首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For hospital epidemiologists, determining a system of typing that is discriminatory is essential for measuring the effectiveness of infection control measures. In situations in which the incidence of resistant Pseudomonas aeruginosa is increasing, the ability to discern whether it is due to patient-to-patient transmission versus an increase in patient endogenous strains is often made on the basis of molecular typing. The present study compared the discriminatory abilities of pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) for 90 P. aeruginosa isolates obtained from cultures of perirectal surveillance swabs from patients in an intensive care unit. PFGE identified 85 distinct types and 76 distinct groups when similarity cutoffs of 100% and 87%, respectively, were used. By comparison, MLST identified 60 sequence types that could be clustered into 11 clonal complexes and 32 singletons. By using the Simpson index of diversity (D), PFGE had a greater discriminatory ability than MLST for P. aeruginosa isolates (D values, 0.999 versus 0.975, respectively). Thus, while MLST was better for detecting genetic relatedness, we determined that PFGE was more discriminatory than MLST for determining genetic differences in P. aeruginosa.  相似文献   

2.
Fast, reliable, and versatile typing tools are essential to differentiate among related bacterial strains for epidemiological investigation and surveillance of health care-associated infection with multidrug-resistant (MDR) pathogens. The DiversiLab (DL) system is a semiautomated repetitive-sequence-based PCR system designed for rapid genotyping. The DL system performance was assessed by comparing its reproducibility, typeability, discriminatory power, and concordance with those of pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) and by assessing its epidemiological concordance on well-characterized MDR bacterial strains (n = 165). These included vanA Enterococcus faecium, extended-spectrum β-lactamase (ESBL)-producing strains of Klebsiella pneumoniae, Escherichia coli, and Acinetobacter baumannii, and ESBL- or metallo-β-lactamase (MBL)-producing Pseudomonas aeruginosa strains. The DL system showed very good performance for E. faecium and K. pneumoniae and good performance for other species, except for a discrimination index of <95% for A. baumannii and E. coli (93.9% and 93.5%, respectively) and incomplete concordance with MLST for P. aeruginosa (78.6%) and E. coli (97.0%). Occasional violations of MLST assignment by DL types were noted for E. coli. Complete epidemiological concordance was observed for all pathogens, as all outbreak-associated strains clustered in identical DL types that were distinct from those of unrelated strains. In conclusion, the DL system showed good to excellent performance, making it a reliable typing tool for investigation of outbreaks caused by study pathogens, even though it was generally less discriminating than PFGE analysis. For E. coli and P. aeruginosa, MLST cannot be reliably inferred from DL type due to phylogenetic group violation or discordance.  相似文献   

3.
The aim of this study was to compare two traditional pattern matching techniques, pulsed-field gel electrophoresis (PFGE) and random amplified polymorphic DNA (RAPD), with the more reproducible technique of multilocus sequence typing (MLST) to genotype a blinded sample of Pseudomonas aeruginosa isolates from cystic fibrosis (CF) patients. A blinded sample of 48 well-characterized CF P. aeruginosa isolates was genotyped by PFGE, RAPD, and MLST, each performed in a different laboratory. The discriminatory power and congruence between the methods were compared using the Simpson’s index, Rand index, and Wallace coefficient. PFGE and MLST had the greatest congruence with the highest Rand index (0.697). The discriminatory power of PFGE, RAPD, and MLST were comparable, with high Simpson’s indices (range 0.973–0.980). MLST identified the most clonal relationships. When clonality was defined as agreement between two or more methods, MLST had the greatest predictive value (100?%) in labeling strains as unique, while PFGE had the greatest predictive value (96?%) in labeling strains as clonal. This study demonstrated the highest level of agreement between PFGE and MLST in genotyping P. aeruginosa isolates from CF patients. MLST had the greatest predictive value in identifying strains as unique and, thus, has the potential to be a cost-efficient, high-throughput, first-pass typing method.  相似文献   

4.
Pulsed-field gel electrophoresis (PFGE) represents the gold standard among band-based methods for the molecular typing of Bartonella henselae. SmaI and NotI have been frequently used for typing B. henselae by PFGE. However, their appropriateness for the analysis of genetic relatedness among B. henselae isolates has not been assessed systematically hitherto. Aim of the present study was to evaluate SmaI, NotI, and three additional endonucleases for typing B. henselae isolates by PFGE and to compare the PFGE results with multi-locus sequence typing (MLST) data. Twenty B. henselae isolates from different sources and geographic regions were analysed. PFGE analysis upon restriction with SmaI, ApaI, Eco52I, and XmaJI revealed six, five, four, and five different PFGE types, respectively, whereas restriction with NotI revealed 13 PFGE types. Five sequence types (STs) were obtained by MLST. The overall concordance between PFGE types obtained with SmaI, ApaI, Eco52I, XmaJI and STs was high. In contrast, NotI-derived types did not correlate with other PFGE types or STs, indicating that NotI is not an appropriate enzyme for PFGE typing of B. henselae. By combining PFGE results obtained with SmaI, ApaI, Eco52I, XmaJI with STs, the isolates could be assigned to five distinct clonal lineages, including the clones Houston-1, Marseille, CAL-1, and Berlin-2. These data indicate that PFGE and MLST are discriminatory and reliable for molecular typing of B. henselae isolates to the strain level. Combination of PFGE and MLST may be useful for further epidemiological studies on B. henselae.  相似文献   

5.
Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli strains are emerging pathogens. Molecular typing of ESBL-producing E. coli is useful for surveillance purposes, to monitor outbreaks and track nosocomial spread. Although pulsed-field gel electrophoresis (PFGE) is the current "gold standard" for bacterial molecular typing, multilocus sequence typing (MLST) may offer advantages. Forty ESBL-producing E. coli isolates were selected at random from a cohort of intensive care unit patients who had active surveillance perirectal cultures done. PFGE identified 19 unique PFGE types (PT) among the 40 isolates; MLST identified 22 unique sequence types. MLST had greater discriminatory ability than PFGE for ESBL-producing E. coli. Simpson's indices of diversity for PFGE and MLST were 0.895 and 0.956, respectively. There were five clonal complexes (CCs) (isolates with differences of no more than two loci) that each contained multiple PT, but each PT was found in only one CC, indicating genetic consistency within a CC. MLST has clear utility in studies of ESBL-producing E. coli, based on a greater discriminatory ability and reproducibility than PFGE and the ability to a priori define genetically related bacterial strains.  相似文献   

6.
Multilocus sequence typing (MLST) based on the 16S RNA, pduF, glnA, and manB genes was developed for Salmonella, and its discriminatory ability was compared to those of pulsed-field gel electrophoresis (PFGE) and serotyping. PFGE differentiated several strains undifferentiable by serotyping, and 78 distinct PFGE types were identified among 231 Salmonella isolates grouped into 22 serotypes and 12 strains of undetermined serotype. The strains of several PFGE types were further differentiated by MLST, which suggests that the discriminatory ability of MLST for the typing of Salmonella is better than that of serotyping and/or PFGE typing. manB-based sequence typing identified two distinct genetic clusters containing 32 of 54 (59%) clinical isolates whose manB gene sequences were analyzed. The G+C contents and Splitstree analysis of the manB, glnA, and pduF genes of Salmonella indicated that the genes differ in their evolutionary origins and that recombination played a significant role in their evolution.  相似文献   

7.
Shigella sonnei is a major cause of diarrheal disease in developed as well as in developing countries. Epidemiologic studies of this organism have been limited by the lack of a simple and effective method for comparing strains. In this study, we have compared different molecular typing methods, i.e., plasmid profile analysis, restriction endonuclease analysis of plasmids, rRNA gene restriction analysis (ribotyping), pulsed-field gel electrophoresis (PFGE), and enterobacterial repetitive intergenic consensus (ERIC) sequence-based PCR (ERIC-PCR) for typing 20 clinical isolates of S. sonnei collected from six incidents of infection. PFGE and ERIC-PCR fingerprintings had the highest discriminatory power for discrimination of epidemiologically related isolates from epidemiologically unrelated strains of S. sonnei, and both gave seven distinct strain types among these isolates and the type strain of the species. Plasmid study and ribotyping produced only six and typing techniques demonstrated two distinct patterns, respectively, among these strains. All of these molecular an identical fingerprint for eight temporally related sporadic isolates. It is possible that these temporally related isolates belonged to a single bacterial clone and circulated obscurely through the community. Our results indicate that the ERIC-PCR technique represents a rapid and simple means for typing S. sonnei with a level of discrimination equivalent to that of PFGE but greater than those of plasmid profile analysis, restriction endonuclease analysis of plasmids, and ribotyping.  相似文献   

8.
In this study, 80 Candida glabrata isolates from intensive care unit and human immunodeficiency virus (HIV)-infected patients were typed by multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), and mating type class determination. Among the 25 patients with multiple isolates, 19 patients (76%) contained multiple isolates exhibiting identical or highly related PFGE and MLST genotypes, which may indicate the maintenance or microvariation of one C. glabrata strain in each patient. However, isolates from six patients (24%) displayed different sequence types, PFGE genotypes, or mating type classes, which may indicate colonization with more than one clone over time or strain replacement. High correlations among PFGE genotypes, sequence types, and mating types were found (P < 0.01). MLST exhibited less discriminatory power than PFGE with BssHII. The genotypes, sequence types, and mating type classes were independent of anatomic sources, drug susceptibility, and HIV infection status.  相似文献   

9.
Multilocus sequence typing (MLST) has been proven useful for the study of the global population structure of Campylobacter jejuni; however, its usefulness for the investigation of outbreaks of disease caused by C. jejuni has not been proven. In this study, MLST plus sequencing of the flaA short variable region (SVR) were applied to 47 isolates from 12 outbreaks of C. jejuni infection whose relatedness has been determined previously, and the results were compared to those of serotyping and pulsed-field gel electrophoresis (PFGE). Isolates implicated in an outbreak were indistinguishable by all four subtyping methods, with sporadic isolates being distinguished from outbreak isolates. Two sporadic isolates from one outbreak were resistant to SmaI digestion and therefore nontypeable by PFGE but were differentiated from the outbreak strain by the other methods. PFGE and flaA SVR typing were the most discriminatory methods, with discriminatory indices (DI) of 0.930 and 0.923, respectively. However, an epidemic strain from one outbreak was distinguished from the other outbreak isolates by flaA SVR typing; its flaA allele was different at five nucleotides, suggesting that this change was possibly mediated by recombination. MLST was less discriminatory than PFGE and flaA SVR typing (DI = 0.859), and many of the epidemic strains possessed common sequence types (STs) including ST-8, -21, -22, and -42. However, further discrimination within STs was achieved by flaA SVR typing or PFGE. The results from this study demonstrate that a combined approach of MLST plus flaA SVR typing provides a level of discrimination equivalent to PFGE for outbreak investigations.  相似文献   

10.
One hundred seventy-five Listeria monocytogenes strains were characterized by serotyping, pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST) based on loci in actA, betL, hlyA, gyrB, pgm, and recA. One hundred twenty-two sequence types (STs) were identified by MLST based on allelic profiles of the four housekeeping genes (betL, gyrB, pgm, and recA), and 34 and 38 alleles were identified for hlyA and actA, respectively. Several actA and hlyA alleles appeared to be predominantly associated with clinical isolates. MLST differentiated most of the L. monocytogenes strains better than did PFGE, and the discriminating ability of PFGE was better than that of serotyping. Several strains with different serotypes were found, by MLST and PFGE, to have very closely related genetic backgrounds, which suggested possible "antigen switching" among them. MLST can be a useful typing tool for differentiating L. monocytogenes strains (including strains undistinguishable by PFGE typing and serotyping), and it may be of value during investigations of food-borne outbreaks of listeriosis.  相似文献   

11.
A multilocus sequence typing (MLST) scheme has been developed for Pseudomonas aeruginosa which provides molecular typing data that are highly discriminatory and electronically portable between laboratories. MLST data confirm the data from previous studies that suggest that P. aeruginosa is best described as nonclonal but as having an epidemic population. The index of association was 0.17, indicating a freely recombining population; however, there was evidence of clusters of closely related strains or clonal complexes among the members of this population. It is apparent that the sequence types (STs) from single isolates, representing each of the present epidemic clones in the United Kingdom from Liverpool, Manchester, and the West Midlands, are not closely related to each other. This suggests distinct evolutionary origins for each of these epidemic clones in the United Kingdom. Furthermore, these clones are distinct from European clone C. Comparison of the results of MLST with those of toxA typing and serotyping revealed that strains with identical STs may possess different toxA types and diverse serotypes. Given that recombination is important in the population of P. aeruginosa, the lack of a linkage between toxA type and serotype is not surprising and reveals the strength of the MLST approach for obtaining a better understanding of the epidemiology of P. aeruginosa.  相似文献   

12.
While serotyping and phage typing have been used widely to characterize Salmonella isolates, sensitive subtyping methods that allow for evolutionary analyses are essential for examining Salmonella transmission, ecology, and evolution. A set of 25 Salmonella enterica isolates, representing five clinically relevant serotypes (serotypes Agona, Heidelberg, Schwarzengrund, Typhimurium, and Typhimurium var. Copenhagen) was initially used to develop a multilocus sequence typing (MLST) scheme for Salmonella targeting seven housekeeping and virulence genes (panB, fimA, aceK, mdh, icdA, manB, and spaN). A total of eight MLST types were found among the 25 isolates sequenced. A good correlation between MLST types and Salmonella serotypes was observed; only one serotype Typhimurium var. Copenhagen isolate displayed an MLST type otherwise typical for serotype Typhimurium isolates. Since manB, fimA, and mdh allowed for the highest subtype discrimination among the initial 25 isolates, we chose these three genes to perform DNA sequencing of an additional 41 Salmonella isolates representing a larger diversity of serotypes. This "three-gene sequence typing scheme" allowed discrimination of 25 sequence types (STs) among a total of 66 isolates; STs correlated well with serotypes and allowed within-serotype differentiation for 9 of the 12 serotypes characterized. Phylogenetic analyses showed that serotypes Kentucky and Newport could each be separated into two distinct, statistically well supported evolutionary lineages. Our results show that a three-gene sequence typing scheme allows for accurate serotype prediction and for limited subtype discrimination among clinically relevant serotypes of Salmonella. Three-gene sequence typing also supports the notion that Salmonella serotypes represent both monophyletic and polyphyletic lineages.  相似文献   

13.
In the United States, multidrug-resistant phenotypes of Salmonella enterica serotype Newport (commonly referred to as MDR-AmpC) have emerged in animals and humans and have become a major public health problem. Although pulsed-field gel electrophoresis (PFGE) is the current “gold standard” typing method for Salmonella, multilocus sequence typing (MLST) may be more relevant to investigations exploring evolutionary and population biology relationships. In this study, 81 Salmonella enterica serotype Newport isolates from humans, food animals, and retail foods were examined for antimicrobial susceptibility and characterized using PFGE and MLST of seven genes, aroC, dnaN, hemD, hisD, purE, sucA, and thrA. Forty-nine percent of the isolates were resistant to nine or more of the tested antimicrobials. Salmonella isolates displayed resistance most often to sulfamethoxazole (57%), streptomycin (56%), tetracycline (56%), ampicillin (52%), and ceftiofur (49%) and, to a lesser extent, to kanamycin (19%), trimethoprim-sulfamethoxazole (17%), and gentamicin (11%). A total of 43 PFGE patterns were generated using XbaI, indicating a genetically diverse population. The largest PFGE cluster contained isolates from clinically ill swine, cattle, and humans. MLST resulted in 12 sequence types (STs), with one type encompassing 62% of the strains. Ten new sequence types and one novel allele type were identified. Furthermore, MLST typing showed that strains closely related by PFGE clustered in major STs, whereas more distantly related strains were separated into two clusters by PFGE. The results of this study demonstrated that the MLST scheme employed here clustered S. enterica serovar Newport isolates in distinct molecular populations, and strain discrimination was enhanced by combining PFGE, antimicrobial susceptibility, and MLST results.  相似文献   

14.
Multilocus sequence typing (MLST) is a relatively new high-resolution typing system employed for epidemiological studies of bacteria, including Salmonella. Discrimination based on MLST of housekeeping genes may be problematical, due to the high identity of gene sequences of closely related Salmonella species. The presence of genomic sequences derived from stable temperate phages in Salmonella offers an alternative for MLST of Salmonella. We have used MLST of prophage loci in Salmonella enterica serovar Typhimurium to discriminate closely related isolates of serovar Typhimurium. We have compared these results to MLST of five housekeeping genes, as well as pulsed-field gel electrophoresis (PFGE). The presence or absence of prophage loci in the 73 serovar Typhimurium isolates tested, as well as allelic variation as detected by sequencing, provided greater discrimination between isolates than either MLST of housekeeping genes or PFGE. Amplification of prophage loci alone separated serovar Typhimurium isolates into 27 groups comprising multiple isolates or individual strains. Sequencing of isolates found within the clusters separated isolates even further. By contrast, PFGE could only divide the 73 isolates into five distinct groups. MLST using housekeeping genes did not provide any significant separation of isolates in comparison to amplification or MLST of prophage loci. The results demonstrate that the amplification and sequencing of prophage loci provides a high-resolution, objective method for the discrimination of closely related isolates of serovar Typhimurium. It is proposed that multiple amplification of phage locus typing may provide sufficient discrimination for epidemiological purposes without recourse to MLST.  相似文献   

15.
Pseudomonas aeruginosa isolates recovered from chronically colonized patients with cystic fibrosis (CF) are phenotypically different from those collected from other patients or from the environment. To assess whether alterations in motility, mucoidy, and serum susceptibility represented an adaptation to chronic infection or replacement by a new strain, sequential P. aeruginosa isolates of known phenotype collected from 20 CF patients were typed by random amplified polymorphic DNA (RAPD) analysis. A total of 35 RAPD strain types were found among 385 isolates from 20 patients, and only two patients had P. aeruginosa strains of the same RAPD fingerprint. Eight strain pairs representative of the first eight RAPD types were also analyzed by SpeI macrorestriction followed by pulsed-field gel electrophoresis (PFGE); the strain types found by both fingerprinting techniques correlated exactly. In 11 of 20 patients, the RAPD types of serial P. aeruginosa isolates remained stable despite alterations in isolate motility, colonial morphology, and lipopolysaccharide phenotype. However, in isolates collected from one CF patient, a single band change in RAPD fingerprint and CeuI PFGE profile correlated with the appearance of an RpoN mutant phenotype, suggesting that the altered phenotype may have been due to a stable genomic rearrangement. Secretion of mucoid exopolysaccharide, loss of expression of RpoN-dependent surface factors, and acquisition of a serum-susceptible phenotype in P. aeruginosa appear to evolve during chronic colonization in CF patients from specific adaptation to infection rather than from acquisition of new bacterial strains.  相似文献   

16.
Multiple-locus variable-number tandem-repeat analysis (MLVA), a new PCR-based method of typing Staphylococcus aureus, was compared to pulsed-field gel electrophoresis (PFGE), spa typing, and multilocus sequence typing (MLST) on a group of 59 S. aureus (mostly methicillin-resistant) clinical isolates. The aim of the study was to establish possible criteria of clustering MLVA patterns and to check concordance levels between the results produced by MLVA and the three other typing methods. As in our earlier study, MLVA turned out to have discriminatory power similar to that of PFGE. Comparison of data obtained by the two approaches allowed us to propose a 70% or ca. 80% cutoff value of the similarity between two MLVA patterns, depending on a cutoff level applied to interpret the PFGE results, 75% or ca. 90%, respectively. The cutoff values corresponded to the difference of up to six or four bands, respectively, among maximum 14 bands in total produced by two isolates in the analysis. The MLVA clusters matched well those obtained by PFGE, and they were also consistent in general with clusters generated by spa typing and MLST, these latter methods characterized lower resolution. Our results suggest that MLVA may be reliable in shorter-term S. aureus epidemiological studies, including analyses of outbreaks and hospital-to-hospital strain transmission events. Well-known advantages of typing methods based on PCR (low cost, short time, and easiness of performance) make MLVA a method that may be useful in a variety of laboratories, including those performing routine microbiological analyses within medical centers.  相似文献   

17.
Vancomycin-resistant Enterococcus faecium strains are a significant cause of nosocomial infections in predisposed patients. Multiple-locus variable-number tandem repeat analysis (MLVA) has been validated recently by use of a global strain collection. In this report, we applied MLVA together with multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) to type 14 isolates from three clusters of patients colonized or infected with vancomycin-resistant Enterococcus faecium and another 10 epidemiologically unrelated isolates from the same hospital. The clusters could be distinguished by all three typing methods, which proved to be concordant. PFGE patterns provided the highest resolution. We observed seven sequence types (ST), six MLVA types (MT), and nine distinct ST/MT combinations. The combination of MLST and MLVA may be an alternative to PFGE in hospital epidemiology, providing the benefits of high accuracy, reproducibility, and portability.  相似文献   

18.
Ten multidrug-resistant Pseudomonas aeruginosa strains producing VIM-1-like acquired metallo-beta-lactamases (MBLs), isolated from four European countries (Greece, Hungary, Italy, and Sweden), were analyzed for genetic relatedness by several methodologies, including fliC sequence analysis, macrorestriction profiling of genomic DNA by pulsed-field gel electrophoresis (PFGE), random amplification of polymorphic DNA (RAPD), and multilocus sequence typing (MLST). The four approaches yielded consistent results overall but showed different resolution powers in establishing relatedness between isolates (PFGE>RAPD>MLST>fliC typing) and could usefully complement each other to address issues in the molecular epidemiology of P. aeruginosa strains producing acquired MBLs. In particular, the recently developed MLST approach was useful in revealing clonal relatedness between isolates when this was not readily apparent using RAPD and PFGE, and it suggested a common ancestry for some of the VIM-1-like MBL-positive P. aeruginosa strains currently spreading in Europe. The MBL producers belonged in three clonal complexes/burst groups (BGs). Of these, one corresponded to the previously described BG4 and included serotype O12 strains from Hungary and Sweden, while the other two were novel and included serotype O11 or nonserotypable strains from Greece, Sweden, and/or Italy. Comparison of the integrons carrying blaVIM-1-like cassettes of various isolates revealed a remarkable structural heterogeneity, suggesting the possibility that multiple independent events of acquisition of different blaVIM-containing integrons had occurred in members of the same clonal lineage, although a contribution of integrase-mediated cassette shuffling or other recombination mechanisms during the evolution of similar strains could also have played a role in determining this variability.  相似文献   

19.
Although many strain typing methods exist for pathogenic Escherichia coli, most have drawbacks in terms of resolving power, interpretability, or scalability. For this reason, multilocus sequence typing (MLST) is an appealing alternative. However, its applicability to different pathogens in specific epidemiologic contexts is not well understood. Here, we applied a previously established MLST method based on housekeeping genes to a well-characterized collection of uropathogenic E. coli isolates to compare the discriminatory ability of this procedure with that of enterobacterial repeat intergenic consensus (ERIC2) PCR, serogrouping, and pulsed-field gel electrophoresis (PFGE). Among 45 E. coli isolates studied, 17 different multilocus sequence types (ST) were identified. One MLST group (designated ST69 complex) was comprised of 22 isolates, all belonging to uropathogenic and bacteremic E. coli strains previously defined as clonal group A (CgA) by ERIC2 PCR. The ST69 strains contained five different serogroups and 14 PFGE types. ERIC2 PCR CgA strains belonging to different MLST groups were also identified. Interestingly, one cow E. coli isolate, previously shown by PFGE to be closely related to a human uropathogenic CgA strain, was found to cluster with the ST69 strains. All of the other animal and environmental CgA isolates had different MLST profiles. The discriminatory power of this MLST method based on housekeeping genes appears to be higher than that of ERIC2 PCR but lower than that of PFGE for epidemiologic study of uropathogenic E. coli.  相似文献   

20.
To further expand the limited multilocus sequence typing (MLST) database for Acinetobacter baumannii , 53 clinical isolates from various outbreaks in Europe and the USA, collected between 1991 and 2004, plus the A. baumannii reference strain ATCC 19606T and 20 clinical Acinetobacter genomic species 13TU isolates from the same period, were analyzed using a new MLST scheme based on fragments of the gltA , gyrB , gdhB , recA , cpn60 , gpi and rpoD genes. Data were compared with typing results generated using pulsed-field gel electrophoresis (PFGE) and randomly amplified polymorphic DNA (RAPD)-PCR. In total, 50 sequence types (STs) were distinguished among the A. baumannii isolates investigated, and the MLST data were in high concordance with the PFGE and RAPD-PCR results. Only five clonal complexes were identified by eBURST analysis, including the 21 STs listed in a previous study, suggesting high diversity among the A. baumannii isolates. With one exception, there was no relatedness among isolates from outbreaks in different countries (Europe) or regions (USA). No intercontinental spread was revealed. Acinetobacter genomic species 13TU isolates could also be analyzed using the A. baumannii MLST scheme (18 different STs) and could be distinguished from A. baumannii isolates according to characteristic sequences. It was concluded that the MLST scheme provides a high level of resolution and is a promising tool for studying the epidemiology of A. baumannii and Acinetobacter genomic species 13TU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号