首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Although spiral imaging seldom produces apparent artifacts related to flow, it remains sensitive to rapid object motion. In this article, a new correction method is presented for rapid rigid body motion in interleaved spiral imaging. With this technique, an identical circular navigator k-space trajectory is linked to each spiral trajectory. Data inconsistency due to both rotation and translation among spiral interleaves can be corrected by evaluating the magnitudes and phases of the data contained in the navigator "ring." Further, it is difficult to create a frequency field map for off-resonance correction when an object moves during a scan, because there is motion-dependent misregistration between the two images acquired with different TEs. However, this difficulty can be overcome by combining the motion-correction method with a recently proposed technique (off-resonance correction using variable-density spirals (ORC-VDS)), thereby enabling both motion compensation and off-resonance correction with no additional scanning.  相似文献   

2.
Spiral imaging has recently gained acceptance in MR applications requiring rapid data acquisition. One of the main disadvantages of spiral imaging, however, is blurring artifacts that result from off-resonance effects. Spatial-spectral (SPSP) pulses are commonly used to suppress those spins that are chemically shifted from water and lead to off-resonance artifacts. However, SPSP pulses may produce nonuniform fat signal suppression or unwanted water signal suppression when applied in the presence of B(0) field inhomogeneities. Dixon techniques have been developed as methods for water-fat signal decomposition in rectilinear sampling schemes since they can produce unequivocal water-fat signal decomposition even in the presence of B(0) inhomogeneities. This article demonstrates that three-point and two-point Dixon techniques can be extended to conventional spiral and variable-density spiral data acquisitions for unambiguous water-fat decomposition with off-resonance blurring correction. In the spiral three-point Dixon technique, water-fat signal decomposition and image deblurring are performed based on the frequency maps that are directly derived from the acquired images. In the spiral two-point Dixon technique, several predetermined frequencies are tested to create a frequency map. The newly proposed techniques can achieve more effective and more uniform fat signal suppression when compared to the conventional spiral acquisition method with SPSP pulses.  相似文献   

3.
Field inhomogeneity and susceptibility variations, coupled with a long readout, can result in image blurring in spiral imaging. Many correction methods based on a priori off-resonance information, such as an acquired field map, have been proposed in the literature. Automatic off-resonance correction methods are alternative approaches that estimate a field map from the image data themselves. In this paper we propose a fast automatic off-resonance correction method that performs linear correction without acquiring a field map. The method requires only about two times the total computation time compared to image reconstruction by gridding. It can also be used in combination with a full field map automatic off-resonance correction method to increase the extent of correction. The method is demonstrated by in vivo coronary artery imaging.  相似文献   

4.
5.
Semiautomatic off-resonance correction in spiral imaging.   总被引:1,自引:0,他引:1  
Spiral scanning is a promising MRI method, but one limitation is that off-resonance effects can cause image blurring. Most current off-resonance correction methods for spiral imaging require an accurate field map, which is difficult to obtain in many applications. Automatic methods can perform off-resonance correction without acquiring a field map. However, these methods are computationally inefficient and relatively prone to estimation error. This study describes a new semiautomatic off-resonance correction method that combines an automatic method with a low resolution field map acquisition for off-resonance correction in spiral scanning. Experiments demonstrate that this method is more robust than conventional automatic off-resonance correction and can provide more accurate off-resonance correction than conventional field map based methods. The proposed method is also computationally efficient and has been implemented for online reconstruction.  相似文献   

6.
Efficient off-resonance correction for spiral imaging.   总被引:1,自引:0,他引:1  
A new spiral imaging technique incorporates the acquisition of a field map into imaging interleaves. Variable density spiral trajectories are designed to oversample the central region of k-space, and interleaves are acquired at two different echo times. A field map is extracted from this data and multifrequency reconstruction is used to form an off-resonance corrected image using the entire dataset. Simulation, phantom, and in vivo results indicate that this technique can be used to achieve higher image and/or field map spatial resolution compared to conventional techniques. Magn Reson Med 45:521-524, 2001.  相似文献   

7.
Non-2DFT k-space readout strategies are useful in fast imaging but prone to blurring when reconstructed off resonance. Field inhomogeneities or susceptibility variations, coupled with a long readout time, are the major sources of this artifact. Correction methods based on a priori off-resonance information such as an acquired field map have been proposed in the literature. An alternative approach estimates the spatially varying off-resonance frequency from the data itself before applying a correction. In this latter approach there is a tradeoff between the extent of correction and the chance of increased artifact due to estimation error. This paper introduces an improved algorithm for field map estimation which is both faster and more robust than the existing method. It uses a multi-stage estimation of the field map, starting from a coarse estimate both in frequency and space and proceeds towards higher resolution. The new algorithm is applied to phantom and in vivo images acquired with radial and spiral sequences to give sharper images.  相似文献   

8.
We present, here, a simple method for measurement and correction of off-resonance related geometric distortion in echo-planar imaging (EP1). This method uses high signal-to-noise ratio (SNR) EPI-based field maps, rapidly acquired using a series of gradient recalled images collected across a range of TE values. This field map is distorted in the same manner as the EPI images to be unwarped, providing a direct look-up table for the correct location of each pixel of data. This method adds very little scan time and is robust and easy to implement.  相似文献   

9.
The Spiral two-point Dixon (Spiral 2PD) technique has recently been proposed as a method for unambiguous water-fat decomposition in spiral imaging. It also corrects for off-resonance blurring artifacts using only two data sets. In the Spiral 2PD technique, several predetermined off-resonance frequencies are tested to both separate water and fat signals and deblur the decomposed images. Unfortunately, the algorithm is computationally quite intensive since the range of tested frequencies must be set sufficiently large to span the full range of anticipated B(0) variation over the scanned objects. The block regional off-resonance correction (BRORC) algorithm corrects for off-resonance blurring artifacts block by block through the reconstructed image and usually provides several times higher computational efficiency than the conventional frequency-segmented off-resonance correction algorithm. This work shows that both water-fat decomposition and blurring artifact correction can be performed block by block using two spiral images with different TEs and that this new technique (BRORC-Spiral2PD technique) significantly improves the computational efficiency of other Spiral 2PD algorithms, opening new opportunities for spiral imaging.  相似文献   

10.
The concentric rings two-dimensional (2D) k-space trajectory provides an alternative way to sample polar data. By collecting 2D k-space data in a series of rings, many unique properties are observed. The concentric rings are inherently centric-ordered, provide a smooth weighting in k-space, and enable shorter total scan times. Due to these properties, the concentric rings are well-suited as a readout trajectory for magnetization-prepared studies. When non-Cartesian trajectories are used for MRI, off-resonance effects can cause blurring and degrade the image quality. For the concentric rings, off-resonance blur can be corrected by retracing rings near the center of k-space to obtain a field map with no extra excitations, and then employing multifrequency reconstruction. Simulations show that the concentric rings exhibit minimal effects due to T(2) (*) modulation, enable shorter scan times for a Nyquist-sampled dataset than projection-reconstruction imaging or Cartesian 2D Fourier transform (2DFT) imaging, and have more spatially distributed flow and motion properties than Cartesian sampling. Experimental results show that off-resonance blurring can be successfully corrected to obtain high-resolution images. Results also show that concentric rings effectively capture the intended contrast in a magnetization-prepared sequence.  相似文献   

11.
In this work, three-dimensional (3D) spiral imaging has been utilized for magnetic resonance coronary angiography. Spiral-based 3D techniques can dramatically reduce imaging time requirements compared with 3D Fourier Transform imaging. The method developed here utilized a "stack of spirals" trajectory, to traverse 3D k-space rapidly. Both thick-slab volumes encompassing the entire coronary tree with isotropic resolution and thin-slab volumes targeted to a particular vessel of interest were acquired. Respiratory compensation was achieved using the diminishing variance algorithm. T2-prepared contrast was also applied in some cases to improve contrast between vessel and myocardium, while off-resonance blurring was minimized by applying a linear correction to the acquired data. Images from healthy volunteers were displayed using a curved reformatting technique to view long segments of vessel in a single projection. The results demonstrate that this 3D spiral technique is capable of producing high-quality coronary magnetic resonance angiograms.  相似文献   

12.
A technique for acquiring magnetic field maps simultaneously with gradient-recalled echo-planar time-course data is described. This technique uses a trajectory in which the central part of k-space is collected twice. For a 64 x 64 image acquired with a 125-kHz bandwidth, a field map suitable for geometric correction can be collected simultaneously with the echo-planar time-course data in <70 ms. The field maps generated by this technique are registered with the magnitude images because they are calculated using the same data. They do not suffer from errors due to subject motion, or from different geometric distortions that can result from using different pulse sequences. In addition to correcting geometric distortions that resulted from dynamic magnetic field perturbations, this method was used to measure field shifts arising from respiration and jaw motion across five subjects. Values ranged from 0.035 to 0.165 parts per million (ppm).  相似文献   

13.
PURPOSE: To compare radial and spiral k-space sampling in navigator-gated ECG-triggered three-dimensional (3D) coronary vessel wall imaging. MATERIALS AND METHODS: The right coronary artery (RCA) vessel walls of eight healthy subjects were imaged using a modified double-inversion prepulse in concert with radial and spiral data acquisition. For data analysis, two investigators blinded to the sequence parameters subjectively assessed image quality in terms of artifacts and vessel wall visualization. Objective measures of the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and vessel wall definition were also determined. RESULTS: Radial k-space sampling demonstrated fewer artifacts and led to improved visualization of the coronary vessel wall compared to spiral imaging (P < 0.05). This finding was also reflected in a better vessel wall definition using radial data acquisition (P < 0.05). SNR and CNR were found to be higher when spiral k-space sampling was used (n.s.). CONCLUSION: Radial k-space sampling in concert with free-breathing navigator-gated cardiac-triggered MRI of the coronary vessel wall resulted in fewer motion artifacts and improved vessel wall definition compared to spiral k-space sampling. The proposed approach therefore appears to be preferable.  相似文献   

14.
A variable-density k-space sampling method is proposed to reduce aliasing artifacts in MR images. Because most of the energy of an image is concentrated around the k-space center, aliasing artifacts will contain mostly low-frequency components if the k-space is uniformly undersampled. On the other hand, because the outer k-space region contains little energy, undersampling that region will not contribute severe aliasing artifacts. Therefore, a variable-density trajectory may sufficiently sample the central k-space region to reduce low-frequency aliasing artifacts and may undersample the outer k-space region to reduce scan time and to increase resolution. In this paper, the variable-density sampling method was implemented for both spiral imaging and two-dimensional Fourier transform (2DFT) imaging. Simulations, phantom images and in vivo cardiac images show that this method can significantly reduce the total energy of aliasing artifacts. In general, this method can be applied to all types of k-space sampling trajectories.  相似文献   

15.
The authors have developed a method for reducing magnetic resonance (MR) image artifacts caused by planar motion. Segments of k-space acquired with the subject stationary are detected automatically. Each k-space segment is Fourier transformed into an image in which rotational and translational displacements are measured manually. Before correction, k-space is made as Hermitian as allowed by the largest symmetric range of low spatial frequencies acquired with the subject stationary. Segments of k-space acquired with the subject in different positions are corrected separately. Although translation corrections can be applied effectively to both k-space and the spatial domain, rotation corrections are applied in the spatial domain to avoid image artifacts. To complement the correction, data corrupted by rotation are replaced by the complex conjugate of data of the opposite kx, and ky, provided that these data have not been corrupted by rotation. The method reduced ghosts and blurring substantially on sagittal head images acquired with a standard spin-echo pulse sequence while a volunteer subject nodded his head.  相似文献   

16.
The use of spiral trajectories is an efficient way to cover a desired k-space partition in magnetic resonance imaging (MRI). Compared to conventional Cartesian k-space sampling, it allows faster acquisitions and results in a slight reduction of the high gradient demand in fast dynamic scans, such as in functional MRI (fMRI). However, spiral images are more susceptible to off-resonance effects that cause blurring artifacts and distortions of the point-spread function (PSF), and thereby degrade the image quality. Since off-resonance effects scale with the readout duration, the respective artifacts can be reduced by shortening the readout trajectory. Multishot experiments represent one approach to reduce these artifacts in spiral imaging, but result in longer scan times and potentially increased flow and motion artifacts. Parallel imaging methods are another promising approach to improve image quality through an increase in the acquisition speed. However, non-Cartesian parallel image reconstructions are known to be computationally time-consuming, which is prohibitive for clinical applications. In this study a new and fast approach for parallel image reconstructions for spiral imaging based on the generalized autocalibrating partially parallel acquisitions (GRAPPA) methodology is presented. With this approach the computational burden is reduced such that it becomes comparable to that needed in accelerated Cartesian procedures. The respective spiral images with two- to eightfold acceleration clearly benefit from the advantages of parallel imaging, such as enabling parallel MRI single-shot spiral imaging with the off-resonance behavior of multishot acquisitions.  相似文献   

17.
Rapid volumetric magnetic resonance spectroscopic imaging (MRSI) is potentially of great relevance to the diagnosis and treatment of focal cerebral diseases such as cancer and epilepsy. A strategy for volumetric multishot echo-planar spectroscopic imaging (MEPSI) is described which allows whole-brain metabolite mapping in approximately 20 min. A multishot trajectory is used in both the spatial and temporal domains which reduces the accumulated phase during each echo train and tolerates conventional Fourier reconstruction without regridding. Also described is a generalized correction for phase discontinuities arising from the multishot acquisition of the time domain, which is independent of the spatial k-space trajectory and is therefore also applicable to multishot spiral MRSI. Whole-brain, lipid-suppressed MEPSI data were acquired from five normal subjects. The mean signal-to-noise ratios (SNRs) (+/-SE) for the n-acetylaspartate (NAA), choline (Cho), and creatine (Cr) maps across all subjects were 21.3 +/- 1.8, 11.7 +/- 0.6, and 9.2 +/- 0.6, respectively, with a computed voxel size of 2.33 ml.  相似文献   

18.
This work describes an auto-calibrated method for parallel imaging with spiral trajectory. The method is a k-space approach where an interpolation kernel, accounting for coil sensitivity factors, is derived from experimental data and used to interpolate the reduced data set in parallel imaging to estimate the missing k-space data. For the case of spiral imaging, this interpolation kernel is defined along radial directions so that missing spiral interleaves can be estimated directly from neighboring interleaves. This kernel is invariant along the radial direction but varies azimuthally. Therefore, the k-space is divided into angular sectors and sector-specific kernels are used. It is demonstrated experimentally that relatively few sectors are sufficient for accurate reconstruction, allowing for efficient implementation. The interpolation kernels can be derived either from a separate calibration scan or self-calibration data available with a dual-density spiral acquisition. The reconstruction method is implemented with two sampling strategies and experimentally demonstrated to be robust.  相似文献   

19.
The correction of motion artifacts continues to be a significant problem in MRI. In the case of uncooperative patients, such as children, or patients who are unable to remain stationary, the accurate determination and correction of motion artifacts becomes a very important prerequisite for achieving good image quality. The application of conventional motion-correction strategies often produces inconsistencies in k-space data. As a result, significant residual artifacts can persist. In this work a formalism is introduced for parallel imaging in the presence of motion. The proposed method can improve overall image quality because it diminishes k-space inconsistencies by exploiting the complementary image encoding capacity of individual receiver coils. Specifically, an augmented version of an iterative SENSE reconstruction is used as a means of synthesizing the missing data in k-space. Motion is determined from low-resolution navigator images that are coregistered by an automatic registration routine. Navigator data can be derived from self-navigating k-space trajectories or in combination with other navigation schemes that estimate patient motion. This correction method is demonstrated by interleaved spiral images collected from volunteers. Conventional spiral scans and scans corrected with proposed techniques are shown, and the results illustrate the capacity of this new correction approach.  相似文献   

20.
In functional magnetic resonance imaging, a rapid method such as echo-planar (EPI) or spiral is used to collect a dynamic series of images. These techniques are sensitive to changes in resonance frequency which can arise from respiration and are more significant at high magnetic fields. To decrease the noise from respiration-induced phase and frequency fluctuations, a simple correction of the "dynamic off-resonance in k-space" (DORK) was developed. The correction uses phase information from the center of k-space and a navigator echo and is illustrated with dynamic scans of single-shot and segmented EPI and, for the first time, spiral imaging of the human brain at 7 T. Image noise in the respiratory spectrum was measured with an edge operator. The DORK correction significantly reduced respiration-induced noise (image shift for EPI, blurring for spiral, ghosting for segmented acquisition). While spiral imaging was found to exhibit less noise than EPI before correction, the residual noise after the DORK correction was comparable. The correction is simple to apply and can correct for other sources of frequency drift and fluctuations in dynamic imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号