首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
H2AX is expressed at very low levels in quiescent normal cells in vivo and in vitro. Such cells repair DNA double‐strand breaks (DSBs) induced by γ‐irradiation through a transient stabilization of H2AX. However, the resultant cells accumulate small numbers of irreparable (or persistent) DSBs via an unknown mechanism. We found that quiescent cells that had repaired DSBs directly induced by γ‐rays were prone to accumulate DSBs during the subsequent DNA replication. Unlike directly induced DSBs, secondary DSBs were not efficiently repaired, although Rad51 and 53BP1 were recruited to these sites. H2AX was dramatically stabilized in response to DSBs directly caused by γ‐rays, enabling γH2AX foci formation and DSB repair, whereas H2AX was barely stabilized in response to secondary DSBs, in which γH2AX foci were small and DSBs were not efficiently repaired. Our results show a pathway that leads to the persistent DSB formation after γ‐irradiation.  相似文献   

3.
S(N)1-type alkylating agents represent an important class of chemotherapeutics, but the molecular mechanisms underlying their cytotoxicity are unknown. Thus, although these substances modify predominantly purine nitrogen atoms, their toxicity appears to result from the processing of O(6)-methylguanine ((6Me)G)-containing mispairs by the mismatch repair (MMR) system, because cells with defective MMR are highly resistant to killing by these agents. In an attempt to understand the role of the MMR system in the molecular transactions underlying the toxicity of alkylating agents, we studied the response of human MMR-proficient and MMR-deficient cells to low concentrations of the prototypic methylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). We now show that MNNG treatment induced a cell cycle arrest that was absolutely dependent on functional MMR. Unusually, the cells arrested only in the second G(2) phase after treatment. Downstream targets of both ATM (Ataxia telangiectasia mutated) and ATR (ATM and Rad3-related) kinases were modified, but only the ablation of ATR, or the inhibition of CHK1, attenuated the arrest. The checkpoint activation was accompanied by the formation of nuclear foci containing the signaling and repair proteins ATR, the S(*)/T(*)Q substrate, gamma-H2AX, and replication protein A (RPA). The persistence of these foci implied that they may represent sites of irreparable damage.  相似文献   

4.
After irradiation, ATM defective cells accumulate unrepaired double strand breaks (DSBs) for several cell divisions. At the chromosome level, unresolved DSBs appear as chromosome breaks that can be efficiently scored by using telomeric and mFISH probes. H2AX is immediately activated by ATM in response to DNA damage and its phosphorylated form, γH2AX, flanks the DSB through several megabases. The γH2AX‐labeling status of broken chromosome ends was analyzed in AT cells to check whether the DNA damage response was accurately taking place in these persistent DSBs. The results show that one quarter of the scored breaks are devoid of γH2AX foci in metaphase spreads from ATM‐deficient cells, and this fraction is significantly higher than in normal cells (χ2 < 0.05). Accumulation of sensor and repair proteins at damaged sites is a key event in the cellular response to DSBs, so MRE11 labeling at broken ends was also analyzed. While all γH2AX foci scored at visible broken ends colocalize with MRE11 foci, all γH2AX‐unlabeled breaks are also devoid of MRE11‐labeling. The present results suggest that a significant subset of the AT long‐lived DSBs may persist as “invisible” DSBs due to deficient detection by the DNA damage repair machinery. Eventually the properly signaled DSBs will be repaired while invisible breaks may indefinitely accumulate; most probably contributing to the AT cells' well known genomic instability. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Crude oil contains compounds, which have toxic and cancer-causing properties to humans. The oil spilled in environments is usually exposed to sunlight; however, the toxicity of sunlight-exposed oil is poorly understood. In this study, we found that the water soluble fraction (WSF) of crude oil irradiated with solar-simulated light (SSL) generated phosphorylation of histone H2AX (gamma-H2AX) in human skin cells under UVA irradiation, which was due to the formation of DNA double strand breaks (DSBs). Crude oil was exposed to SSL for approximately 7 days. The WSF obtained from unexposed crude oil showed no toxicity, whereas the WSF obtained from crude oil pre-exposed to SSL induced acute cell death on exposure to UVA irradiation (induction of phototoxicity), which was more remarkable in human skin fibroblasts than human skin keratinocytes. gamma-H2AX was detected in both cell lines immediately after treatment with the WSF plus UVA. Interestingly, gamma-H2AX was detectable even at low SSL- and UVA-doses, which induced no cytotoxicity. The WSF of crude oil irradiated with SSL, generated DSBs under UVA irradiation, which were detected by biased sinusoidal field gel electrophoresis. This was confirmed using xrs-5 cells isolated from CHO-K1 cells, which are deficient in a repair enzyme for DSBs; the WSF plus UVA induced a more dramatic decrease in survival in xrs-5 cells than CHO-K1 cells. These findings demonstrate that exposure of crude oil to sunlight makes the WSF phototoxic, generating DSBs accompanying the appearance of gamma-H2AX in human skin cells.  相似文献   

6.
Clothianidin (CHN) is a member of the neonicotinoid group of insecticides. Its oxidative and DNA damage potential for human lung cells are not known. Therefore, the present study was designed to examine the effects of CHN on DNA damage and oxidative stress in human bronchial epithelial cells (BEAS-2B) treated with CHN for 24, 72, and 120 hr. Our results indicate that CHN decreased cell viability in a concentration-dependent manner. CHN induced DNA single-strand breaks because alkaline comet parameters such as tail intensity, DNA in the tail, tail moment, and tail length increased. All CHN concentrations also significantly induced the formation of DNA double-strand breaks (DSBs) because it increased phosphorylated H2AX protein foci for all treatment times and p53-binding protein 1 foci for all treatments except for the lowest concentration (0.15 mM) of 120-hr treatment. DNA damage caused by DNA DSBs was not repaired in a 24-hr recovery period. CHN also induced oxidative stress by decreasing reduced glutathione and increasing lipid peroxidation. These results make it necessary to conduct studies about the detailed carcinogenic potential of CHN in humans because it can induce both oxidative and DNA damage.  相似文献   

7.
DNA in Drosophila melanogaster polytene chromosomes is known to be locally underreplicated in both pericentric and intercalary heterochromatin. When the SuUR gene is mutant, complete and partial suppression of underreplication are observed in intercalary and pericentric heterochromatin, respectively; in contrast, overexpression of SuUR results in stronger underreplication. Using antibodies against phosphorylated histone H2Av and flies with different levels of SuUR expression, we demonstrated a clear correlation between the extent of underreplication in specific chromosome regions and the accumulation of H2Av phosphorylated at S137 (gamma-H2AX) at the same sites. Phosphorylated H2Av is a well-established marker of DNA double-stranded breaks (DSB). Our data thus argue that DNA underreplication leads to DSBs and that DSBs accumulate as salivary gland cells progress throughout repeated endocycles. We speculate that ligation of free double-stranded DNA termini causes the formation of ectopic contacts between the underreplicated regions in heterochromatin.  相似文献   

8.
Gene amplification plays a pivotal role in human malignancy. Highly amplified genes frequently localize to extrachromosomal double minutes (dmin), which usually segregate to daughter cells in association with mitotic chromosomes. We and others had shown that treatment with low-dose hydroxyurea (HU) results in the elimination of dmin and reversion of the cancer cell phenotype. HU treatment in early S-phase, when dmin are replicated, results in their detachment from chromosomes at the next M-phase, leading to the appearance of micronuclei enriched in dmin, followed by their elimination. In this article, we examined the effect of low-dose HU on the behavior of dmin in relation to DNA damage induction by simultaneously monitoring LacO-tagged dmin and phosphorylated histone H2AX (gammaH2AX). As expected, treatment with low-dose HU induced numerous gammaH2AX foci throughout the nucleus in early S-phase, and these rarely coincided with dmin. Most chromosomal gammaH2AX foci disappeared by metaphase, whereas, unexpectedly, those that persisted frequently associated with dmin. We found that these dmin aggregated, detached from anaphase chromosomes, and apparently formed micronuclei. Because gammaH2AX foci likely represent DNA double strand breaks (DSBs), the response to DSBs sustained by extrachromosomal dmin appears to be different from that sustained by chromosomal loci, which may explain why DSB-inducing agents cause the selective elimination of dmin.  相似文献   

9.
Chromosomal translocations arise from misrejoining of DNA double strand breaks (DSBs) between loci located on two chromosomes. One current model suggests that spatial proximity of potential chromosomal translocation partners influences translocation probability. Ionizing radiation (IR) is a potent inducer of translocations. Accumulating evidence demonstrates that particle irradiation more frequently causes translocations compared with X‐ray irradiation. This observation has led to the hypothesis that the high frequency of translocations after particle irradiation may be due to the formation of DSBs at chromosome boundaries along the particle track, because such DSBs can be misrejoined between distinct chromosomes. In this study, we simultaneously visualized the site of IR‐induced DSBs and chromosome position by combining Immunofluorescence and fluorescence in situ hybridization. Importantly, the frequency of γH2AX foci at the chromosome boundary of chromosome 1 after carbon‐ion irradiation was >4‐fold higher than that after X‐ray irradiation. This observation is consistent with the idea that particle irradiation generates DSBs at the boundaries of two chromosomes along the track. Further, we showed that resolution of γH2AX foci at chromosome boundaries is prevented by inhibition of DNA‐PKcs activity, indicating that the DSB repair is NHEJ‐dependent. Finally, we found that γH2AX foci at chromosome boundaries after carbon‐ion irradiation contain DSBs undergoing DNA‐end resection, which promotes repair utilizing microhomology mediated end‐joining during translocation. Taken together, our study suggests that the frequency of DSB formation at chromosome boundaries is associated with the incidence of chromosomal translocations, supporting the notion that the spatial proximity between breaks is an important factor in translocation formation. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
H2AX is a histone H2A variant that becomes phosphorylated upon genotoxic stress. The phosphorylated H2AX (γ-H2AX) plays an antioncogenic role in the DNA damage response and its foci patterns are highly variable, in terms of intensities and sizes. However, whether characteristic γ-H2AX foci patterns are associated with oncogenesis (oncogenic-specific γ-H2AX foci patterns) remains unknown. We previously reported that a defect in the acetyltransferase activity of TIP60 promotes cancer cell growth in human cell lines. In this study, we compared γ-H2AX foci patterns between TIP60 wild-type cells and TIP60 HAT mutant cells by using machine learning. When focused solely on the intensity and size of γ-H2AX foci, we extracted the TIP60 HAT mutant-like oncogenic-specific γ-H2AX foci pattern among all datasets of γ-H2AX foci patterns. Furthermore, by using the dimensionality reduction method UMAP, we also observed TIP60 HAT mutant-like oncogenic-specific γ-H2AX foci patterns in TIP60 wild-type cells. In summary, we propose the existence of an oncogenic-specific γ-H2AX foci pattern and the importance of a machine learning approach to extract oncogenic signaling among the γ-H2AX foci variations.  相似文献   

11.
Ataxia telangiectasia and Rad3-related (ATR) is a phosphoinositol-3-kinase like kinase (PIKK) that initiates a signal transduction response to replication fork stalling. Defects in ATR signalling have been reported in several disorders characterized by microcephaly and growth delay. Here, we gain insight into factors influencing the ATR signalling pathway and consider how they can be exploited for diagnostic purposes. Activation of ATR at stalled replication forks leads to intra-S and G2/M phase checkpoint arrest. ATR also phosphorylates gamma-H2AX at single-stranded (ss) DNA regions generated during nucleotide excision repair (NER) in non-replicating cells, but the critical analysis of any functional consequence has not been reported. Here, we show that UV irradiation of G2 phase cells causes ATR-dependent but replication-independent G2/M checkpoint arrest. This process requires the Nbs1 N-terminus encompassing the FHA and BRCT domains but not the Nbs1 C-terminus in contrast to ATM-dependent activation of G2/M arrest in response to ionizing radiation. Thus, Nbs1 has a function in ATR signalling in a manner distinct to any role at stalled replication forks. Replication-independent ATR signalling also requires the mediator proteins, 53BP1 and MDC1, providing direct evidence for their role in ATR signalling, but not H2AX. Finally, the process is activated in Cockayne's syndrome but not Xeroderma pigmentosum group A cells providing evidence that ssDNA regions generated during NER are the ATR-pathway-specific activating lesion. Replication-independent G2/M checkpoint arrest represents a suitable assay to specifically identify patients with defective ATR signalling, including Seckel syndrome, Nijmegen breakage syndrome and MCPH-1-dependent primary microcephaly.  相似文献   

12.
Male germ cells have been shown to differ in their DNA damage response (DDR) with respect to somatic cells. In addition, DDR pathways are modulated along spermatogenesis, accompanying profound chromatin modifications. Histone H2AX phosphorylation is a fundamental step of DDR. Few data are available on the long-term kinetics of phosphorylated H2AX (γ-H2AX) after in vivo irradiation. We have investigated, by microscopic and flow cytometric immunochemistry, γ-H2AX induction and removal in testicular cells of irradiated mice, in comparison with bone marrow cells. In unirradiated testicular cells, much higher levels of γ-H2AX were measured by flow cytometry with respect to bone marrow cells. Irradiation induced a redistribution of γ-H2AX into discrete foci detectable by microscopy. In irradiated bone marrow, the percentage of labelled cells peaked at 1 h and rapidly declined, in agreement with data on in vitro cell lines. In contrast, spermatocytes and round spermatids showed persistent labelling until 48 h. During this time, in spermatids, topological changes were observed in γ-H2AX foci from a pattern of many uncountable dots to a pattern of few large spots. Observations of testicular sections confirmed this trend in the reduction of foci number in spite of substantially invariable percentages of labelled cells in the analysed timeframe. To assess whether γ-H2AX persistence in testicular cells was due to unrepaired DNA breaks, we performed comet assay and immunofluorescence analysis of Mdc1, a marker of DDR different from γ-H2AX. Comet assay showed that most breaks were repaired within 2 h. Forty-eight hours after irradiation, contrary to γ-H2AX foci that remained detectable in 80% of initially labelled cells, Mdc1 foci were observed in only 20-30% of cells. These data suggest that, at long times after irradiation, mechanisms additional to impairment of DNA break repair may account for the long persistence of γ-H2AX foci in male germ cells.  相似文献   

13.
Lai CK  Jeng KS  Machida K  Cheng YS  Lai MM 《Virology》2008,370(2):295-309
Hepatitis C virus (HCV) infection is frequently associated with the development of hepatocellular carcinomas and non-Hodgkin's B-cell lymphomas. Nonstructural protein 3 (NS3) of HCV possesses serine protease, nucleoside triphosphatase, and helicase activities, while NS4A functions as a cofactor for the NS3 serine protease. Here, we show that HCV NS3/4A interacts with the ATM (ataxia-telangiectasia mutated), a cellular protein essential for cellular response to irradiation. The expression of NS3/4A caused cytoplasmic translocation of either endogenous or exogenous ATM and delayed dephosphorylation of the phosphorylated ATM and gamma-H2AX following ionizing irradiation. As a result, the irradiation-induced gamma-H2AX foci persisted longer in the NS3/4A-expressing cells. Furthermore, these cells showed increased comet tail moment in single-cell electrophoresis assay, indicating increased double-strand DNA breaks. The cells harboring an HCV replicon also exhibited cytoplasmic localization of ATM and increased sensitivity to irradiation. These results demonstrate that NS3/4A impairs the efficiency of DNA repair by interacting with ATM and renders the cells more sensitive to DNA damage. This effect may contribute to HCV oncogenesis.  相似文献   

14.
Common fragile sites are specific loci that form gaps and constrictions on metaphase chromosomes exposed to replication stress, which slows DNA replication. These sites have a role in chromosomal rearrangements in tumors; however, the molecular mechanism of their expression is unclear. Here we show that replication stress leads to focus formation of Rad51 and phosphorylated DNA-PKcs, key components of the homologous recombination (HR) and nonhomologous end-joining (NHEJ), double-strand break (DSB) repair pathways, respectively. Down-regulation of Rad51, DNA-PKcs, or Ligase IV, an additional component of the NHEJ repair pathway, leads to a significant increase in fragile site expression under replication stress. Replication stress also results in focus formation of the DSB markers, MDC1 and gammaH2AX. These foci colocalized with those of Rad51 and phospho-DNA-PKcs. Furthermore, gammaH2AX and phospho-DNA-PKcs foci were localized at expressed fragile sites on metaphase chromosomes. These findings suggest that DSBs are formed at common fragile sites as a result of replication perturbation. The repair of these breaks by both HR and NHEJ pathways is essential for chromosomal stability at these sites.  相似文献   

15.
DNA damage may lead to cell transformation, senescence, or death. Histone H2AX phosphorylation, immunodetected as γH2AX foci, is an early response to DNA damage persisting even after DNA repair. In cycling mammalian cells with canonical nuclear architecture, i.e., central euchromatin and peripheral heterochromatin, γH2AX foci map preferentially to euchromatin. Mice retina rods are G0 cells displaying an inverted nuclear architecture 28 days after birth (P28). Rod nuclei exhibit one or two central constitutive heterochromatin chromocenters encircled by facultative heterochromatin. Euchromatin resides at the nuclear periphery, extending to the equator in cells with two chromocenters. To assess the impact of chromatin relocation in the localization of DNA damage, γH2AX and TUNEL foci induced ex vivo by radiomimetic bleomycin were mapped in H3K4me3 immunolabeled P28 rod nuclei. A preferential localization of γH2AX foci in euchromatin was detected together with foci clustering. Besides, a decay of H3K4me3 signal at γH2AX foci sites was observed. TUNEL and γH2AX foci exhibited similar localization patterns in BLM-treated rod cells thus excluding curtailed access of anti-γH2AX antibodies to heterochromatin. Lack of γH2AX foci in rod chromocenters appears to be unrelated to the occurrence of mid-range foci movements. Foci clusters may arise through DNA double-strand break proximity, local non-directional chromatin movements or chromatin relaxation. H3K4me3 signal reduction at γH2AX foci could stem from local chromatin decondensation or downregulation of histone H4 methylation. The observed topology of DNA damage in retina-differentiated rods indicates that euchromatin is damage-prone, regardless of the canonical or inverted nuclear architecture of mammalian cells.  相似文献   

16.
The phosphorylation of histone H2AX in Serine 139 (gamma-H2AX) marks regions of DNA double strand breaks and contributes to the recruitment of DNA repair factors to the site of DNA damage. Gamma-H2AX is used widely as DNA damage marker in vitro, but its use for genotoxicity assessment in vivo has not been extensively investigated. Here, we developed an image analysis system for the precise quantification of the gamma-H2AX signal, which we used to monitor DNA damage in animals treated with known genotoxicants (EMS, ENU and doxorubicin). To compare this new assay to a validated standard procedure for DNA damage quantification, tissues from the same animals were also analyzed in the comet assay. An increase in the levels of gamma-H2AX was observed in most of the tissues from animals treated with doxorubicin and ENU. Interestingly, the lesions induced by doxorubicin were not easily detected by the standard comet assay, while they were clearly identified by gamma-H2AX staining. Conversely, EMS appeared strongly positive in the comet assay but only mildly in the gamma-H2AX immunofluorescence. These observations suggest that the two methods could complement each other for DNA damage analysis, where gamma-H2AX staining allows the detection of tissue-specific effects in situ. Moreover, since gamma-H2AX staining can be performed on formalin-fixed and paraffin-embedded tissue sections generated during repeated-dose toxicity studies, it does not require any further treatments or extra procedures during dissection, thus optimizing the use of resources and animals. Environ. Mol. Mutagen. 60:4–16, 2019. © 2018 Wiley Periodicals, Inc.  相似文献   

17.
Many anticancer treatments, including radiotherapy, act by damaging DNA and hindering cell function and proliferation. H2AX is a histone protein directly associated with DNA that is phosphorylated to produce γH2AX that accumulates in foci in an early response to DNA double‐strand breaks, the most deleterious lesion caused by anticancer therapy. This study reports a γH2AX detection assay that has the potential to be used as a biomarker of response to guide cancer treatment. γH2AX immunostaining was applied to tumour cell specimens obtained using fine needle aspiration (FNA). Liquid‐based cytology and direct smear cytology methods were evaluated and immunostaining protocols established using FNA samples from five cancer patients. The assay was then applied to three patients before and after radiotherapy. Results demonstrate induction of γH2AX foci following treatment, persisting for as long as one week after therapy. Immunostaining for γH2AX has been successfully applied to FNA samples, providing an opportunity to evaluate γH2AX as a treatment response marker in cancer. Diagn. Cytopathol. 2016;44:141–146. © 2015 The Authors Diagnostic Cytopathology Published by Wiley Periodicals, Inc.  相似文献   

18.
目的:探讨蛋白激酶B(protein kinase B,Akt)抑制剂MK-2206对胃癌细胞SGC-7901DNA损伤的影响。方法:不同浓度的MK-2206作用于SGC-7901细胞后,免疫荧光检测细胞内DNA损伤标记分子磷酸化组蛋白H2AX(γ-H2AX)焦点的生成,Western blot检测DNA损伤相关蛋白的表达水平,同时观察MK-2206对自噬标志蛋白LC3-II表达量的影响,用以确定MK-2206是否促进细胞发生自噬。结果:MK-2206能够诱导SGC-7901细胞发生DNA损伤,促进细胞内γ-H2AX焦点生成,并且激活DNA损伤相关蛋白的表达;MK-2206作用细胞后,LC3-II的生成增加;抑制细胞的自噬显著增强了MK-2206诱导的H2AX磷酸化水平。结论:Akt抑制剂MK-2206能够诱导细胞发生DNA损伤和自噬,抑制自噬促进了MK-2206诱导的DNA损伤。  相似文献   

19.
Nonhomologous end-joining (NHEJ) is the predominant pathway that repairs DNA double-strand breaks (DSBs) in mammalian cells. The DNA-dependent protein kinase (DNA-PK), consisting of Ku and DNA-PK catalytic subunit (DNA-PKcs), is activated by DNA in vitro and is required for NHEJ. We report that DNA-PKcs is autophosphorylated at Thr2609 in vivo in a Ku-dependent manner in response to ionizing radiation. Phosphorylated DNA-PKcs colocalizes with both gamma-H2AX and 53BP1 after DNA damage. Mutation of Thr2609 to Ala leads to radiation sensitivity and impaired DSB rejoining. These findings establish that Ku-dependent phosphorylation of DNA-PKcs at Thr2609 is required for the repair of DSBs by NHEJ.  相似文献   

20.
DNA double strand breaks (DSBs) induced during cellular metabolism, DNA replication, and genomic rearrangement events lead to phosphorylation of the H2AX core histone variant in surrounding chromatin. H2AX is essential for normal DSB repair, maintenance of genomic stability, and suppression of lymphomas with clonal translocations and intra-chromosomal deletions. One current focus of our lab is to elucidate mechanisms through which H2AX functions in the cellular DNA damage response using V(D)J recombination as a model system. A number of potential H2AX functions can be readily tested using novel experimental approaches developed in our lab. These putative functions include: (1) modulation of chromatin accessibility to facilitate kinetics of DSB repair, (2) stabilization of broken DNA strands to maintain ends in close proximity, and (3) amplification of DNA damage signals. Here, we summarize our recent efforts in elucidating mechanisms by which H2AX functions during V(D)J recombination to coordinate DSB repair with cellular proliferation and survival to prevent translocations and suppress lymphomagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号