首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A commonly-assumed paradigm holds that the primary genetic determinant of cardiovascular disease resides within the DNA sequence of our genes. This paradigm can be challenged. For example, how do sequence changes in the non-coding region of the genome influence phenotype? Why are all diseases not shared between identical twins? Part of the answer lies in the fact that the environment or exogenous stimuli clearly influence disease susceptibility, but it was unclear in the past how these effects were signalled to the static DNA code. Epigenetics is providing a newer perspective on these issues. Epigenetics refers to chromatin-based mechanisms important in the regulation of gene expression that do not involve changes to the DNA sequence per se. The field can be broadly categorized into three areas: DNA base modifications (including cytosine methylation and cytosine hydroxymethylation), post-translational modifications of histone proteins, and RNA-based mechanisms that operate in the nucleus. Cardiovascular disease pathways are now being approached from the epigenetic perspective, including those associated with atherosclerosis, angiogenesis, ischemia-reperfusion damage, and the cardiovascular response to hypoxia and shear stress, among many others. With increasing interest and expanding partnerships in the field, we can expect new insights to emerge from epigenetic perspectives of cardiovascular health. This paper reviews the principles governing epigenetic regulation, discusses their presently-understood importance in cardiovascular disease, and considers the growing significance we are likely to attribute to epigenetic contributions in the future, as they provide new mechanistic insights and a host of novel clinical applications.  相似文献   

2.
Epigenetic regulation: a new research area for melatonin?   总被引:2,自引:2,他引:2  
Epigenetic, modifications of DNA and histones, i.e. heritable alterations in gene expression that do not involve changes in DNA sequences, are known to be involved in disease. Two important epigenetic changes that contribute to disease are abnormal methylation patterns of DNA and modifications of histones in chromatin. Epimutations, such as the hypermethylation and epigenetic silencing of tumor suppressor genes, have revealed a new area for cancer treatment. Studies using DNA methyltransferase inhibitors such as procaine, hydralazine, and RG108 have had promising outcomes against cancer therapy. Melatonin, one of the most versatile molecules in nature, may hypothetically be involved in epigenetic regulation. In this review, the potential role of melatonin in inhibiting DNA methyltransferase and epigenetic regulation is discussed.  相似文献   

3.
Epigenetic modifications include DNA methylation, his-tone modifications, and micro RNA. Gene alterations have been found to be associated with cardiovascular diseases, and epigenetic mechanisms are continuously being studied to find new useful strategies for the clinical management of afflicted patients. Numerous cardiovascular disorders are characterized by the abnormal methylation of Cp G islands and so specific drugs that could inhibit DNA methyltransferase directly or by reducing its gene expression(e.g., hydralazine and procainamide) are currently under investigation. The anti-proliferative and anti-inflammatory properties of histone deacetylase inhibitors and their cardio-protective effects have been confirmed in preclinical studies. Furthermore, the regulation of the expression of micro RNA targets through pharmacological tools is still under development. Indeed, large controlled trials are required to establish whether current possible candidate antisense micro RNAs could offer better therapeutic benefits in clinical practice. Here, we updated therapeutic properties, side effects, and feasibility of eme-rging epigenetic-based strategies in cardiovascular diseases by highlighting specific problematic issues that still affect the development of large scale novel therapeutic protocols.  相似文献   

4.
Epigenetic alterations that do not involve a change in the DNA sequence have been increasingly recognized to be important key events in the regulation of the gene expression and carcinogenesis. Major epigenetic mechanisms include the methylation of cytosine in DNA, changes in the histone and chromatin structure due to covalent posttranslational modification of histone proteins and the RNA-mediated regulation of the gene expression. Esophageal squamous cell carcinoma (ESCC) continues to be associated with a very poor prognosis, indicating that obtaining a clear understanding of the pathogenesis of ESCC is desired for improving clinical outcomes. In this review, we discuss the recent progress in research on epigenetic alterations in ESCC, with respect to the following points: (1) DNA methylation, including global hypomethylation and DNA hypermethylation at CpG islands in the promoters of tumor suppressor genes, (2) histone acetylation/deacetylation and histone methylation with the alteration of histone-modifying enzymes and (3) alterations in the expression of microRNA and the recently emerging long non-coding RNA. We then discuss the interplay among these epigenetic events and the crosstalk between epigenetic and genetic changes in ESCC. It is therefore important to understand the molecular mechanisms underlying the development and progression of ESCC to improve the treatment outcome of this devastating disease, although this information is quite complicated and confusing.  相似文献   

5.
Recent studies suggest that epigenetic regulation (heritable changes in gene expression that occur in the absence of alterations in DNA sequences) may in part mediate the complex gene-by-environment interactions that can lead to asthma. The variable natural history of asthma (i.e., incidence and remission of symptoms) may be a result of epigenetic changes, such as DNA methylation, covalent histone modifications, microRNA changes, and chromatin alterations, after early or later environmental exposures. Findings from multiple epidemiologic and experimental studies indicate that asthma risk may be modified by epigenetic regulation. One study suggested that the transmission of asthma risk may occur across multiple generations. Experimental studies provide substantial in vitro data indicating that DNA methylation of genes critical to T-helper cell differentiation may induce polarization toward or away from an allergic phenotype. Despite this initial progress, fundamental questions remain that need to be addressed by well-designed research studies. Data generated from controlled experiments using in vivo models and/or clinical specimens collected after environmental exposure monitoring are limited. Importantly, cohort-driven epigenetic research has the potential to address key questions, such as those concerning the influence of timing of exposure, dose of exposure, diet, and ethnicity on susceptibility to asthma development. There is immense promise that the study of environmental epigenetics will help us understand a theoretically preventable environmental disease.  相似文献   

6.
Celiac disease(CeD)is a multifactorial autoimmune disorder spread worldwide.The exposure to gluten,a protein found in cereals like wheat,barley and rye,is the main environmental factor involved in its pathogenesis.Even if the genetic predisposition represented by HLA-DQ2 or HLA-DQ8 haplotypes is widely recognised as mandatory for CeD development,it is not enough to explain the total predisposition for the disease.Furthermore,the onset of CeD comprehend a wide spectrum of symptoms,that often leads to a delay in CeD diagnosis.To overcome this deficiency and help detecting people with increased risk for CeD,also clarifying CeD traits linked to disease familiarity,different studies have tried to make light on other predisposing elements.These were in many cases genetic variants shared with other autoimmune diseases.Since inherited traits can be regulated by epigenetic modifications,also induced by environmental factors,the most recent studies focused on the potential involvement of epigenetics in CeD.Epigenetic factors can in fact modulate gene expression with many mechanisms,generating more or less stable changes in gene expression without affecting the DNA sequence.Here we analyze the different epigenetic modifications in CeD,in particular DNA methylation,histone modifications,non-coding RNAs and RNA methylation.Special attention is dedicated to the additional predispositions to CeD,the involvement of epigenetics in developing CeD complications,the pathogenic pathways modulated by epigenetic factors such as microRNAs and the potential use of epigenetic profiling as biomarker to discriminate different classes of patients.  相似文献   

7.
Epigenetics studies inheritable changes of genes and gene expression that do not concern DNA nucleotide variation. Such modifications include DNA methylation, several forms of histone modification, and microRNAs. From recent studies, we know not only that genetic changes account for heritable phenotypic variation, but that epigenetic changes also play an important role in the variation of predisposition to disease and to drug response. In this review, we discuss recent evidence of epigenetic changes that play an important role in the development of cardiac hypertrophy and heart failure and may dictate response to therapy.  相似文献   

8.
The term “epigenetics” refers to clonally inherited stable variability in gene expression without underlying genetic changes. There are two well-known molecular mechanisms for epigenetic information: DNA methylation and histone modifications. Epigenetic changes have been recognized in the past decade as critical factors for physiological phenomena such as embryogenesis and the differentiation of normal cells. There is recent interest regarding the involvement of aberrant DNA methylation and histone modifications in mediating altered physiology in cancer. MDS is characterized by epigenetic changes, mutations in epigenetic regulators, and response to DNA methylation inhibitors, suggesting that epigenetic changes are unique features of MDS patients. In this article, recent progress in the understanding of MDS epigenetics and epigenetics-based therapies is reviewed.  相似文献   

9.
Epigenetics is defined as heritable changes in gene expression that are, unlike mutations, not attributable to alterations in the sequence of DNA. The predominant epigenetic mechanisms are DNA methylation, modifications to chromatin, loss of imprinting and non-coding RNA. Epigenetic regulation of gene expression appears to have long-term effects and wide-ranging effects on health. Diet and environmental exposures may potentially alter the level and scope of epigenetic regulation, thus interesting developments in the study of epigenetics might explain correlations that researchers have found between lifestyle and risk of disease. Aberrant epigenetic patterns have been linked to a number of digestive diseases including Barrett's esophagus, cirrhosis, inflammatory bowel disease, and numerous gastrointestinal malignancies. In fact, many exciting discoveries about epigenetics in general have been made by studying diseases of the gastrointestinal tract and hepatobiliary tree. Epigenetic modifications of DNA in cancer and precancerous lesions offer hope and the promise of novel biomarkers for early cancer detection, prediction, prognosis, and response to treatment. Furthermore, reversal of epigenetic changes represents a potential target of novel therapeutic strategies and medication design. In the future, it is anticipated that innovative diagnostic tests, treatment regimens, and even lifestyle modifications will be based on epigenetic mechanisms and be incorporated into the practice of medicine.  相似文献   

10.
动脉粥样硬化是心血管疾病致残致死的主要原因,现有的一些学说还不足以解释其病理机制。DNA甲基化修饰是一种从遗传中获得的,使DNA发生甲基化修饰的表遗传调控过程。基因组DNA甲基化模式改变会直接或间接抑制基因转录,影响基因表达。现有的研究提示DNA甲基化可能参与动脉粥样硬化的发生发展,本文将重点阐述什么是DNA甲基化,DNA甲基化与动脉粥样硬化及其危险因素的研究进展。  相似文献   

11.
12.
Chang HS  Anway MD  Rekow SS  Skinner MK 《Endocrinology》2006,147(12):5524-5541
Embryonic exposure to the endocrine disruptor vinclozolin at the time of gonadal sex determination was previously found to promote transgenerational disease states. The actions of vinclozolin appear to be due to epigenetic alterations in the male germline that are transmitted to subsequent generations. Analysis of the transgenerational epigenetic effects on the male germline (i.e. sperm) identified 25 candidate DNA sequences with altered methylation patterns in the vinclozolin generation sperm. These sequences were identified and mapped to specific genes and noncoding DNA regions. Bisulfite sequencing was used to confirm the altered methylation pattern of 15 of the candidate DNA sequences. Alterations in the epigenetic pattern (i.e. methylation) of these genes/DNA sequences were found in the F2 and F3 generation germline. Therefore, the reprogramming of the male germline involves the induction of new imprinted-like genes/DNA sequences that acquire an apparent permanent DNA methylation pattern that is passed at least through the paternal allele. The expression pattern of several of the genes during embryonic development were found to be altered in the vinclozolin F1 and F2 generation testis. A number of the imprinted-like genes/DNA sequences identified are associated with epigenetic linked diseases. In summary, an endocrine disruptor exposure during embryonic gonadal sex determination was found to promote an alteration in the epigenetic (i.e. induction of imprinted-like genes/DNA sequences) programming of the male germline, and this is associated with the development of transgenerational disease states.  相似文献   

13.
Gastric carcinogenesis is a multistep process triggered by Helicobacter pylori and characterized by accumulation of molecular alterations. Two mechanisms are implicated in cancer-related molecular alterations: genetic and epigenetic. The former includes changes in the DNA sequence, the latter occurs without changes of DNA sequence. However, the most important difference between genetic and epigenetic alterations is that epigenetic changes are potentially reversible by eliminating toxic agents. DNA methylation is the major epigenetic phenomenon of eukaryotic genomes and involves the addition of a methyl group to the carbon 5 position of the cytosine ring within the CpG dinucleotide. DNA methylation is needed for the normal development of cells, whereas aberrant methylation of CpG islands confers a selective growth advantage that results in cancerous growth. The stomach is one of the organs frequently showing aberrant methylation of DNA epithelial cells because of its accessibility to exogenous toxic agents such as H. pylori infection. Aberrant methylation of CpG islands occurs early in gastric carcinogenesis, tends to increase as the process advances and is prevalently related to the infection. In conclusion, gastric cancer is mainly an epigenetic disease and H. pylori, acting through inflammatory mediators, may play a key role in the development of such molecular alterations.  相似文献   

14.
Colorectal cancer (CRC) results from a stepwise accumulation of genetic and epigenetic alterations that transform the normal colonic epithelium into cancer. DNA methylation represents one of the most studied epigenetic marks in CRC, and three common epigenotypes have been identified characterized by high, intermediate and low methylation profiles, respectively. Combining DNA methylation data with gene mutations and cytogenetic alterations occurring in CRC is nowadays allowing the characterization of different CRC subtypes, but the crosstalk between DNA methylation and other epigenetic mechanisms, such as histone tail modifications and the deregulated expression of non-coding RNAs is not yet clearly defined. Epigenetic biomarkers are increasingly recognized as promising diagnostic and prognostic tools in CRC, and the potential of therapeutic applications aimed at targeting the epigenome is under investigation.  相似文献   

15.
16.
OBJECTIVE: Because the effect of granulocyte colony-stimulating factor (G-CSF), which is widely used for allogeneic stem cell transplantation, on DNA function and stability has not yet been unequivocally elucidated, the aim of this study was to determine whether G-CSF leads to epigenetic and/or genetic modifications. MATERIALS AND METHODS: Molecular cytogenetic techniques based on fluorescence in situ hybridization technology were used. RESULTS: Lymphocytes of G-CSF mobilized donors displayed epigenetic (altered replication timing of alleles) and genetic (aneuploidy) alterations similar to those observed in lymphocytes of cancer patients. Specifically, in the donors' lymphocytes, biallelically expressed genes (TP53 and AML1) and a repetitive noncoding DNA sequence associated with chromosome segregation (CEN17) showed loss of synchrony in allelic replication timing (allele-specific replication). Each displayed a highly asynchronous pattern of allelic replication similar to that characterizing monoallelic expressed genes. This non-locus-specific epigenetic phenomenon, which also affects DNA sequences associated with chromosome segregation, was accompanied by aneuploidy. Although the loss of replication synchrony in the lymphocytes of G-CSF mobilized donors was a transient epigenetic modification, aneuploidy remained unchanged. The G-CSF effect also was observed after G-CSF administration in vitro. 5-Azacytidine, a DNA methylation blocking agent, inhibited G-CSF in vitro induction of allele-specific replication. CONCLUSION: G-CSF, probably via changes in DNA methylation capacity, leads to cancer-characteristic DNA modifications in lymphocytes of normal mobilized donors.  相似文献   

17.
The term epigenetics is usually used to describe inheritable changes in gene function which do not involve changes in the DNA sequence. These typically include non-coding RNAs, DNA methylation and histone modifications. Smoking and older age are recognised risk factors for peripheral artery diseases, such as occlusive lower limb artery disease and abdominal aortic aneurysm, and have been implicated in promoting epigenetic changes. This brief review describes studies that have associated epigenetic factors with peripheral artery diseases and investigations which have examined the effect of epigenetic modifications on the outcome of peripheral artery diseases in mouse models. Investigations have largely focused on microRNAs and have identified a number of circulating microRNAs associated with human peripheral artery diseases. Upregulating or antagonising a number of microRNAs has also been reported to limit aortic aneurysm development and hind limb ischemia in mouse models. The importance of DNA methylation and histone modifications in peripheral artery disease has been relatively little studied. Whether circulating microRNAs can be used to assist identification of patients with peripheral artery diseases and be modified in order to improve the outcome of peripheral artery disease will require further investigation.  相似文献   

18.
Primer: epigenetics of autoimmunity   总被引:1,自引:0,他引:1  
  相似文献   

19.
表观遗传调控指的是在DNA序列不变的情况下基因表达发生的可遗传性改变。目前,已知的表观遗传调控的主要机制包括DNA甲基化、组蛋白修饰和非编码RNA。大量研究证实,在心血管疾病、肿瘤和自身免疫性疾病等方面表观遗传调控发挥着重要作用。近年来,越来越多的研究表明,表观遗传调控在动脉粥样硬化的疾病病程中发挥着重要作用。本文将围绕DNA甲基化、组蛋白修饰和非编码RNA这三种主要的表观遗传调控对血管平滑肌细胞的调节来探讨表观遗传调控在动脉粥样硬化进程中的重要作用。  相似文献   

20.
Autoimmune diseases arise when the body mounts an immune response against ‘self’ cells and tissues causing inflammation and damage. It is commonly accepted that these diseases develop because of the interplay of genetic and environmental factors. Evidence for genetic factors includes the higher concordance of disease in monozygotic twins than in dizygotic twins. However, monozygotic twins may remain discordant for disease indicating a role for environmental factors. Environmental factors may alter gene expression via epigenetic mechanisms. This is particularly pertinent in type 1 diabetes in which DNA methylation and histone modifications have been associated with altered gene expression. The low disease concordance rate in adult‐onset type 1 diabetes (<20%) suggests that environmental and epigenetic changes may play a predominant role. Defining the role of epigenetic changes could identify specific gene pathways and dysregulated expression of gene products that contribute to the pathogenesis of type 1 diabetes. This article reviews how epigenetic mechanisms may contribute to the development of autoimmune diseases with a focus on type 1 diabetes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号