首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oils of Carapa guianensis and Copaifera spp. are well known in the Amazonian region as natural insect repellent, and studies have reported their efficiency as larvicide against some laboratory mosquito species. However, in wild populations of mosquitoes, these oils have not yet been evaluated. Thus, the objective of this study was to investigate their efficiency as larvicide in wild populations of Aedes aegypti with a history of exposure to organophosphate. The susceptibility of larvae was determined under three different temperatures, 15°C, 20°C, and 30°C. For each test, 1,000 larvae were used (late third instar and early fourth instar—four replicates of 25 larvae per concentration). Statistical tests were used to identify significant differences. The results demonstrated that as the laboratory A. aegypti, the wild populations of A. aegypti were also susceptible to C. guianensis and Copaifera sp. oils. The lethal concentrations for Copaifera sp. ranged from LC50 47 to LC90 91 (milligrams per liter), and for C. guianensis, they were LC50 136 to LC90 551 (milligrams per liter). In relation to different temperature, the effectiveness of the oils on larvae mortality was directly related to the increase of temperature, and better results were observed for temperature at 25°C. The results presented here indicate the potential larvicidal activity of C. guianensis and species of Copaifera, in populations of A. aegypti from the wild. Therefore, the results presented here are very important since such populations are primarily responsible for transmitting the dengue virus in the environment.  相似文献   

2.
Studies have demonstrated the potential of Copaifera sp. oleoresin to control Aedes aegypti proliferation. However, the low water solubility is a factor that limits its applicability. Thus, the micro- or nanoencapsulation could be an alternative to allow its use in larval breeding places. The purpose of this study was to evaluate if achievable lethal concentrations could be obtained from Copaifera sp. oleoresin incorporated into polymers (synthetic or natural) and, mainly, if it can be sustained in the residual activity compared to the pure oil when tested against the A. aegypti larvae. Microcapsules were prepared by the process of emulsification/precipitation using the polymers of cellulose acetate (CA) and poly(ethylene-co-methyl acrylate) (PEMA), yielding four types of microcapsules: MicPEMA1 and MicPEMA2, and MicCA1 and MicCA2. When using only Copaifera sp. oleoresin, the larvicidal activity was observed at concentrations of LC50 = 48 mg/L and LC99 = 149 mg/L. For MicPEMA1, the LC50 and LC99 were 78 and 389 mg/L, respectively. Using MicPEMA2, the LC50 was 120 mg/L and LC99 >500 mg/L. For microcapsules MicCA1 and MicCA2, the LC50 and LC99 were 42, 164, 140, and 398 mg/L, respectively. For a dose of 150 mg/L of pure oleoresin, the residual activity remained above 20% for 10 days, while the dose of 400 mg/L remained above 40% for 21 days. The MicPEMA1 microcapsules showed a loss in residual activity up to the first day; however, it remained in activity above 40% for 17 days. The microcapsules of MicCA1 showed similar LC50 of pure oil with 150 mg/L.  相似文献   

3.
The aim of this study was to evaluate the toxicity of pinenes (entantiomers of α- and β-) and essential oils from Greek plants of the Rutaceae family against the mosquito larvae of Culex pipiens (Diptera: Culicidae). Essential oils were isolated by hydrodistillation from fruit peel of orange (Citrus sinensis L.), lemon (Citrus limon L.), and bitter orange (Citrus aurantium L.). The chemical composition was determined by gas chromatography/mass spectrometry (GC/MS) analysis. Citrus essential oils contained in high proportion limonene and in lower quantities p-menthane molecules and pinenes. The insecticidal action of these essential oils and entantiomers of their pinenes on mosquito larvae was evaluated. Plant essential oils exhibited strong toxicity against larvae with the LC50 values ranging from 30.1 (lemon) to 51.5 mg/L (orange) depending on Citrus species and their composition. Finally, the LC50 value of pinenes ranging from 36.53 to 66.52 mg/L indicated an enantioselective toxicity only for the β-pinene entantiomer.  相似文献   

4.
The current therapy for leishmaniasis, which affects annually about 2 million people, is far from satisfactory. All available drugs require parenteral administration and are potentially toxic. Plant essential oils have been traditionally used in folk medicine and appear as valuable alternative source for chemotherapeutic compounds. In this study, we demonstrated the effect of essential oils from Cymbopogon citratus, Lippia sidoides, and Ocimum gratissimum on growth and ultrastructure of Leishmania chagasi promastigote forms. Steam distillation was used to isolate the essential oils, and their constituents were characterized by gas chromatography coupled to mass spectrometry and nuclear magnetic resonance. All essential oils showed in vitro inhibitory action on L. chagasi promastigotes growth in a dose-dependent way, with IC50/72 h of 45, 89, and 75 μg/mL for C. citratus, L. sidoides, and O. gratissimum, respectively. Drastic morphological alterations were observed in all essential oil-treated parasites, including cell swelling, accumulation of lipid droplets in the cytoplasm, and increase of acidocalcisome volume. Furthermore, aberrant-shaped cells with multi-septate body were observed by scanning electron microscopy, suggesting an additional effect on cytokinesis. Taken together, our data show that these essential oils affect the parasite viability being the C. citratus essential oil the most effective against L. chagasi.  相似文献   

5.
Larval control is a major component in mosquito control programs. This study evaluated the wide-scale application of Bti/Bs biolarvicide (Bacillus thuringiensis var. israelensis [Bti] and Bacillus sphaericus [Bs]) in different aquatic habitats in urban and peri-urban Malindi, Kenya. This study was done from June 2006 to December 2007. The urban and peri-urban area of Malindi town was mapped and categorized in grid cells of 1 km2. A total of 16 1-km2 cells were selected based on presence Community Based Organization dealing with malaria control within the cells. Each of the 16 1-km2 cells was thoroughly searched for the presence of potential larval habitats. All habitats, whether positive or negative for larvae, were treated and rechecked 24 h (1 day), 6 days, and 10 days later for the efficacy of Bti/Bs. Weekly larval sampling was done to determine the mosquito larval dynamics in the aquatic habitats during the study period. Morphological identification of the mosquito larvae showed that Anopheles gambiae s.l. Giles was the most predominant species of the Anopheles and while in the culicines, Cx. quinquefasciatus Say was the predominant species. Anopheles larvae were all eliminated in habitats within a day post-application. For culicine larvae, 38.1% (n = 8) of the habitat types responded within day 1 post-treatment and all the larvae were killed, they turned negative during the days of follow-up. Another 38.1% (n = 8) of the habitat types had culicine larvae but turned negative by day 6, while three habitats (14.3%) had larvae by 6th day but turned negative by 10th day. However during this Bti/Bs application studies, two habitat types, house drainage and cesspits (9.5%), remained positive during the follow-up although the mosquito larvae were significantly reduced. Both early and late instars of Anopheles larvae immediately responded to Bti/Bs application and reached 100% mortality. The early and late instars of culicine responded to the Bti/Bs application but not as fast as the Anopheles larval instars. The early instars Culex, responded with 90.8% mortality at day 1 post-treatment, and the mortality was 99.9% at day 10. Similarly, the late instars Culex followed the same trend and exhibited same mortalities. The weekly sampling in the aquatic habitats showed that there was a 36.3% mosquito larval reduction in the aquatic habitats over the 18-months study period. In conclusion, Bti/Bs biolarvicide are useful in reducing the mosquito larval densities in a wide range of habitats which have a direct impact of adult mosquito populations.  相似文献   

6.
The larvicidal activity of hydrodistillate extracts from Mentha piperita L. Ocimum basilicum L. Curcuma longa L. and Zingiber officinale L. were investigated against the dengue vector Aedes aegypti L. (Diptera: Culicidae).The results indicated that the mortality rates at 80, 100, 200 and 400 ppm of M. piperita, Z. officinale, C. longa and O. basilicum concentrations were highest amongst all concentrations of the crude extracts tested against all the larval instars and pupae of A. aegypti. Result of log probit analysis (at 95% confidence level) revealed that lethal concentration LC50 and LC90 values were 47.54 and 86.54 ppm for M. piperita, 40.5 and 85.53 ppm for Z. officinale, 115.6 and 193.3 ppm for C. longa and 148.5 and 325.7 ppm for O. basilicum, respectively. All of the tested oils proved to have strong larvicidal activity (doses from 5 to 350 ppm) against A. aegypti fourth instars, with the most potent oil being M. piperita extract, followed by Z. officinale, C. longa and O. basilicum. In general, early instars were more susceptible than the late instars and pupae. The results achieved suggest that, in addition to their medicinal activities, Lamiaceae and Zingiberaceae plant extracts may also serve as a natural larvicidal agent.  相似文献   

7.
The efficacy of whole plant extracts of Leucas aspera and Bacillus sphaericus has been proven against larvicidal and pupicidal activities of the malarial vector, Anopheles stephensi. The present study investigated the larvicidal and pupicidal activity against the first to fourth instar lavae and pupae of the laboratory-reared mosquitoes, A. stephensi. The medicinal plants were collected from the area around Maruthamalai hills, Coimbatore, Tamil Nadu, India. L. aspera whole plant was washed with tap water and shade dried at room temperature. The dried plant materials were powdered by an electric blender. From the powder, 100 g of the plant materials was extracted with 300 ml of organic solvents of ethanol for 8 h using a Soxhlet apparatus. The extracts were filtered through a Buchner funnel with Whatman number 1 filter paper. The crude plant extracts were evaporated to dryness in a rotary vacuum evaporator. The plant extract showed larvicidal and pupicidal effects after 24 h of exposure. All larval instars and pupae have considerably moderate mortality; however, the highest larval mortality was the ethanolic extract of whole plant L. aspera against the first to fourth instar larvae and pupae values of LC50 = I instar was 9.695%, II instar was 10.272%, III instar was 10.823%, and IV instar was 11.303%, and pupae was 12.732%. B. spaericus against the first to fouth instar larvae and pupae had the following values: I instar was 0.051%, II instar was 0.057%, III instar was 0.062%, IV instar was 0.066%, and for the pupae was 0.073%. No mortality was observed in the control. The present results suggest that the ethanolic extracts of L. aspera and B. sphaericus provided an excellent potential for controlling of malarial vector, A. stephensi.  相似文献   

8.
Ethanolic extracts of Cynodon dactylon, Aloe vera, Hemidesmus indicus and Coleus amboinicus were tested for their toxicity effect on the third-instar larvae of Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti. The leaves of C. dactylon, A. vera, H. indicus and C. amboinicus were collected from natural habitats (forests) in Western Ghats, Tamil Nadu, India. A total of 250 g of fresh, mature leaves were rinsed with distilled water and dried in shade. The dried leaves were put in Soxhlet apparatus and extract prepared using 100% ethanol for 72 h at 30–40°C. Dried residues were obtained from 100 g of extract evaporated to dryness in rotary vacuum evaporator. Larvicidal properties of ethanolic leaf extracts showed that the extracts are effective as mosquito control agents. The larval mortality was observed after 24 h exposure. No mortality was observed in the control. The median lethal concentration (LC50) values observed for the larvicidal activities are 0.44%, 0.51%, 0.59% and 0.68% for extracts of C. dactylon, A. vera, H. indicus and C. amboinicus, respectively. The observed mortality were statistically significant at P < 0.05 level. C. dactylon showed the highest mortality rate against the three species of mosquito larvae in laboratory and field. The selected plants were shown to exhibit water purification properties. Water quality parameters such as turbidity, pH and water clarity were analyzed in the water samples (pre-treatment and post-treatment of plant extracts) taken from the different breeding sites of mosquitoes. Water colour, turbidity and pH were reduced significantly after treatment with C. dactylon (13 HU, 31.5 mg/l and 6.9), H. indicus (13.8 HU, 33 mg/l and 7.1), A. vera (16 HU, 33.8 mg/l and 7.4) and C. amboinicus (21 HU, 35 mg/l and 7.5) extracts. The study proved that the extracts of C. dactylon, A. vera, H. indicus and C. amboinicus have both mosquitocidal and water sedimentation properties.  相似文献   

9.
The larvicidal activity of hydrodistillate extracts from Chrysanthemum coronarium L., Hypericum scabrum L., Pistacia terebinthus L. subsp. palaestina (Boiss.) Engler, and Vitex agnus castus L. was investigated against the West Nile vector, Culex pipiens L. (Diptera: Culicidae). Yield and identification of the major essential oils from each distillation was determined by GC-MS analyses. The major essential oil component for each plant species was as follows: α-pinene for P. terebinthus palaestina, and H. scabrum (45.3% and 42.3%, respectively), trans-β-caryophyllene for V. agnus castus (22.1%), and borneol for C. coronarium (20.9%). A series of distillate concentrations from these plants (that ranged from 1 ppm to 500 ppm, depending on plant species) were assessed against late third to early fourth C. pipiens larvae at 1, 6, and 24 h posttreatment. In general, larval mortality to water treated with a distillate increased as concentration and exposure time increased. H. scabrum and P. terebinthus palaestina were most effective against the mosquito larvae and both produced 100% mortality at 250 ppm at 24-h continuous exposure compared with the other plant species. Larval toxicity of the distillates at 24 h (LC50 from most toxic to less toxic) was as follows: P. terebinthus palaestina (59.2 ppm) > H. scabrum (82.2 ppm) > V. agnus castus (83.3 ppm) > C. coronarium (311.2 ppm). But when LC90 values were compared, relative toxicity ranking changed as follows: H. scabrum (185.9 ppm) > V. agnus castus (220.7 ppm) > P. terebinthus palaestina (260.7 ppm) > C. coronarium (496.3 ppm). Extracts of native Turkish plants continue to provide a wealth of potential sources for biologically active agents that may be applied against arthropod pests of man and animals.  相似文献   

10.
Essential oil of seeds of Trachyspermum ammi (Linn.) Sprauge and its pure constituent thymol showed promising results when evaluated for larvicidal, oviposition-deterrent, vapor toxicity, and repellent activity against malarial vector, Anopheles stephensi. Thymol was 1.6-fold more toxic than the oil toward fourth-instar larvae of A. stephensi with LD50 values of 48.88 and 80.77 μg/ml, respectively. Egg laying by female adults of A. stephensi was much significantly reduced when exposed to vapors of thymol compared to the oil of T. ammi seeds, and similar effects were recorded for subsequent egg hatching and larval survival. Vapor toxicity assay showed LC50 value of 79.5 mg/mat for thymol against adults of A. stephensi, whereas the crude oil exhibited the LC50 value of 185.4 mg/mat. Thymol provided complete repellency toward A. stephensi adults at the dose of 25.0 mg/mat after 1 h duration, whereas same degree of repellency was obtained by the oil at the dose of 55.0 mg/mat, indicating its double-fold activity than the oil.  相似文献   

11.
Concentration-dependent mortality effects were observed for three pure synthetic natural products (alkannin, shikonin, and shikalkin) and three acetylated derivatives of shikonin against Culex pipiens (Culicidae: Diptera) for the first time. The larvicidal properties of all naphthoquinones were evaluated under laboratory conditions against the larvae of the mosquito species C. pipiens biotype molestus, the anthropophilic biotype of the C. pipiens mosquito species. Experimental data of the tested toxicity of quinones revealed generally high efficacy where shikonin (3.9 mg/L) was the most active followed by shikalkin (8.73 mg/L) and alkannin (12.35 mg/L). The insecticidal performance of shikonin-acetylated derivatives was also investigated, aiming at the same time in the establishment of the relationships between the structure and the activity of shikonin-type compounds with larvicidal activity against C. pipiens. Results indicated that naphthoquinones, compared with other natural compounds with larvicidal activity, are very toxic against mosquito larvae and could be a potential source of natural larvicidal substances. Finally, bioassays with shikonin derivatives also revealed that although hydroxylic groups seem to play a secondary role in efficacy, the quinone moiety is essential.  相似文献   

12.
The present study was carried out to establish the properties of Carica papaya leaf extract and bacterial insecticide, spinosad on larvicidal and pupicidal activity against the chikungunya vector, Aedes aegypti. The medicinal plants were collected from the area around Bharathiar University, Coimbatore, India. C. papaya leaf was washed with tap water and shade-dried at room temperature. An electrical blender powdered the dried plant materials (leaves). The powder (500 g) of the leaf was extracted with 1.5 l of organic solvents of methanol for 8 h using a Soxhlet apparatus and then filtered. The crude leaf extracts were evaporated to dryness in a rotary vacuum evaporator. The plant extract showed larvicidal and pupicidal effects after 24 h of exposure; however, the highest larval and pupal mortality was found in the leaf extract of methanol C. papaya against the first- to fourth-instar larvae and pupae of values LC50 = I instar was 51.76 ppm, II instar was 61.87 ppm, III instar was 74.07 ppm, and IV instar was 82.18 ppm, and pupae was 440.65 ppm, respectively, and bacterial insecticide, spinosad against the first to fourth instar larvae and pupae of values LC50 = I instar was 51.76 ppm, II instar was 61.87 ppm, III instar was 74.07 ppm, and IV instar was 82.18 ppm, and pupae was 93.44 ppm, respectively. Moreover, combined treatment of values of LC50 = I instar was 55.77 ppm, II instar was 65.77 ppm, III instar was 76.36 ppm, and IV instar was 92.78 ppm, and pupae was 107.62 ppm, respectively. No mortality was observed in the control. The results that the leaves extract of C. papaya and bacterial insecticide, Spinosad is promising as good larvicidal and pupicidal properties of against chikungunya vector, A. aegypti. This is an ideal eco-friendly approach for the control of chikungunya vector, A. aegypti as target species of vector control programs.  相似文献   

13.
Mosquitoes are important vectors of diseases to humans and domestic animals. Chemical control of vectors remains a main resource for the prevention and control of vector-borne diseases. Due to the development of insecticide resistance and risks to human health and the environment of synthetic compounds, the search for alternative pesticides is encouraged. This work assessed the insecticidal activity of essential oils (EOs) from Lippia turbinata and L. polystachya from Argentina on Culex quinquefasciatus mosquitoes. EOs were extracted by hydro-distillation and analyzed with gas–liquid chromatography and mass spectrometry. The insecticidal activity against mosquito larvae, pupae, and adults were evaluated according to World Health Organization protocols. Concentrations ranking from 10 to 160 ppm were assessed at 1, 2, 3, and 24 h posttreatment. The composition of the EO of L. polystachya and L. turbinata were qualitatively similar, with α-thujone and carvone as main constituent; differences were mostly due to the proportion of each component. β-caryophyllene was also an important constituent of the EO of L. turbinata. Both EO were larvicidal at concentrations of 80 ppm or higher, but only L. turbinata was adulticidal. No pupal mortality was detected. The potential of these EOs for vector control is discussed.  相似文献   

14.
Laboratory bioassays on insecticidal activity of essential oils (EOs) extracted from six Mediterranean plants (Achillea millefolium, Lavandula angustifolia, Helichrysum italicum, Foeniculum vulgare, Myrtus communis, and Rosmarinus officinalis) were carried out against the larvae of the Culicidae mosquito Aedes albopictus. The chemical composition of the six EOs was also investigated. Results from applications showed that all tested oils had insecticidal activity, with differences in mortality rates as a function of both oil and dosage. At the highest dosage (300 ppm), EOs from H. italicum, A. millefolium, and F. vulgare caused higher mortality than the other three oils, with mortality rates ranging from 98.3% to 100%. M. communis EO induced only 36.7% larval mortality at the highest dosage (300 ppm), a similar value to those recorded at the same dosage by using R. officinalis and L. angustifolia (51.7% and 55%, respectively). Identified compounds ranged from 91% to 99%. The analyzed EOs had higher content of monoterpenoids (80–99%) than sesquiterpenes (1–15%), and they can be categorized into three groups on the basis of their composition. Few EOs showed the hydrocarbon sesquiterpenes, and these volatile compounds were generally predominant in comparison with the oxygenated forms, which were detected in lower quantities only in H. italicum (1.80%) and in M. communis (1%).  相似文献   

15.
Zhu L  Tian Y 《Parasitology research》2011,109(5):1417-1422
Blumea densiflora, an edible and medicinal plant, is chiefly distributed in Southeast Asia and South Asia. Essential oils extracted by steam distillation from B. densiflora were investigated for their chemical composition and larvicidal activity against Anopheles anthropophagus, the primary vector of malaria in China and other East Asian countries. Totally, 46 compounds were identified by gas chromatography and mass spectroscopy. The major chemical compounds identified were borneol (11.43%), germacrene D (8.66%), β-caryophyllene (6.68%), γ-terpinene (4.35%), sabinene (4.34%), and β-bisabolene (4.24%). A series of concentrations of essential oil (that ranged from 6.25 to 150 ppm) were tested against A. anthropophagus fourth-instar larvae according to WHO recommendation. In general, larval mortality increased as concentration and exposure time increased, indicating a dose-dependent effect, and high insecticidal activity showed that 100% mortality occurred within 6 h at 150 ppm, 10 h at 100 ppm, 30 h at 50 ppm, and 30 h at 25 ppm essential oil concentration. The LC50 values were 22.32 (after 12 h) and 10.55 ppm (after 24 h), and the LC90 values were 54.04 (after 12 h) and 33.56 ppm (after 24 h). Pylarvex, the reference standard, had better larvicidal activity, causing 100% mortality within 2 h at 150 ppm and within 6 h at 6.25 ppm. The results clearly reveal that the essential oil of B. densiflora served as a potential, eco-friendly mosquito larvicide against the malarial vector mosquito A. anthropophagus.  相似文献   

16.
Insecticide resistance and inadequate attention to the application instructions of topical pediculicides are common reasons for treatment failure. Essential oils or plant extracts are good and safe alternatives due to their low toxicity to mammals and easy biodegradability. The present study was carried out to establish the pediculocidal and larvicidal activity of synthesized silver nanoparticles (AgNPs) using leaf aqueous extract of Tinospora cordifolia Miers (Menispermaceae) against the head louse Pediculus humanus capitis De Geer (Phthiraptera: Pediculidae) and fourth instar larvae of malaria vector, Anopheles subpictus Grassi and filariasis vector, Culex quinquefasciatus Say (Diptera: Culicidae). We reported the aqueous plant extract and synthesized AgNPs against head lice and vectors. Direct contact method was conducted to determine the potential of pediculocidal activity. The synthesized AgNPs characterized by UV–vis spectrum, scanning electron microscopy, Fourier transform infrared, and X-ray diffraction. Head lice and mosquito larvae were exposed to varying concentrations of aqueous extracts and synthesized AgNPs for 24 h. The results suggest that the optimal times for measuring mortality effects of synthesized AgNPs were 33% at 5 min, 67% at 15 min, and 100% after 1 h. The maximum activity was observed in the synthesized AgNPs against lice, A. subpictus and C. quinquefasciatus (LC50 = 12.46, 6.43 and 6.96 mg/L; r 2 = 0.978, 0.773 and 0.828), respectively. The findings revealed that synthesized AgNPs possess excellent anti-lice and mosquito larvicidal activity. These results suggest that the green synthesis of AgNPs have the potential to be used as an ideal ecofriendly approach for the control of head lice and vectors.  相似文献   

17.
The oviposition deterrence and ovicidal potential of five different essential oils, peppermint oil (Mentha piperita), basil oil (Ocimum basilicum), rosemary oil (Rosemarinus officinalis), citronella oil (Cymbopogon nardus), and celery seed oil (Apium graveolens), were assessed against female adults of the dengue vector, Aedes aegypti L. Multiple concentration tests were carried out where cups containing 1 mL of different concentrations (100%, 10%, 1%, 0.1%) of the oils and 199 mL of water were used for oviposition. The number of eggs laid and the larvae hatched in each cup were scored to evaluate the oviposition deterrent and ovicidal potentials of the oils. Our investigations revealed that the addition of 100% oil (pure oil) caused complete oviposition deterrence except in A. graveolens which resulted in 75% effective repellency. The use of 10% oil resulted in the maximum deterrence of 97.5% as shown by the M. piperita oil while other oils caused 36–97% oviposition deterrence as against the control. The oviposition medium with 1% oil showed decreased deterrent potential with 30–64% effective repellency, the M. piperita oil being exceptional. However, as the concentrations of the oil were reduced further to 0.1%, the least effective oil observed was A. graveolens (25% ER). Also, the M. piperita oil showed much reduced activity (40%) as compared to the control, while the other oils exhibited 51–58% repellency to oviposition. The studies on the ovicidal effects of these oils revealed that the eggs laid in the water with 100% essential oils did not hatch at all, whereas when 10% oils were used, only the R. officinalis oil resulted in 28% egg hatch. At lower concentrations (1%), the oils of M. piperita, O. basilicum, and C. nardus showed complete egg mortality while those of A. graveolens and R. officinalis resulted in 71% and 34% egg hatches, respectively. When used at 0.1%, the O. basilicum oil was found to be the only effective oil with 100% egg mortality, whereas other oils resulted in 16–76% egg mortality, the least mortality caused by the A. graveolens oil. These results suggest that these essential oils can be employed in a resistance-management program against A. aegypti. Further detailed research is needed to identify the active ingredient in the extracts and implement the effective mosquito management program.  相似文献   

18.
Experimental infection with Angiostrongylus vasorum was conducted in Iberian slugs Arion lusitanicus. Initially, different size/age groups of juvenile slugs (small, <0.5 g and medium, 0.5–1 g) were exposed to freshly isolated first-stage parasitic larvae (L1) of A. vasorum. The slugs were subsequently incubated at 5, 10 and 15°C for 6 weeks. Larval development within the slugs differed significantly with temperature. At 15°C, all larvae developed into the third larval stage (L3), at 10°C into the second stage (L2), whereas no development was observed at 5°C. The mean larval burdens were highest in the largest group of slugs and tended to increase with higher temperature. In a second experiment isolated L1 were incubated at 5, 10 and 15°C for 3 and 7 days prior to infection of slugs, which then were kept for 6 weeks at 15°C. The infectivity decreased significantly with the larval storage time and the mean larval burden per slug was lower at higher incubating temperature. However, all established larvae developed into infective L3. Temperature had an effect on the development of the larvae and thus an impact on transmission of the parasite as only L3 are infective to the definitive canid hosts.  相似文献   

19.
Methanol extracts of the aerial parts from 62 Euro-Asiatic plant species were tested for larvicidal activity against the mosquito Culex quinquefasciatus Say (Diptera: Culicidae) under laboratory conditions. The fourth larval instar was tested. The extracts of the plants Seseli pallasii and Schisandra chinencis displayed the highest larvicidal activities with LD50 6 and 15 ppm, respectively, followed by Arthemisia campestris, Verbena officinalis, and Imperatoria osthruthium with LD50 23, 38, and 49 ppm, respectively. The appraised value of LD50 for two species was between 51–100 ppm; eight species had lethal doses from 101 to 500 ppm, 13 species showed lethal doses from 501 to 1,000 ppm, and 34 species did not show lethal doses for low mortality (LD50 > 1,000 ppm).  相似文献   

20.
Recently, it was demonstrated that mosquito larvae can be killed by means of photodynamic processes after the larvae have incorporated the photosensitizer chlorophyllin or pheophorbid, and were treated with light. The water-soluble substances were applied to and incorporated by the larvae in darkness. With Chaoborus sp. a dark incubation of about 3 h is sufficient to yield mortality of about 90% and ≥6 h resulted in almost 100% mortality during subsequent illumination. Temperature did not influence mortality of the larvae significantly in a treatment of 6 h dark incubation and subsequent 3 h illumination. At 10°C, 20°C, or 30°C, between 80% and 100% of the treated larvae died when the light intensity from a solar simulator was above 30 W/m2. Lower irradiances were less effective. The LD50 value of magnesium chlorophyllin was about 22.25 mg/l and for Zn chlorophyll 17.53 mg/l, while Cu chlorophyll (LD50 0.1 mg/l) was shown to be toxic also without light. Chlorophyllin, which was lyophilized immediately after extraction, was far more lethal to the larvae (LD50 14.88 mg/l) than air-dried Mg chlorophyllin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号