首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although Alzheimer's disease (AD) may not involve a transmissible agent, it does involve a pathogenic process similar to that of transmissible prion disorders (both involve a protein that adopts an abnormal pathogenic conformation in which it self-aggregates, forming amyloid deposits in and surrounding neurons) and viral dementias such as human immunodeficiency virus (HIV) encephalitis. The clinical presentation of patients with AD is dominated by cognitive deficits and emotional disturbances that result from dysfunction and degeneration of neurons in the limbic system and cerebral cortex. The pathogenic process in the brain involves deposition of insoluble aggregates of amyloid beta-peptide, oxidative stress and calcium dysregulation in neurons, and activation of inflammatory cytokine cascades involving microglia. However, AD patients also exhibit alterations in immune function. Studies of lymphocytes and lymphoblast cell lines from AD patients and age-matched normal control patients have documented alterations in cytokine and calcium signaling and increased levels of oxidative stress in immune cells from the AD patients. Studies of the pathogenic actions of mutations in presenilins and amyloid precursor protein that cause early-onset familial AD have established central roles for perturbed cellular calcium homeostasis and oxidative stress in the neurodegenerative process. Presenilin and amyloid precursor protein (APP) mutations also increase oxidative stress and perturb calcium signaling in lymphocytes in ways that alter their production of cytokines that are critical for proper immune responses. Immune dysfunction occurs prior to clinical symptoms in mouse models of AD, and brain cytokine responses to immune challenge are altered in presenilin mutant mice, suggesting a causal role for altered immune function in the disease process. Interestingly, immunization of AD mice with amyloid beta-peptide can stimulate the immune system to remove amyloid from the brain and can ameliorate memory deficits, suggesting that it may be possible to prevent AD by bolstering immune function.  相似文献   

2.
There is significant evidence that the pathogenesis of several neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, Friedreich's ataxia (FRDA), multiple sclerosis and amyotrophic lateral sclerosis, may involve the generation of reactive oxygen species (ROS) and/or reactive nitrogen species (RNS) associated with mitochondrial dysfunction. The mitochondrial genome may play an essential role in the pathogenesis of these diseases, and evidence for mitochondria being a site of damage in neurodegenerative disorders is based in part on observed decreases in the respiratory chain complex activities in Parkinson's, Alzheimer's, and Huntington's disease. Such defects in respiratory complex activities, possibly associated with oxidant/antioxidant imbalance, are thought to underlie defects in energy metabolism and induce cellular degeneration. The precise sequence of events in FRDA pathogenesis is uncertain. The impaired intramitochondrial metabolism with increased free iron levels and a defective mitochondrial respiratory chain, associated with increased free radical generation and oxidative damage, may be considered possible mechanisms that compromise cell viability. Recent evidence suggests that frataxin might detoxify ROS via activation of glutathione peroxidase and elevation of thiols, and in addition, that decreased expression of frataxin protein is associated with FRDA. Many approaches have been undertaken to understand FRDA, but the heterogeneity of the etiologic factors makes it difficult to define the clinically most important factor determining the onset and progression of the disease. However, increasing evidence indicates that factors such as oxidative stress and disturbed protein metabolism and their interaction in a vicious cycle are central to FRDA pathogenesis. Brains of FRDA patients undergo many changes, such as disruption of protein synthesis and degradation, classically associated with the heat shock response, which is one form of stress response. Heat shock proteins are proteins serving as molecular chaperones involved in the protection of cells from various forms of stress. In the central nervous system, heat shock protein (HSP) synthesis is induced not only after hyperthermia, but also following alterations in the intracellular redox environment. The major neurodegenerative diseases, Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), Huntington's disease (HD) and FRDA are all associated with the presence of abnormal proteins. Among the various HSPs, HSP32, also known as heme oxygenase I (HO-1), has received considerable attention, as it has been recently demonstrated that HO-1 induction, by generating the vasoactive molecule carbon monoxide and the potent antioxidant bilirubin, could represent a protective system potentially active against brain oxidative injury. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing the heat shock response. This may open up new perspectives in medicine, as molecules inducing this defense mechanism appear to be possible candidates for novel cytoprotective strategies. In particular, manipulation of endogenous cellular defense mechanisms, such as the heat shock response, through nutritional antioxidants, pharmacological compounds or gene transduction, may represent an innovative approach to therapeutic intervention in diseases causing tissue damage, such as neurodegeneration.  相似文献   

3.
Oxidative stress signalling in Alzheimer's disease   总被引:11,自引:0,他引:11  
Multiple lines of evidence demonstrate that oxidative stress is an early event in Alzheimer's disease (AD), occurring prior to cytopathology, and therefore may play a key pathogenic role in the disease. Indeed, that oxidative mechanisms are involved in the cell loss and other neuropathology associated with AD is evidenced by the large number of metabolic signs of oxidative stress as well as by markers of oxidative damage. However, what is intriguing is that oxidative damage decreases with disease progression, such that levels of markers of rapidly formed oxidative damage, which are initially elevated, decrease as the disease progresses to advanced AD. This finding, along with the compensatory upregulation of antioxidant enzymes found in vulnerable neurons in AD, indicates that reactive oxygen species (ROS) not only cause damage to cellular structures but also provoke cellular responses. Mammalian cells respond to extracellular stimuli by transmitting intracellular instructions by signal transduction cascades to coordinate appropriate responses. Therefore, not surprisingly stress-activated protein kinase (SAPK) pathways, pathways that are activated by oxidative stress, are extensively activated during AD. In this paper, we review the evidence of oxidative stress and compensatory responses that occur in AD with a particular focus on the roles and mechanism of activation of SAPK pathways.  相似文献   

4.
Endothelial dysfunction is a marker of atherosclerosis and contributes to the atherogenic process and the development of atherothrombotic complications. Oxidative stress has been implicated in the development of endothelial dysfunction through alterations of the nitric oxide metabolism. A number of evidence suggests a role for phagocytic-cell-mediated oxidative stress in diminished nitric oxide availability that is present in patients with atherosclerotic risk factors such as arterial hypertension. Thus, the combination of an excessive production of reactive oxygen species, namely superoxide anion, with an impaired antioxidant defense capacity leading to oxidative stress may facilitate the development and progression of atherosclerosis. Findings from recent clinical studies suggest that this mechanism can be operative in patients with cerebrovascular disease. This view may increase our capabilities to understand the pathophysiology of cerebrovascular disease, as well as to stimulate the design of new therapeutic strategies aimed to prevent and control the atherosclerotic process in patients presenting this condition.  相似文献   

5.
Role of mitochondrial dysfunction in Alzheimer's disease   总被引:6,自引:0,他引:6  
Abnormalities in mitochondrial function relate to the spectrum of pathological changes seen in Alzheimer's disease. Here we review the causes and consequences of mitochondrial disturbances in Alzheimer's disease as well as how this information might impact on therapeutic approaches to this disease.  相似文献   

6.
Alzheimer's disease (AD) is the most common progressive neurodegenerative disease. Today, AD affects millions of people worldwide and the number of AD cases will increase with increased life expectancy. The AD brain is marked by severe neurodegeneration like the loss of synapses and neurons, atrophy and depletion of neurotransmitter systems in the hippocampus and cerebral cortex. Recent findings suggest that these pathological changes are causally induced by mitochondrial dysfunction, increased oxidative stress and elevated apoptosis. Until now, AD cannot be diagnosed by a valid clinical method or a biomarker before the disease has progressed so far that dementia is present. Furthermore, no valid method is available to determine which patient with mild cognitive impairment (MCI) will progress to AD. Therefore, a correct diagnosis in the early stage of AD is not only of importance considering that early drug treatment is more effective but also that the psychological burden of the patients and relatives could be decreased. In this review, we discuss the potential role of elevated apoptosis, increased oxidative stress and mitochondrial dysfunction as biomarker for AD in a peripheral cell model, the lymphocytes.  相似文献   

7.
8.
9.
Growing evidence suggests that mitochondrial dysfunction is one of the key intracellular lesions associated with the pathogenesis of Alzheimer's disease (AD). Mitochondria, the powerhouses of the cell, participate in a number of physiological functions that include calcium homeostasis, signal transduction, and apoptosis. However, the pathophysiological mechanisms underlying the decline of mitochondrial vital functions leading to the dysfunction of mitochondria during AD are not well understood. Recent literature has observed the accumulation of Alzheimer's amyloid precursor protein (APP) and its C-terminal-cleaved product beta-amyloid (Abeta) in the mitochondrial compartment. Furthermore, evidence also implicates that the accumulation of full-length APP and Abeta in the mitochondrial compartment has a causative role in impairing mitochondrial physiological functions. Here, we review the mode of mitochondrial transport of full-length APP and Abeta and its pathological implications in bringing about mitochondrial dysfunction as seen in AD.  相似文献   

10.
Oxidative damage to DNA may play a role in both normal aging and in neurodegenerative diseases. We examined whether Alzheimer's disease (AD) is associated with increased oxidative damage to both nDNA and mtDNA in postmortem brain tissue. We measured the oxidized nucleoside, 8-hydroxy-2′-deoxyguanosine (OH8dG), in DNA isolated from three regions of cerebral cortex and cerebellum in 13 AD and 13 age-matched controls. There was a significant threefold increase in the amount of OH8dG in mtDNA in parietal cortex of AD patients compared with controls. In the entire group of samples there was a small significant increase in oxidative damage to nDNA and a highly significant threefold increase in oxidative damage to mtDNA in AD compared with age-matched controls. These results confirm that mitochondrial DNA is particularly sensitive to oxidative damage, and they show that there is increased oxidative damage to DNA in AD, which may contribute to the neurodegenerative process.  相似文献   

11.
The complex nature and genesis of oxidative damage in Alzheimer disease can be partly answered by mitochondrial and redox-active metal abnormalities. By releasing high levels of hydrogen peroxide, dysfunctional mitochondria propagate a series of interactions between redox-active metals and oxidative response elements. In the initial phase of disease development, amyloid-beta deposition and hyperphosphorylated tau may function as compensatory responses and downstream adaptations to ensure that neuronal cells do not succumb to oxidative injuries. However, during the progression of the disease, the antioxidant activity of both agents evolves into pro-oxidant activity representing a typical gain-of-function transformation, which can result from an increase in reactive species and a decrease in clearance mechanisms.  相似文献   

12.
Many lines of independent research have provided convergent evidence regarding oxidative stress, cerebrovascular disease, dementia, and Alzheimer's disease (AD). Clinical studies spurred by these findings engage basic and clinical communities with tangible results regarding molecular targets and patient outcomes. Focusing on recent progress in characterizing age-related diseases specifically highlights oxidative stress and mechanisms for therapeutic action in AD. Oxidative stress has been investigated independently for its relationship with aging and cardiovascular and neurodegenerative diseases and provides evidence of shared pathophysiology across these conditions. The mechanisms by which oxidative stress impacts the cerebrovasculature and blood-brain barrier are of critical importance for evaluating antioxidant therapies. Clinical research has identified homocysteine as a relevant risk factor for AD and dementia; basic research into molecular mechanisms associated with homocysteine metabolism has revealed important findings. Oxidative stress has direct implications in the pathogenesis of age-related neurodegenerative diseases and careful scrutiny of oxidative stress in the CNS has therapeutic implications for future clinical trials. These mechanisms of dysfunction, acting independently or in concert, through oxidative stress may provide the research community with concise working concepts and promising new directions to yield new methods for evaluation and treatment of dementia and AD.  相似文献   

13.
It has been argued that in late-onset Alzheimer's disease a disturbance in the control of neuronal glucose metabolism consequent to impaired insulin signalling strongly resembles the pathophysiology of type 2 diabetes in non-neural tissue. The fact that mitochondria are the major generators and direct targets of reactive oxygen species led several investigators to foster the idea that oxidative stress and damage in mitochondria are contributory factors to several disorders including Alzheimer's disease and diabetes. Since brain possesses high energetic requirements, any decline in brain mitochondria electron chain could have a severe impact on brain function and particularly on the etiology of neurodegenerative diseases. This review is primarily focused in the discussion of brain mitochondrial dysfunction as a link between diabetes and Alzheimer's disease.  相似文献   

14.
15.
Glucose uptake and energy metabolism in the brain are regulated by insulin and insulin-like growth factors (IGF). Recent studies demonstrated progressive deficiencies in brain insulin and IGF production and responsiveness, and linked these abnormalities to acetylcholine deficiency in Alzheimer's disease (AD). We extended this line of research by attempting to correlate the deficits in insulin/IGF signaling and energy production with mitochondrial dysfunction, oxidative injury, and compensatory cyto-protective responses in brains with different Braak Stage severities of AD. Real time quantitative RT-PCR analysis of frontal lobe tissue demonstrated significantly reduced expression of mitochondria-encoded Complex IV and V genes, with relative preservation of genes encoding Complexes I, II and III. In addition, AD was associated with significantly increased expression of the p53 pro-apoptosis gene, all 3 isoforms of nitric oxide synthase (NOS 1-3), and NADPH-oxidase (NOX) 1 and NOX 3, beginning early in the course of disease. Activation of cyto-protective mechanisms in AD brains was limited since the expression levels of uncoupling protein (UCP) 2, 4, and 5, and peroxisome-proliferator activated receptor (PPAR) alpha and delta genes were significantly reduced, whereas PPAR-gamma expression was selectively increased. The results demonstrate that AD is associated with early and striking increases in the molecular indices of oxidative stress, including up-regulation of NOS and NOX genes, which could impair the function of Complexes IV and V within the electron transport chain. The simultaneous reductions in cyto-protective mechanisms (UCP and PPAR), could allow oxidative injury to go unchecked and persist or increase over time. Adopting strategies to reduce the effects of NOS and NOX activities, and improve the actions of UCPs and PPARs may help in the treatment of AD.  相似文献   

16.
There is an increasing recognition that mitochondrial dysfunction is associated with autism spectrum disorders. However, little attention has been given to the etiology of mitochondrial dysfunction and how mitochondrial abnormalities might interact with other physiological disturbances such as oxidative stress. Reserve capacity is a measure of the ability of the mitochondria to respond to physiological stress. In this study, we demonstrate, for the first time, that lymphoblastoid cell lines (LCLs) derived from children with autistic disorder (AD) have an abnormal mitochondrial reserve capacity before and after exposure to reactive oxygen species (ROS). Ten (44%) of 22 AD LCLs exhibited abnormally high reserve capacity at baseline and a sharp depletion of reserve capacity when challenged with ROS. This depletion of reserve capacity was found to be directly related to an atypical simultaneous increase in both proton-leak respiration and adenosine triphosphate-linked respiration in response to increased ROS in this AD LCL subgroup. In this AD LCL subgroup, 48-hour pretreatment with N-acetylcysteine, a glutathione precursor, prevented these abnormalities and improved glutathione metabolism, suggesting a role for altered glutathione metabolism associated with this type of mitochondrial dysfunction. The results of this study suggest that a significant subgroup of AD children may have alterations in mitochondrial function, which could render them more vulnerable to a pro-oxidant microenvironment as well as intrinsic and extrinsic sources of ROS such as immune activation and pro-oxidant environmental toxins. These findings are consistent with the notion that AD is caused by a combination of genetic and environmental factors.  相似文献   

17.
18.
Oxidative stress, mitochondrial damage and neurodegenerative diseases****   总被引:1,自引:0,他引:1  
Oxidative stress and mitochondrial damage have been implicated in the pathogenesis of several neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Oxidative stress is characterized by the overproduction of reactive oxygen species, which can induce mitochondrial DNA mutations, damage the mitochondrial respiratory chain, alter membrane permeability, and influence Ca2+ homeostasis and mitochondrial defense systems. All these changes are implicated in the development of these neurodegenerative diseases, mediating or amplifying neuronal dysfunction and triggering neurodegeneration. This paper summarizes the contribution of oxidative stress and mitochondrial damage to the onset of neurodegenerative diseases and discusses strategies to modify mitochondrial dysfunction that may be attractive therapeutic interventions for the treatment of various neurodegenerative diseases.  相似文献   

19.
Immunological dysfunction in Alzheimer's disease   总被引:2,自引:0,他引:2  
Peripheral blood lymphocytes from Alzheimer's patients and apparently healthy elderly individuals were examined for interleukin-1 (IL-1) production. Our results indicate severely low production of IL-1 by patient's peripheral blood monocytes. The low production of IL-1 in vitro correlated with patients' symptoms and therapy with 1-acetamide,2-pyrrolidone (1a,2p). In addition to low IL-1 production, the number of autologous rosette forming cells (ARFC) was significantly decreased in all Alzheimer's patients whereas B-cell glucose metabolism was significantly higher than age-matched healthy individuals.  相似文献   

20.
Selective nigral degeneration with inclusion formation provoked by systemic administration of the herbicide rotenone, through inhibition of complex I, raises the question of pesticide exposure and environmental factors in general, as a cause of Parkinson's disease (PD). Toxin-induced complex I inhibition probably represents one of many potential causes of PD, but it alerts us to the dangers of such substances in the environment and the need to identify genetically susceptible populations. When vulnerable individuals become known, perhaps they should stay out of the garden.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号