首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The cerebrovascular coupling under neuronal nitric oxide synthase (nNOS) inhibition was investigated in alpha-chloralose anesthetized rats. Cerebral blood flow (CBF), cerebral blood volume (CBV), and blood oxygenation level dependent (BOLD) responses to electrical stimulation of the forepaw were measured before and after an intraperitoneal bolus of 7-nitroindazole (7-NI), an in vivo inhibitor of the neuronal isoform of nitric oxide synthase. Neuronal activity was measured by recording somatosensory-evoked potentials (SEPs) via intracranial electrodes. 7-Nitroindazole produced a significant attenuation of the activation-elicited CBF (P<10(-6)), CBV (P<10(-6)), and BOLD responses (P<10(-6)), without affecting the baseline perfusion level. The average DeltaCBF was nulled, while DeltaBOLD and DeltaCBV decreased to approximately 30% of their respective amplitudes before 7-NI administration. The average SEP amplitude decreased (P<10(-5)) to approximately 60% of its pretreatment value. These data describe a pharmacologically induced uncoupling between neuronal and hemodynamic responses to functional activation, and provide further support for the critical role of neuronally produced NO in the cerebrovascular coupling.  相似文献   

2.
The hemodynamic response to neural activity consists of changes in blood flow, blood volume and oxygen metabolism. Changes in the vascular state after sensory stimulation have different spatial and temporal characteristics in the brain. This has been shown using imaging techniques, such as BOLD functional magnetic resonance imaging (fMRI), which monitor vascular changes once the stimulus is turned on, and the eventual return to baseline levels, once the stimulus is turned off. The BOLD fMRI signal during sensory stimulation has been well characterized and modeled in terms of the spatial and temporal characteristics of the vascular response. However, the return of the signals to baseline levels after sensory stimulation is not as well characterized. During this period, a poststimulus undershoot in the BOLD signal is observed. This poststimulus undershoot has been modeled and investigated to characterize the physiological mechanisms (cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral oxygen consumption) associated with the response. However, the data in the literature, which lack any spatially dependent information, appear to be contradictory in terms of the mechanisms associated with this poststimulus response. With a high spatial resolution cat model at 9.4 T, we show that CBV changes in the tissue persist once the stimulus is turned off, while CBV changes in the surface vessels quickly return to baseline levels, despite a concurrent undershoot in the BOLD signal in both the tissue and surface vessel areas. In addition, the BOLD data alone indicate that different physiological mechanisms regulate the poststimulus response in the tissue versus the surface vessel regions.  相似文献   

3.
Recent reports showed noxious forepaw stimulation in rats evoked an unexpected sustained decrease in cerebral blood volume (CBV) in the bilateral striatum, whereas increases in spike activity and Fos-immunoreactive cells were observed. This study aimed to further evaluate the hemodynamic and metabolic needs in this model and the sources of negative functional magnetic resonance imaging (fMRI) signals by measuring blood oxygenation-level-dependent (BOLD), cerebral-blood-flow (CBF), CBV, and oxygen-consumption (i.e., cerebral metabolic rate of oxygen (CMRO2)) changes using an 11.7-T MRI scanner, and glucose-consumption (i.e., cerebral metabolic rate of glucose (CMRglc)) changes using micro-positron emission tomography. In the contralateral somatosensory cortex, BOLD, CBF, CBV, CMRO2 (n=7, P<0.05), and CMRglc (n=5, P<0.05) increased. In contrast, in the bilateral striatum, BOLD, CBF, and CBV decreased (P<0.05), CMRO2 decreased slightly, although not significantly from baseline, and CMRglc was not statistically significant from baseline (P>0.05). These multimodal functional imaging findings corroborate the unexpected negative hemodynamic changes in the striatum during noxious forepaw stimulation, and support the hypothesis that striatal hemodynamic response is dominated by neurotransmitter-mediated vasoconstriction, overriding the stimulus-evoked fMRI signal increases commonly accompany elevated neuronal activity. Multimodal functional imaging approach offers a means to probe the unique attributes of the striatum, providing novel insights into the neurovascular coupling in the striatum. These findings may have strong implications in fMRI studies of pain.  相似文献   

4.
The effect of the basal cerebral blood flow (CBF) on both the magnitude and dynamics of the functional hemodynamic response in humans has not been fully investigated. Thus, the hemodynamic response to visual stimulation was measured using blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in human subjects in a 7-T magnetic field under different basal conditions: hypocapnia, normocapnia, and hypercapnia. Hypercapnia was induced by inhalation of a 5% carbon dioxide gas mixture and hypocapnia was produced by hyperventilation. As the fMRI baseline signal increased linearly with expired CO2 from hypocapnic to hypercapnic levels, the magnitude of the BOLD response to visual stimulation decreased linearly. Measures of the dynamics of the visually evoked BOLD response (onset time, full-width-at-half-maximum, and time-to-peak) increased linearly with the basal fMRI signal and the end-tidal CO2 level. The basal CBF level, modulated by the arterial partial pressure of CO2, significantly affects both the magnitude and dynamics of the BOLD response induced by neural activity. These results suggest that caution should be exercised when comparing stimulus-induced fMRI responses under different physiologic or pharmacologic states.  相似文献   

5.
The blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) method, which is sensitive to vascular paramagnetic deoxyhemoglobin, is dependent on regional values of cerebral metabolic rate of oxygen utilization (CMR(O2)), blood flow (CBF), and volume (CBV). Induced changes in deoxyhemoglobin function as an endogenous contrast agent, which in turn affects the transverse relaxation rates of tissue water that can be measured by gradient-echo and spin-echo sequences in BOLD fMRI. The purpose here was to define the quantitative relation between BOLD signal change and underlying physiologic parameters. To this end, magnetic resonance imaging and spectroscopy methods were used to measure CBF, CMR(O2), CBV, and relaxation rates (with gradient-echo and spin-echo sequences) at 7 Tesla in rat sensorimotor cortex, where cerebral activity was altered pharmacologically within the autoregulatory range. The changes in tissue transverse relaxation rates were negatively and linearly correlated with changes in CBF, CMR(O2), and CBV. The multiparametric measurements revealed that CBF and CMR(O2) are the dominant physiologic parameters that modulate the BOLD fMRI signal, where the ratios of (deltaCMR(O2)/CMR(O2)/(deltaCBF/ CBF) and (deltaCBV/CBV)/(deltaCBF/CBF) were 0.86 +/- 0.02 and 0.03 +/- 0.02, respectively. The calibrated BOLD signals (spatial resolution of 48 microL) from gradient-echo and spin-echo sequences were used to predict changes in CMR(O2) using measured changes in CBF, CBV, and transverse relaxation rates. The excellent agreement between measured and predicted values for changes in CMR(O2) provides experimental support of the current theory of the BOLD phenomenon. In gradient-echo sequences, BOLD contrast is affected by reversible processes such as static inhomogeneities and slow diffusion, whereas in spin-echo sequences these effects are refocused and are mainly altered by extravascular spin diffusion. This study provides steps by which multiparametric MRI measurements can be used to obtain high-spatial resolution CMR(O2) maps.  相似文献   

6.
The magnitude of the blood oxygenation level-dependent (BOLD) signal depends on cerebral blood flow (CBF), cerebral blood volume (CBV) and cerebral metabolic rate of oxygen (CMRO2). Thus, it is difficult to separate CMRO2 changes from CBF and CBV changes. To detect the BOLD signal changes induced only by CMRO2 responses without significant evoked CBF and CBV changes, BOLD and CBV functional magnetic resonance imaging (fMRI) responses to visual stimulation were measured under normal and hypotension conditions in isoflurane-anesthetized cats at 4.7 T. When the mean arterial blood pressure (MABP) decreased from 89+/-10 to 50+/-1 mm Hg (mean+/-standard deviation, n=5) by infusion of vasodilator sodium nitroprusside, baseline CBV in the visual cortex increased by 28.4%+/-8.3%. The neural activity-evoked CBV increase in the visual cortex was 10.8%+/-3.9% at normal MABP, but was negligible at hypotension. Positive BOLD changes of +1.8%+/-0.5% (gradient echo time=25 ms) at normal MABP condition became prolonged negative changes of -1.2%+/-0.3% at hypotension. The negative BOLD response at hypotension starts approximately 1 sec earlier than positive BOLD response, but similar to CBV change at normal MABP condition. Our finding shows that the negative BOLD signals in an absence of CBV changes are indicative of an increase in CMRO2. The vasodilator-induced hypotension model simplifies the physiological source of the BOLD fMRI signals, providing an insight into spatial and temporal CMRO2 changes.  相似文献   

7.
This article describes the effects of dexmedetomidine (DEX) – the active ingredient of medetomidine, which is the latest popular sedative for functional magnetic resonance imaging (fMRI) in rodents – on multiple unit activity, local field potential (LFP), cerebral blood flow (CBF), pial vessel diameter [indicative of cerebral blood volume (CBV)], and blood oxygenation level‐dependent (BOLD) fMRI. These measurements were obtained from the rat somatosensory cortex during 10 s of forepaw stimulation. We found that the continuous intravascular systemic infusion of DEX (50 μg/kg/h, doses typically used in fMRI studies) caused epileptic activities, and that supplemental isoflurane (ISO) administration of ~0.3% helped to suppress the development of epileptic activities and maintained robust neuronal and hemodynamic responses for up to 3 h. Supplemental administration of N2O in addition to DEX nearly abolished hemodynamic responses even if neuronal activity remained. Under DEX + ISO anesthesia, spike firing rate and the delta power of LFP increased, whereas beta and gamma power decreased, as compared with ISO‐only anesthesia. DEX administration caused pial arteries and veins to constrict nearly equally, resulting in decreases in baseline CBF and CBV. Evoked LFP and CBF responses to forepaw stimulation were largest at a frequency of 8–10 Hz, and a non‐linear relationship was observed. Similarly, BOLD fMRI responses measured at 9.4 T were largest at a frequency of 10 Hz. Both pial arteries and veins dilated rapidly (artery, 32.2%; vein, 5.8%), and venous diameter returned to baseline slower than arterial diameter. These results will be useful for designing, conducting and interpreting fMRI experiments under DEX sedation.  相似文献   

8.
Standard functional magnetic resonance imaging (fMRI) requires alternations between activation (ON) and baseline (OFF) periods to map the haemodynamic response to neuronal activation. Consequently, standard fMRI cannot map continuous activations in conditions like tinnitus without an ON-OFF paradigm. We present a novel approach to fMRI that allows mapping of continuous neuronal activation. Compared with standard fMRI, we introduced the application of CO(2) as potent vasodilator. CO(2) induces a 'global' blood oxygenation level-dependent (BOLD) response. The neurovascular coupling in conjunction with the limited cerebral vasodilation implies a limitation or ceiling of the BOLD response. We hypothesize that active areas exhibit a reduced CO(2)-induced DeltaBOLD due to pre-existing 'local' task-induced BOLD response. This putative reduction in DeltaBOLD might be exploited for mapping of continuous neuronal activation. BOLD ceiling fMRI was tested in the auditory system. Six healthy subjects performed three runs: only continuous monaural auditory; only 10% CO(2); simultaneous auditory and CO(2) stimulation. First, we demonstrated the ceiling of DeltaBOLD during continuous auditory activation. According to the known predominantly contralateral auditory processing, monaural auditory stimulation reduced predominantly contralateral (0.41 +/- 0.13%; P < 0.00001) and significantly less (P < 0.0001) ipsilateral DeltaBOLD (0.33 +/- 0.17%; P < 0.00001). The non-auditory area was not affected. Second, this BOLD ceiling was exploited to generate an initial activation map of continuous auditory activation (ON period). In contrast to standard fMRI, an OFF period without neuronal activation was not required. BOLD ceiling fMRI is proposed as a complement to standard fMRI for those conditions where ON-OFF paradigms are impossible.  相似文献   

9.
After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O(2) utilization (CMRO(2)), (5) dynamic responses of BOLD, CBF, CMRO(2), and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means.  相似文献   

10.
Quantifying both arterial cerebral blood volume (CBV(a)) changes and total cerebral blood volume (CBV(t)) changes during neural activation can provide critical information about vascular control mechanisms, and help to identify the origins of neurovascular responses in conventional blood oxygenation level dependent (BOLD) magnetic resonance imaging (MRI). Cerebral blood flow (CBF), CBV(a), and CBV(t) were quantified by MRI at 9.4 T in isoflurane-anesthetized rats during 15-s duration forepaw stimulation. Cerebral blood flow and CBV(a) were simultaneously determined by modulation of tissue and vessel signals using arterial spin labeling, while CBV(t) was measured with a susceptibility-based contrast agent. Baseline versus stimulation values in a region centered over the somatosensory cortex were: CBF=150+/-18 versus 182+/-20 mL/100 g/min, CBV(a)=0.83+/-0.21 versus 1.17+/-0.30 mL/100 g, CBV(t)=3.10+/-0.55 versus 3.41+/-0.61 mL/100 g, and CBV(a)/CBV(t)=0.27+/-0.05 versus 0.34+/-0.06 (n=7, mean+/-s.d.). Neural activity-induced absolute changes in CBV(a) and CBV(t) are statistically equivalent and independent of the spatial extent of regional analysis. Under our conditions, increased CBV(t) during neural activation originates mainly from arterial rather than venous blood volume changes, and therefore a critical implication is that venous blood volume changes may be negligible in BOLD fMRI.  相似文献   

11.
Neurovascular coupling mechanisms give rise to vasodilation and functional hyperemia upon neural activation, thereby altering blood oxygenation. This blood oxygenation level dependent (BOLD) contrast allows studies of activation patterns in the working human brain by functional MRI (fMRI). The BOLD‐weighted fMRI signal shows characteristic transients in relation to functional activation, such as the so‐called initial dip, overshoot, and post‐stimulus undershoot. These transients are modulated by other physiological stimuli and in disease, but the underlying physiological mechanisms remain incompletely understood. Capillary transit time heterogeneity (CTH) has been shown to affect oxygen extraction, and hence blood oxygenation. Here, we examine how recently reported redistributions of capillary blood flow during functional activation would be expected to affect BOLD signal transients. We developed a three‐compartment (hemoglobin, plasma, and tissue) model to predict the BOLD signal, incorporating the effects of dynamic changes in CTH. Our model predicts that the BOLD signal represents the superposition of a positive component resulting from increases in cerebral blood flow (CBF), and a negative component, resulting from elevated tissue metabolism and homogenization of capillary flows (reduced CTH). The model reproduces salient features of BOLD signal dynamics under conditions such as hypercapnia, hyperoxia, and caffeine intake, where both brain physiology and BOLD characteristics are altered. Neuroglial signaling and metabolism could affect CBF and capillary flow patterns differently. Further studies of neurovascular and neuro‐capillary coupling mechanisms may help us relate BOLD signals to the firing of certain neuronal populations based on their respective BOLD “fingerprints.”  相似文献   

12.
In this work, we combined optogenetic tools with high-resolution blood oxygenation level-dependent functional MRI (BOLD fMRI), electrophysiology, and optical imaging of cerebral blood flow (CBF), to study the spatial correlation between the hemodynamic responses and neuronal activity. We first investigated the spatial and temporal characteristics of BOLD fMRI and the underlying neuronal responses evoked by sensory stimulations at different frequencies. The results demonstrated that under dexmedetomidine anesthesia, BOLD fMRI and neuronal activity in the rat primary somatosensory cortex (S1) have different frequency–dependency and distinct laminar activation profiles. We then found that localized activation of channelrhodopsin-2 (ChR2) expressed in neurons throughout the cortex induced neuronal responses that were confined to the light stimulation S1 region (<500 μm) with distinct laminar activation profile. However, the spatial extent of the hemodynamic responses measured by CBF and BOLD fMRI induced by both ChR2 and sensory stimulation was greater than 3 mm. These results suggest that due to the complex neurovascular coupling, it is challenging to determine specific characteristics of the underlying neuronal activity exclusively from the BOLD fMRI signals.  相似文献   

13.
To date, functional magnetic resonance imaging (fMRI) studies of the lateral geniculate nucleus (LGN) have primarily focused on measures of the blood oxygenation level dependent (BOLD) signal. Arterial spin labeling (ASL) is an MRI method that can provide direct measures of functional cerebral blood flow (CBF) changes. Because CBF is a well-defined physiological quantity that contributes to BOLD contrast, CBF measures can be used to improve the quantitative interpretation of fMRI studies. However, due in part to the low intrinsic signal-to-noise ratio of the ASL method, measures of functional CBF changes in the LGN are challenging and have not previously been reported. In this study, we demonstrate the feasibility of using ASL fMRI to measure the CBF response of the LGN to visual stimulation on a 3 T MRI system. The use of background suppression and physiological noise reduction techniques allowed reliable detection of LGN activation in all five subjects studied. The measured percent CBF response during activation ranged from 40 to 100%, assuming no interaction between the left and right LGN.  相似文献   

14.
The hemodynamic mechanism of increase in cerebral blood flow (CBF) during neural activation has not been elucidated in humans. In the current study, changes in both regional CBF and cerebral blood volume (CBV) during visual stimulation in humans were investigated. Cerebral blood flow and CBV were measured by positron emission tomography using H(2)(15)O and (11)CO, respectively, at rest and during 2-Hz and 8-Hz photic flicker stimulation in each of 10 subjects. Changes in CBF in the primary visual cortex were 16% +/- 16% and 68% +/- 20% for the visual stimulation of 2 Hz and 8 Hz, respectively. The changes in CBV were 10% +/- 13% and 21% +/- 5% for 2-Hz and 8-Hz stimulation, respectively. Significant differences between changes in CBF and CBV were observed for visual stimulation of 8 Hz. The relation between CBF and CBV values during rest and visual stimulation was CBV = 0.88CBF(0.30). This indicates that when the increase in CBF during neural activation is great, that increase is caused primarily by the increase in vascular blood velocity rather than by the increase in CBV. This observation is consistent with reported findings obtained during hypercapnia.  相似文献   

15.
The close correspondence between neural activity in the brain and cerebral blood flow (CBF) forms the basis for modern functional neuroimaging methods. Yet, the temporal characteristics of hemodynamic changes induced by neuronal activity are not well understood. Recent optical imaging observations of the time course of deoxyhemoglobin (HbR) and oxyhemoglobin have suggested that increases in oxygen consumption after neuronal activation occur earlier and are more spatially localized than the delayed and more diffuse CBF response. Deoxyhemoglobin can be detected by blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI). In the present study, the temporal characteristics of CBF and BOLD changes elicited by somatosensory stimulation in rat were investigated by high-field (9.4 T) MRI. With use of high-temporal-resolution fMRI, it was found that the onset time of the CBF response in the somatosensory cortex was 0.6 +/- 0.4 seconds (n = 10). The CBF changes occurred significantly earlier than changes in HbR concentration, which responded after 1.1 +/- 0.3 seconds. Furthermore, no early increases in HbR (early negative BOLD signal changes) were observed. These findings argue against the occurrence of an early loss of hemoglobin oxygenation that precedes the rise in CBF and suggest that CBF and oxygen consumption increases may be dynamically coupled in this animal model of neural activation.  相似文献   

16.
Calibrated functional magnetic resonance imaging (fMRI) provides a noninvasive technique to assess functional metabolic changes associated with normal aging. We simultaneously measured both the magnitude of the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) responses in the visual cortex for separate conditions of mild hypercapnia (5% CO(2)) and a simple checkerboard stimulus in healthy younger (n = 10, mean: 28-years-old) and older (n = 10, mean: 53-years-old) adults. From these data we derived baseline CBF, the BOLD scaling parameter M, the fractional change in the cerebral metabolic rate of oxygen consumption (CMRO(2)) with activation, and the coupling ratio n of the fractional changes in CBF and CMRO(2). For the functional activation paradigm, the magnitude of the BOLD response was significantly lower for the older group (0.57 +/- 0.07%) compared to the younger group (0.95 +/- 0.14%), despite the finding that the fractional CBF and CMRO(2) changes were similar for both groups. The weaker BOLD response for the older group was due to a reduction in the parameter M, which was significantly lower for older (4.6 +/- 0.4%) than younger subjects (6.5 +/- 0.8%), most likely reflecting a reduction in baseline CBF for older (41.7 +/- 4.8 mL/100 mL/min) compared to younger (59.6 +/- 9.1 mL/100 mL/min) subjects. In addition to these primary responses, for both groups the BOLD response exhibited a post-stimulus undershoot with no significant difference in this magnitude. However, the post-undershoot period of the CBF response was significantly greater for older compared to younger subjects. We conclude that when comparing two populations, the BOLD response can provide misleading reflections of underlying physiological changes. A calibrated approach provides a more quantitative reflection of underlying metabolic changes than the BOLD response alone.  相似文献   

17.
Combined functional, perfusion and diffusion magnetic resonance imaging (MRI) with a temporal resolution of 30 mins was performed on permanent and transient focal ischemic brain injury in rats during the acute phase. The apparent diffusion coefficient (ADC), baseline cerebral blood flow (CBF), and functional MRI (fMRI) blood-oxygen-level-dependent (BOLD), CBF, and CMRO(2) responses associated with CO(2) challenge and forepaw stimulation were measured. An automated cluster analysis of ADC and CBF data was used to track the spatial and temporal progression of different tissue types (e.g., normal, 'at risk,' and ischemic core) on a pixel-by-pixel basis. With permanent ischemia (n=11), forepaw stimulation fMRI response in the primary somatosensory cortices was lost, although vascular coupling (CO(2) response) was intact in some animals. Control experiments in which the right common carotid artery was ligated without causing a stroke (n=8) showed that the delayed transit time had negligible effect on the fMRI responses in the primary somatosensory cortices. With temporary (15-mins, n=8) ischemia, transient CBF and/or ADC declines were observed after reperfusion. However, no T(2) or TTC lesions were observed at 24 h except in two animals, which showed very small subcortical lesions. Vascular coupling and forepaw fMRI response also remained intact. Finally, comparison of the relative and absolute fMRI signal changes suggest caution when interpreting percent changes in disease states in which the baseline signals are physiologically altered; quantitative CBF fMRI are more appropriate measures. This approach provides valuable information regarding ischemic tissue viability, vascular coupling, and functional integrity associated with ischemic injury and could have potential clinical applications.  相似文献   

18.
The poststimulus blood oxygenation level-dependent (BOLD) undershoot has been attributed to two main plausible origins: delayed vascular compliance based on delayed cerebral blood volume (CBV) recovery and a sustained increased oxygen metabolism after stimulus cessation. To investigate these contributions, multimodal functional magnetic resonance imaging was employed to monitor responses of BOLD, cerebral blood flow (CBF), total CBV, and arterial CBV (CBVa) in human visual cortex after brief breath hold and visual stimulation. In visual experiments, after stimulus cessation, CBVa was restored to baseline in 7.9±3.4 seconds, and CBF and CBV in 14.8±5.0 seconds and 16.1±5.8 seconds, respectively, all significantly faster than BOLD signal recovery after undershoot (28.1±5.5 seconds). During the BOLD undershoot, postarterial CBV (CBVpa, capillaries and venules) was slightly elevated (2.4±1.8%), and cerebral metabolic rate of oxygen (CMRO2) was above baseline (10.6±7.4%). Following breath hold, however, CBF, CBV, CBVa and BOLD signals all returned to baseline in ∼20 seconds. No significant BOLD undershoot, and residual CBVpa dilation were observed, and CMRO2 did not substantially differ from baseline. These data suggest that both delayed CBVpa recovery and enduring increased oxidative metabolism impact the BOLD undershoot. Using a biophysical model, their relative contributions were estimated to be 19.7±15.9% and 78.7±18.6%, respectively.  相似文献   

19.
The ability of the magnetic resonance imaging transverse relaxation time, R2 = 1/T2, to quantify cerebral blood volume (CBV) without the need for an exogenous contrast agent was studied in cats (n = 7) under pentobarbital anesthesia. This approach is possible because R2 is directly affected by changes in CBF, CBV, CMRO2, and hematocrit (Hct), a phenomena better known as the blood-oxygenation-level-dependent (BOLD) effect. Changes in CBF and CBV were accomplished by altering the carbon dioxide pressure, PaCO2, over a range from 20 to 140 mm Hg. For each PaCO2 value, R2 in gray and white matter were determined using MRI, and the whole-brain oxygen extraction ratio was obtained from arteriovenous differences (sagittal sinus catheter). Assuming a constant CMRO2, the microvascular CBV was obtained from an exact fit to the BOLD theory for the spin-echo effect. The resulting CBV values at normal PaCO2 and normalized to a common total hemoglobin concentration of 6.88 mmol/L were 42+/-18 microL/g (n = 7) and 29+/-19 microL/g (n = 5) for gray and white matter, respectively, in good agreement with the range of literature values published using independent methodologies. The present study confirms the validity of the spin-echo BOLD theory and, in addition, shows that blood volume can be quantified from the magnetic resonance imaging spin relaxation rate R2 using a regulated carbon dioxide experiment.  相似文献   

20.
The new clinically available arterial spin labeling (ASL) perfusion imaging sequences present some advantages relatively to the commonly used blood oxygen level‐dependent (BOLD) method for functional brain studies using magnetic resonance imaging (MRI). In particular, regional cerebral blood flow (CBF) changes are thought to be more directly related with neuronal activation. In this study, we aimed to investigate the accuracy of the functional localization of the hand motor area obtained by simultaneous CBF and BOLD contrasts provided by ASL functional MRI (fMRI) and compare it with a standard BOLD fMRI protocol. For this purpose, we measured the distance between the center of gravity of the activation clusters obtained with each contrast (CBF, BOLDASL, and Standard BOLD) and 11 positions defined on a well‐established anatomical landmark of the hand motor area (the omega in the axial plane of the precentral gyrus). We found that CBF measurements were significantly closer to the anatomical landmark than the ones obtained using either simultaneous BOLDASL or standard BOLD contrasts. Moreover, we also observed reduced intersubject variability of the functional localization, as well as percent signal change, for CBF relative to both BOLD contrast measurements. In conclusion, our results add further evidence in support to the notion that CBF provides a more accurate localization of motor activation than BOLD contrast, indicating that ASL may be an appropriate technique for clinical fMRI studies. Hum Brain Mapp, 2013. © 2011 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号