首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cross-sectional, population-based study of 238 randomly selected females and 224 males with German ethnic background (aged 20–80 years) was carried out to establish lumbar spine bone mineral density (BMD) values, using dual X-ray absorptiometry (DXA), for a German population. Comparison was made to the reference range provided by the manufacturer of the DXA equipment. No sex difference in peak spine BMD was found in our study (1.091±0.114 g/cm2 for males versus 1.070±0.113 g/cm2 for females, n.s.). Different patterns of bone loss could be detected in both sexes. In premenopausal women there was no significant correlation between age and BMD (y = 1.044 + 0.00047x, r=0.03, P=0.73) whereas reduction of female BMD at the spine was demonstrated in postmenopausal women (y = 1.189–0.0041x, r=-0.28, P=0.01), underscoring the important role of the menopause for later manifestation of spinal osteoporosis in women. In contrast, in males we found no significant change of BMD with aging (y = 1.071–0.0007x, r=-0.08, P=0.25). Employing commonly used exclusion criteria, BMD values of the study subjects were found mostly within the normal range of BMD. The major finding of our study was good concordance between female data of our study population and the reference data provided by the manufacturer. Clinically significant discrepancies between our data and the Hologic reference range for males could be detected. Our data on males (30–39 years of age) were up to 7% lower than those provided by the manufacturer, probably due to differences in sampling procedures.  相似文献   

2.
Summary A cross-sectional study of 351 healthy Finnish women aged 20–76 years was done to establish reference values of bone mineral density (BMD) using dual-energy X-ray absorptiometry (DEXA). The effects of age and of several physical and lifestyle factors on BMD of the lumbar spine and proximal femur (femoral neck, trochanter, and Ward's triangle area) were investigated. Altogether 58 women were excluded from the final analysis due to significant spinal osteoarthritis or other diseases or drugs known to influence calcium or bone metabolism. The precision of the method was 0.9, 1.2, 2.7, and 2.4% in the lumbar, femoral neck, Ward's triangle and trochanter area, respectively. Lumbar BMD was increased by 30% (P<0.001) in 15 patients with osteoarthritis (21% of women 50 years or older), but it was apparently unaffected in 5 cases with aortic calcification. Except for the trochanter area, BMD diminished along with age, and this was significant after the menopause. The peak of mean BMD was observed at the age of 31–35 years in the spine and at the age of 20–25 years in the femoral neck and Ward's triangle. BMD was in a positive relationship to weight both in premenopausal and postmenopausal women and to the use of oral contraceptives in premenopausal women and to that of estrogen replacement therapy in postmenopausal women. Labors and pregnancies had a weak positive effect on BMD in premenopausal women. As compared with nonusers premenopausal women who had used alcohol showed a slightly decreased BMD of Ward's triangle. In postmenopausal women there was a positive correlation between alcohol intake and BMD.  相似文献   

3.
Dual-energy X-ray absorptiometry (DXA) of the lumbar spine provides an estimation of the bone mineral content (BMC) corrected by the projected area of the spine and expressed in g/cm2. This two-dimensional estimate of the bone mineral density (BMD) is influenced by the skeletal size, assessed by the subject's height. In order to obtain an estimate of the volumetric BMD, we measured BMC with a new DXA device (Sophos L-XRA) equipped with 24 detectors and a rotating arm, thus allowing scanning of the lumbar spine in both an anteroposterior (AP) projection and a lateral (LAT) projection with the patient in a supine position. Comparison between the results obtained on the third (L3) and fourth (L4) lumbar vertebrae with automatic or manual analysis showed that the best precision was obtained with the lateral measurement of L3 alone with an automatic soft tissue baseline determination. Results were expressed in g/cm2 and in g/cm3 (by dividing the g/cm2 value by the width (AP area divided by the height of the vertebra) of L3), and were compared with those obtained by conventional AP scanning of L2–4 (g/cm2). The in vivo precision error evaluated by triplicate measurements on 10 controls was 17 mg/cm2 (1.96%) and 5.2 mg/cm3 (2.31%) for LAT L3 as compared with 13 mg/cm2 (1.15%) for AP L2–4. Volumetric BMD (g/cm3) measurement, assessed in vitro on a calibrated hydroxyapatite phantom, and the absolute values obtained in normal women were similar to those obtained by quantitative computed tomography (QCT). In 39 healthy adults (27±4 years) BMD expressed in g/cm2 was correlated with height (r=0.36 for AP L2–4 andr=0.39 for LAT L3;p<0.05 for both) but not with LAT L3 BMD expressed in g/cm3 (r=0.02; NS). The age-related bone loss between 30 and 80 years of age, derived from the normal values for 101 healthy women (age range 19–73 years) was 36% for AP L2–4, 52% for LAT L3 (g/cm2) and 60% for LAT L3 (g/cm3). In a group of 22 women with untreated postmenopausal vertebral osteoporosis (one or more non-traumatic vertebral crush fractures) the mean decrease in BMD, expressed as a percentage of the age-adjusted normal value, was more pronounced (p<0.001) for LAT L3 BMD (–21% in g/cm2,Z-score –1.08; –22% in g/cm3,Z-score –0.94) than for AP L2–4 BMD (–9%,Z-score –0.66). We conclude that: 1) BMD measurement restricted to the vertebral body of L3 can be achieved with a low precision error with this new DXA device; 2) it allows an estimate of the volumetric density (g/cm3) which does not seem to be influenced by skeletal size; 3) lateral BMD appears to be more sensitive than conventional AP scanning for assessing age-related bone loss and should be useful in the investigation of trabecular osteoporosis.  相似文献   

4.
Summary Radial diaphyseal bone mineral density (BMD) was measured at the standard one-third site by dual-energy X-ray absorptiometry (DEXA) and by125I single photon absorptiometry (SPA) in 70 consecutive subjects, aged 12–86 years, with metabolic disorders of the skeleton. Each patient was measured once by the DEXA (Hologic QDR-1000) instrument and four times by the SPA (Norland 2780) instrument on the same day by one or the other of 2 technicians. The DEXA and SPA measurements were linearly related and highly correlated (r=0.975,P<0.0001) over a range from severe osteopenia to high normal BMD. Ninety-five percent of the variation in the BMD determined by SPA was accounted for by DEXA, so that the BMDSPA=1.035±0.027 (SEM)×BMDDEXA−0.007±0.019 (SEM). This permits continued use of previously accumulated SPA databases. The coefficient of variation for repeat measurements by DEXA was 1.2% and by SPA 1.6%. Examination time by DEXA was 6–7 minutes, about 45% shorter than the corresponding SPA determinations. DEXA is the superior method for evaluation of the radius, as it provides faster and more precise measurements in clinical practice.  相似文献   

5.
Summary  Using national Medicare data from 1999–2006, we evaluated the relationship between travel distance and receipt of dual-energy X-ray absorptiometry (DXA). After adjusting for potentially confounding factors, travel distance was strongly associated with DXA testing. Rural residents were most strongly dependent on the availability of DXAs performed in physician offices. Introduction  Medicare reimbursement for DXAs performed in non-facility settings (e.g., physician offices) decreased in 2007. With declining reimbursement, some DXA providers may cease providing this service, which would increase travel distance for some people. The impact of travel distance on access to DXA is unclear. Methods  Using national Medicare data, we identified claims for DXA to evaluate trends in the number and locations of DXAs performed. Travel distance was the distance from beneficiaries’ residence and the nearest DXA provider. Binomial regression evaluated the relationship between travel distance and receipt of DXA. Results  In 2006, 2.9 million DXAs were performed, a 103% increase since 1999. In 2005–2006, 8.0% of persons were tested at non-facility sites versus 4.2% at facility sites. The remainder (88%) had no DXA. Persons traveling 5–9, 10–24, 25–39, and 40–54, and ≥55 miles were less likely to receive DXA (adjusted risk ratios = 0.92, 0.79, 0.43, 0.32, and 0.26, respectively, <5 miles referent). Rural residents were more dependent than urban residents on the availability of DXA from non-facility providers. Conclusion  Approximately two-thirds of DXAs in 2005–2006 were performed in non-facility settings (e.g., physician offices). Rural residents would have preferentially reduced access to DXA if there were fewer non-facility sites.  相似文献   

6.
Dual-photon absorptiometry (DPA) is a well-established procedure for measuring bone mineral density (BMD). Recently, dual-energy X-ray absorptiomery (DXA) has become available, which has the ability to measure BMD both regionally and in the total body (TB). We have evaluated the in vivo and in vitro precision of a DXA instrument and compared it with a DPA instrument with similar software characteristics.The short-term precision of BMD measurements using DXA was assessed in 65 postmenopausal women who had duplicate scans performed, with repositioning between scans. Precision was 0.9% in the lumbar spine and 1.4% in the femoral neck.The midterm precision of DXA was compared with DPA by scanning 10 volunteers a mean of four times over 24 weeks, on both instruments. The precision of the bone mineral content (BMC) and area measurements was significantly better (P<0.05) with DXA than with DPA. Long-term in vitro precision was assessed by scanning an aluminium spine phantom over 42 weeks, and a cadaveric sample over 52 weeks, on both instruments. Precision was similar using the aluminium phantom, but was significantly improved (P<0.001) when using DXA for scanning the cadaveric sample.Highly significant correlations (allP<0.001) of BMD, BMC and area measurements were observed when 70 volunteers were scanned on both instruments. However, there was a systematic difference in BMD values between the instruments. The precision of TB composition measurements assessed in 16 volunteers, over a 16-week period, were TB BMD 0.65%, TB lean tissue 1.47%, and TB fat tissue 2.73%. The correlation between weight measured by electronic scales and TB mass as measured by DXA, which was assessed in 70 volunteers, was excellent (r=0.99,p<0.001).We conclude that DXA offers improvements in measuring BMD over DPA in terms of faster scanning times and improved resolution, resulting in better precision, with the additional advantage of the ability to measure TB composition with high precision.  相似文献   

7.
The bone mineral density (BMD) of lumbar vertebrae in the anteroposterior (AP) view may be overestimated in osteoarthritis or with aortic calcification, which are common in elderly. Furthermore, the risk of spinal crush fracture should be more closely related inversely to the BMD of the vertebral body than to that of the posterior arch. Therefore, we measured BMD of lumbar vertebrae in lateral (LAT) view (L2–L3), using a standard dual-energy X-ray absorptiometer (DEXA), thus eliminating most of the posterior spinal elements. The precision of BMD LAT measurement was determined both in vitro and in healthy volunteers. Then, we compared the capability of BMD LAT and BMD AP scans for monitoring bone loss related to age and for discriminating the BMD of postmenopausal women with nontraumatic vertebral fractures from that of young subjects. In vitro, when a spine phantom was placed in lateral position in the middle of 26 cm of water in order to simulate both soft-tissue thickness and X-ray source remoteness, the coefficient of variation (CV) of six repeated determinations of BMD was 1.0%. In vivo, the CV of paired BMD LAT measurements obtained in 20 healthy volunteers after repositioning was 2.8%. The age-related difference between a peak bone mass group estimated in a group of 27 healthy women aged 20 to 35 years and a group of 50 women aged 60 to 75 years, in whom neither vertebral fracture nor osteoporosis risk factors could be detected, were 21.7% and 37.6% in AP and LAT view, respectively. An arbitrary BMD fracture threshold was defined in AP and LAT views as the 90th percentile of the BMD value of a group of 22 osteoporotic women with vertebral fractures. The distribution of BMD AP and LAT above and below this threshold in 169 consecutively screened women without vertebral fracture was then analysed. In both AP and LAT views, 39.1% and 31.3% had BMD values above and below this threshold, respectively. Of the remaining, 16.0% had a BMD below this threshold only in AP and 13.6% only in LAT view. Thus, if BMD LAT was a better reflection of vertebral body bone mass than BMD AP, and thereby a better predictor of the resistance to crush fracture, our results would suggest that only the use of the standard AP view could under- or overestimate spinal fracture risk in about 30% of women screened for osteoporosis. In conclusion, our results indicate that BMD measurement in lateral view is feasible with a standard DEXA instrument. This mode of scanning, besides overcoming artefacts due to osteoarthritis of the posterior arch and aortic calcifications, appears to provide a greater sensitivity for assessing bone mass loss of the vertebral body than the standard anteroposterior scan.  相似文献   

8.
Periprosthetic bone mineral density (BMD) and its changes after primary total hip arthroplasty (THA) have been studied extensively, but quantitative data on BMD around loosened prostheses are still lacking. In this study, using dual-energy X-ray absorptiometry (DXA), we determined periprosthetic BMD in 19 patients with failed primary THA. There was a decrease in BMD (8.8%–25.5%) in every Gruen zone as compared with the patient's non-operated (control) side. Although the bone loss was most significant in the proximal femur, as in primary THA, the pattern of bone loss around the failed THA differred from the typical remodeling seen after successful THA. We suggest that quantitation of bone mass around the failed femoral stem is possible. Remarkable generalized bone loss around the stem is associated with a loosened prosthesis. Received: November 12, 1999 / Accepted: December 24, 1999  相似文献   

9.
Summary Two dual-energy X-ray absorptiometry (DEXA) systems—the Hologic QDR-1000 and the Norland XR-26 bone densitometers—were evaluated in terms of precision, accuracy, linearity of response, X-ray exposure, and correlation of in vivo spinal measurements. In vitro precision and accuracy studies were performed using the Hologic anthropomorphic spine phantom; linearity of response was determined with increasing thicknesses of aluminum slabs and concentrations of Tums E-X in a constant-level water bath. Both systems were comparable in precision, achieving coefficients of variation (CVs) of less than 1% in bone mineral content (BMC, g), bone area (cm2), and bone mineral density (BMD, g/cm2). Both were accurate in their determination of BMC, bone area, and BMD with reference to the Hologic spine phantom. Both systems also showed good BMC and BMD linearity of response. Measured X-ray skin surface exposures for the Hologic and the Norland systems were 3.11 and 3.02 mR, respectively. In vivo spinal measurements (n=65) on the systems were highly correlated (BMC: r=0.993, SEE=1.770 g; area: r=0.984, SEE=1.713 cm2; BMD: r=0.990, SEE=0.028 g/cm2). In conclusion, both systems are comparable in terms of precision, accuracy, linearity of response, and exposure efficiency.  相似文献   

10.
双能X线骨密度仪检测骨密度是诊断骨质疏松症和疗效随访的金标准,特别是髋部骨密度的测量对于骨折的预测尤其测定部位本身骨折的预测作用较大.由于脊柱部位的骨密度测量值易受到脊柱退行性疾病的病理改变如退行性侧凸、骨赘增生、腰椎间盘突出等影响,测量的准确性下降.因而近年来欧美国家临床试验也好或者骨质疏松诊疗也好,大都以股骨近端的BMD测定为标准.本文就股骨近端解剖特点、骨密度测量的意义、方法以及测量的注意点作一个综述,以期帮助临床医生或技术员全面评估股骨近端骨密度测定的意义.  相似文献   

11.
We compared quantitative computed tomography (QCT) and dual X-ray absorptiometry (DXA) with respect to their ability to discriminate subjects with and without prevalent vertebral fractures. In 240 post-menopausal women (mean age 63.7±6.9 years) lateral spine radiographs (T4-L4) were reviewed for the presence of vertebral fracture. Using a semiquantitative technique to grade the severity of vertebral deformities, we classified fractures as mild, moderate or severe (grade 1 to 3, respectively). Postero-anterior DXA (PA-DXA) and lateral DXA (L-DXA) measurements (L2–4) as well as QCT measurements of the lumbar spine (T12-L3 or L1–14) were obtained in all women. Seventy-two women were diagnosed with at least one fracture, and of these 40 were graded as mild. Comparing normal women with fractured women, we found the area under the receiver operating characteristics (ROC) curves to be greatest for QCT (0.81), followed by L-DXA (0.72) and PA-DXA (0.65). The differences among all three techniques were significant. Comparing the normal women with women having only mild fractures, the areas under the ROC curves were 0.79, 0.73 and 0.63 for QCT, L-DXA and PA-DXA, respectively. Significant differences existed between QCT and PA-DXA as well as between L-DXA and PA-DXA. Logistic regression analysis also revealed the highest age-adjusted odds ratios for QCT (3.67; 2.25–5.97) while L-DXA and PA-DXA showed substantially lower odds ratios (2.00; 1.39–2.87, and 1.54; 1.11–2.15, respectively). We conclude that low bone density as measured by QCT, PA-DXA or L-DXA is significantly associated with the prevalence of vertebral fractures. Of the methods studied, QCT of trabecular bone offered the best discriminatory capability. L-DXA proved to be superior to PA-DXA in its diagnostic sensitivity, particularly in women with mild fracture. Mild vertebral fractures are associated with decreased spinal bone density and may be regarded as osteoporotic deformities.  相似文献   

12.
Lumbar spine bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry (DXA) (Hologic QDR 1000) and by153Gd dual-photon absorptiometry (DPA) (Novo Lab 22a) in 120 postmenopausal women. Though a high correlation existed between the two techniques, the ratio between DXA and DPA values was not constant. Using DXA we observed a higher dependence of BMD on weight than in the DPA measurements. To investigate the different behaviour of DXA and DPA machines with weight, we analysed the effects of increasing thickness of soft tissue equivalents on the BMD of the Hologic spine phantom and on the BMD equivalent of an aluminium standard tube. Increasing tissue-equivalent thickness caused the phantom BMD measured by DPA to decrease significantly but had not effect on the DXA measurements. The different behaviour of DPA and DXA equipment with regard to the phantoms could account for the differences observed in the relations between BMD and weight in the patients. Using multiple regression we studied the influence of weight and body mass index on the relation between BMD measured by the two techniques. The introduction of either of these variables into the regression resulted in an improvement of the prediction of the DXA values from the DPA values. However, the residual standard error of the estimate was still higher than the combined precision errors of the two methods, so that no simple relation allows a conversion of BMDDPA into BMDDXA. Our results confirm that BMD is positively correlated with weight in postmenopausal women; the influence of weight on BMD is blunted when the Novo Lab 22a DPA machine is used for measuring bone mineral.  相似文献   

13.
Forearm bone mineral densitometry was performed initially by single-photon absorptiometry (SPA), but is now achievable by dual-energy X-ray absorptiometry (DXA) as well, with a good correlation between both measurements. However, it is still unknown whether: (1) short-term precision of DXA is superior to SPA and (2) identical regions of interest (ROT) are mandatory to correlate SPA with DXA. The aim of this study was to answer these questions using a commercial system for DXA (DXA-FAS) and to test an in-house system using spine DXA and a soft-tissue compensator (DXA-STC). In ten subjects, four measurements on the same day showed significantly lower (p < 0.05) coefficients of variation (CV) for bone mineral density (BMD) by DXA-FAS (proximal site: 0.74%; ultradistal site: 1.20%) than by SPA (1.26% and 2.25%). However, the CV for bone mineral content (BMC) were similar for DXA-FAS (0.73% and 1.58%) and SPA (0.79% and 1.34%). The significant difference (p < 0.05) for surface calculation by DXA-FAS (1.24% and 0.93%) compared with SPA (2.36% and 1.28%) explains all the advantages of DXA-FAS for short-term precision. The measurements taken on the same day on the ulna and the radius or on the radius alone by SPA, DXA-FAS, and DXA-STC on 108 subjects aged 18–80 years were highly correlated [r ranging from 0.925 to 0.995 (p < 0.0001) and standard error of the estimate from 3.15% to 8.89%]. The need for a manual adjustment of the ROT was found to be mandatory for BMC but not BMD assessment. The use of DXA-STC is a fast method for forearm bone densitometry and its correlation with SPA is very high. However, its short-term precision for BMC (3.00% and 1.54%), BMD (2.15% and 1.12%), and surfaces (1.99% and 1.12%) is significantly higher (p < 0.05) than that of DXA-FAS. We conclude that short-term precision of DXA is better than that of SPA only for BMD and surface measurement but not for BMC. ROT should be adjusted manually for the assessment of BMC but not for that of BMD.  相似文献   

14.
双能X线吸收法测量身体成份精确度的研究   总被引:3,自引:0,他引:3       下载免费PDF全文
目的确定使用双能X线吸收法(DXA)在测定全身和局部身体成份短期精确度,以指导临床监测方案。方法对10名成年女性志愿者使用DXA(GE LUNAR PRODIGY型)骨密度仪进行了全身体成份测定。每名志愿者测量10次,每天重复5次分在2d(间隔不超过4d)中进行。志愿者测量期间饮食、运动等无明显改变,无腹泻等影响体重的疾病。每次测试需穿同样衣服,每次测量结束均离开骨密度仪,站到地面,下次测量再重新摆放体位。由同一名技师进行操作并分析。计算短期精确度。结果全身、上肢、大腿、躯干、男性区域及女性区域骨矿含量测定的变异系数(CV)分别为1.1%、1.5%、0.9%、2.8%、3.4%和1.7%,脂肪测定的CV分别为1.2%、3.5%、2.3%、2.7%、3.4%和1.8%,组织测定的CV分别为0.7%、1.4%、1.8%、1.6%、2.2%和1.4%,脂肪百分比的CV分别为1.2%、2.4%、1.1%、2.1%、2.3%和1.5%。结论全身体成份测定的CV在0.7%~1.2%,局部体成份测定的CV大部分在1%~2.5%之间。局部测定的精确度不如全身测定的精确度。全身测定和局部测定的精确度均可以满足临床和科研需要。  相似文献   

15.
Summary Dual-energy X-ray absorptiometry (DEXA) and single-photon absorptiometry (SPA) were used to quantitate the structural strength and local material properties of healing tibial osteotomies in 32 dogs. Dogs were divided into four equal groups, euthanatized at either 2, 4, 8, or 12 weeks, and imaged with DEXA and SPA. Invasive techniques were used to determine (1) the torsional properties of the bone, (2) the local stiffness properties and calcium content within the bone, and (3) new bone formation and porosity by histology. There were no differences between SPA and DEXA in their associations with the torsional properties of bone. SPA and DEXA had strong correlations with the ultimate torque (R2=0.76, 0.51) and the torsional stiffness (R2=0.68, 0.53) of bone. SPA and DEXA of periosteal callus, endosteal callus, and cortical bone had similar associations with indentation stiffness, calcium content, new bone formation, and porosity. SPA of gap tissue had significantly stronger associations with these four parameters than DEXA (P<0.05). Correlation coefficients (R2) with these local material properties ranged as high as 0.82 for SPA with new bone formation in the gap tissue and 0.73 for DEXA with indentation stiffness of periosteal callus.  相似文献   

16.
Summary Bone mineral density (BMD) of the lumbar spine was measured to determine normal Japanese values and to examine the effect of obesity and menopausal status on BMD. Normal Japanese subjects (N=1,296, 1,048 women and 248 men) were examined using dual-energy X-ray absorptiometry. BMD for men peaked between age 20 and 29. For women, there was abrupt bone loss after age 50. Obese women within the same age bracket had a higher BMD than thin women after age 40–49. We determined that BMD began to decline during the irregular menstruation period before the onset of menopause. We conclude that there is a positive correlation between obesity and BMD, particularly in postmenopausal women. In addition, we found that bone loss related to menopause begins during the irregular menstruation period before menopause.  相似文献   

17.
Summary Six Hologic QDR-1000 DEXA bone densitometers at different centers across the USA were compared to determine the intermachine variability. Nine scans in succession were acquired on each machine using a single anthropomorphic lumbar spine phantom (manufactured by Hologic). Values for BMC, area, and BMD were recorded for each measurement. Means, standard deviations (SD), and coefficients of variation (CV) were calculated for each machine. All the CVs (BMC, area, BMD) were less than 1% (range 0.3%–0.6%). The CV of the means at the six sites were 0.4%, 0.6%, and 0.5% for BMC, area, and BMD, respectively. Although several significant differences for BMC, area, and BMD were noted by ANOVA between machines at different sites, the difference between the highest and lowest means of the individual machines was only 1.1%, 1.31%, and 1.07% for BMC, area, and BMD. The small variations between the DEXA systems are encouraging for researchers involved in multicenter trials in which data are pooled.  相似文献   

18.
The effect of two methods for standardizing dual-energy X-ray absorptiometry (DXA) measurements on patient classification by theT-score has been determined for a group of over 2000 patients. The methods proposed by the International DXA Standardization Committee and the European Community's COMAC-BME group were used in conjunction with young reference data from the major DXA manufacturers, the COMAC-BME group and the third US National Health and Nutrition Examination Survey (NHANES III). The two standardization techniques produced dissimilar classifications as measured by the kappa statistic (=0.34–0.90), especially for the femoral neck, with up to 24.3% of patients reclassified from osteopenic to normal and 18.6% reclassified from osteoporotic to osteopenic when the standardization method was changed. Considering the effects of both reference data and standardization techniques together, there was a wide variation of patient classification, with the number of patients classified as osteoporotic varying from 9.6% to 21.1% for the postero-anterior spine L2–4 region and from 2.3% to 27.6% for the femoral neck. The agreement between different classifications ranged widely, from very poor to excellent (=0.02–0.98). The creation of standardized reference data must be an important priority in order to harmonize patient management using standardized BMD measurements. The choice of standardization technique, however, must be addressed in light of the results presented here.  相似文献   

19.
20.
Summary  The precision of Hologic Apex v2.0 analysis software is significantly improved from Hologic Delphi v11.2 software and is comparable to GE Lunar Prodigy v7.5 software. Apex and Delphi precisions were, respectively, 1.0% vs. 1.2% (L1-L4 spine), 1.l % vs. 1.3% (total femur), 1.6% vs. 1.9% (femoral neck), and 0.7% vs. 0.9% (dual total femur). Introduction  Precision of bone mineral density (BMD) measurements by dual-energy X-ray absorptiometry (DXA) is known to vary by manufacturer, model, and technologist. This study evaluated the precision of three analysis versions: Apex v2.0 and Delphi v11.2 (Hologic, Inc.), and Prodigy v7.5 (GE Healthcare, Inc.) independent of technologist skill. Methods  Duplicate spine and dual hip scans on 90 women were acquired on both Delphi and Prodigy DXA systems at three clinics. BMD measures were converted to standardized BMD (sBMD) units. Precision errors were described as a root-mean-square (RMS) standard deviations and RMS percent coefficients of variation across the population. Results  Apex and Delphi values were highly correlated (r ranged from 0.90 to 0.99). Excluding the right neck, the Apex precision error was found to be 20% to 25% lower than the Delphi (spine: 1.0% versus 1.2% (p < 0.05), total hip: 1.1% versus 1.3% (p < 0.05), right neck: 2.3% versus 2.6% (p > 0.1)). No statistically significant differences were found in the precision error of the Apex and Prodigy (p > 0.05) except for the right neck (2.3% versus 1.8% respectively, p = 0.03). Conclusion  The Apex software has significantly lower precision error compared to Delphi software with similar mean values, and similar precision to that of the Prodigy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号