseline signal correction to adequately reconstruct reduced encoded PR imaging data, are investigated. The proposed filtered reduced-encoding projection-reconstruction (FREPR) technique is applied to DTI tissue fiber orientation and fractional anisotropy (FA) measurements. Results show that FREPR offers improved reconstructions of the reduced encoded images and on an equal total scan-time basis provides more accurate fiber orientation and FA measurements compared to rectilinear k-space sampling-based REI methods or a control experiment consisting of only fully encoded images. These findings suggest a potentially significant role of FREPR in accelerating repeated imaging and improving the data acquisition-time efficiency of DTI experiments.  相似文献   

17.
The reconstruction of MR images from nonrectilinearly sampled data is complicated by the fact that the inverse 2D Fourier transform (FT) cannot be performed directly on the acquired k-space data set. k-Space gridding is commonly used because it is an efficient reconstruction method. However, conventional gridding requires optimized density compensation functions (DCFs) to avoid profile distortions. Oftentimes, the calculation of optimized DCFs presents an additional challenge in obtaining an accurately gridded reconstruction. Another type of gridding algorithm, the block uniform resampling (BURS) algorithm, often requires singular value decomposition (SVD) regularization to avoid amplification of data imperfections, and under some conditions it is difficult to adjust the regularization parameters. In this work, new reconstruction algorithms for nonuniformly sampled k-space data are presented. In the newly proposed algorithms, high-quality reconstructed images are obtained from an iterative reconstruction that is performed using matrices scaled to sizes greater than that of the target image matrix. A second version partitions the sampled k-space region into several blocks to avoid limitations that could result from performing multiple 2D-FFTs on large data matrices. The newly proposed algorithms are a simple alternative approach to previously proposed optimized gridding algorithms.  相似文献   

18.
Two-dimensional (2D) axial continuously-moving-table imaging has to deal with artifacts due to gradient nonlinearity and breathing motion, and has to provide the highest scan efficiency. Parallel imaging techniques (e.g., generalized autocalibrating partially parallel acquisition GRAPPA)) are used to reduce such artifacts and avoid ghosting artifacts. The latter occur in T(2)-weighted multi-spin-echo (SE) acquisitions that omit an additional excitation prior to imaging scans for presaturation purposes. Multiple images are reconstructed from subdivisions of a fully sampled k-space data set, each of which is acquired in a single SE train. These images are then averaged. GRAPPA coil weights are estimated without additional measurements. Compared to conventional image reconstruction, inconsistencies between different subsets of k-space induce less artifacts when each k-space part is reconstructed separately and the multiple images are averaged afterwards. These inconsistencies may lead to inaccurate GRAPPA coil weights using the proposed intrinsic GRAPPA calibration. It is shown that aliasing artifacts in single images are canceled out after averaging. Phantom and in vivo studies demonstrate the benefit of the proposed reconstruction scheme for free-breathing axial continuously-moving-table imaging using fast multi-SE sequences.  相似文献   

19.
Adaptive temporal sensitivity encoding (TSENSE) has been suggested as a robust parallel imaging method suitable for MR guidance of interventional procedures. However, in practice, the reconstruction of adaptive TSENSE images obtained with large coil arrays leads to long reconstruction times and latencies and thus hampers its use for applications such as MR‐guided thermotherapy or cardiovascular catheterization. Here, we demonstrate a real‐time reconstruction pipeline for adaptive TSENSE with low image latencies and high frame rates on affordable commodity personal computer hardware. For typical image sizes used in interventional imaging (128 × 96, 16 channels, sensitivity encoding (SENSE) factor 2‐4), the pipeline is able to reconstruct adaptive TSENSE images with image latencies below 90 ms at frame rates of up to 40 images/s, rendering the MR performance in practice limited by the constraints of the MR acquisition. Its performance is demonstrated by the online reconstruction of in vivo MR images for rapid temperature mapping of the kidney and for cardiac catheterization. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
The correction of motion artifacts continues to be a significant problem in MRI. In the case of uncooperative patients, such as children, or patients who are unable to remain stationary, the accurate determination and correction of motion artifacts becomes a very important prerequisite for achieving good image quality. The application of conventional motion-correction strategies often produces inconsistencies in k-space data. As a result, significant residual artifacts can persist. In this work a formalism is introduced for parallel imaging in the presence of motion. The proposed method can improve overall image quality because it diminishes k-space inconsistencies by exploiting the complementary image encoding capacity of individual receiver coils. Specifically, an augmented version of an iterative SENSE reconstruction is used as a means of synthesizing the missing data in k-space. Motion is determined from low-resolution navigator images that are coregistered by an automatic registration routine. Navigator data can be derived from self-navigating k-space trajectories or in combination with other navigation schemes that estimate patient motion. This correction method is demonstrated by interleaved spiral images collected from volunteers. Conventional spiral scans and scans corrected with proposed techniques are shown, and the results illustrate the capacity of this new correction approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号