首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure of recently mated female mice to the urinary odours of an unfamiliar male blocks pregnancy (the Bruce effect). The absence of a pregnancy block in response to the stud male's familiar odours depends on an olfactory memory that is formed in the accessory olfactory bulb (AOB) in response to vomeronasal organ (VNO) inputs during mating. Sexually naive Balb/c female mice in pro-oestrus/oestrus were either placed onto soiled bedding ('bedding-only' females) from, or allowed to mate with, a Balb/c male ('recently mated' females). After 42 h, females were placed for 90 min onto clean bedding (controls) or onto soiled bedding from either a C57BL/6 male (unfamiliar bedding) or a Balb/c male (familiar bedding). Significant increases in Fos-immunoreactivity (Fos-IR, a marker of neuronal activation) occurred in the medial amygdala and the medial preoptic area (MPA) of 'bedding only' females exposed to either unfamiliar or familiar bedding and in 'recently mated' females exposed to unfamiliar bedding but not to familiar bedding. This suggests that a mating-induced memory prevents the later activation by the familiar stud male's odours of neurons in forebrain regions that receive inputs from the VNO--AOB. 'Bedding-only' females later exposed to either familiar or unfamiliar bedding had increased Fos-IR in the G alpha(o) protein-expressing basal zone of the VNO whereas no such effect occurred in 'recently mated' females. Familiar, as well as unfamiliar, male odours augmented Fos-IR in significantly more rostral than caudal AOB granule cells in all groups, with the effect being strongest in 'recently mated' females exposed to familiar male bedding. This outcome is consistent with the absence of odour-induced Fos-IR in forebrain regions of these females and, presumably, the absence of a pregnancy block.  相似文献   

2.
Previous research suggests that volatile body odourants detected by the main olfactory epithelium (MOE) are processed mainly by the main olfactory bulb (MOB) whereas nonvolatile body odourants detected by the vomeronasal organ (VNO) are processed via the accessory olfactory bulb (AOB). We asked whether urinary volatiles from males and females differentially activate the AOB in addition to the MOB in gonadectomized mice of either sex. Exposure to urinary volatiles from opposite-sex but not same-sex conspecifics augmented the number of Fos-immunoreactive mitral and granule cells in the AOB. Volatile urinary odours from male as well as female mice also stimulated Fos expression in distinct clusters of MOB glomeruli in both sexes. Intranasal administration of ZnSO(4), intended to disrupt MOE function, eliminated the ability of volatile urinary odours to stimulate Fos in both the MOB and AOB. In ovariectomized, ZnSO(4)-treated females a significant, though attenuated, AOB Fos response occurred after direct nasal exposure to male urine plus soiled bedding, suggesting that VNO signaling remained partially functional in these mice. Future studies will determine whether MOE or VNO signaling, or both types of input, drive the sexually dimorphic response of the AOB to volatile opposite-sex odours and whether this AOB response contributes to reproductive success.  相似文献   

3.
Kondo Y  Sudo T  Tomihara K  Sakuma Y 《Brain research》2003,962(1-2):232-236
We examined whether the vomeronasal organ (VNO) is the sole receptor for pheromonal cues for male sexual behavior. Males carrying surgical removal of the VNO (VNOx) mated with stimulus females as sham-operated males, with a comparable number of mounts but a prolonged latency for ejaculation. In sham-operated males, mating increased cFos immunoreactivity in the granule and mitral cell layers of the accessory olfactory bulb and in the medial amygdala. VNOx diminished baseline as well as mating-induced cFos in the granule cell layer and in the medial amygdala; VNOx had no effect on either basal or induced cFos immunoreactivity in the mitral cell layer. Thus, during mating encounter, cFos expression in the mitral cell layer did not depend on VNO inputs. The medial amygdala may be modulated by impulses other than of mitral cell origin.  相似文献   

4.
When in breeding condition, male and female mammals seek out and mate with opposite-sex conspecifics. The neural mechanisms controlling mate recognition and heterosexual partner preference are sexually differentiated by the perinatal actions of sex steroid hormones. Many mammalian species use odours to identify potential mates. Thus, sex differences in partner preference may actually reflect sex differences in how male and female mammals perceive socially relevant odours. Two olfactory systems have evolved in vertebrates that differ considerably in their anatomy and function. It is generally believed that the main olfactory system is used to detect a wide variety of volatile odours derived from food prey among many sources, whereas the accessory olfactory system has evolved to detect and process primarily nonvolatile odours shown to influence reproductive behaviours and neuroendocrine functions. Some recent results obtained in oestradiol-deficient aromatase knockout (ArKO) mice that provide evidence for a developmental role of oestradiol in olfactory investigation of volatile body odours are discussed, suggesting that: (i) oestrogens contribute to the development of the main olfactory system and (ii) mate recognition is mediated by the main as opposed to the accessory olfactory system. Thus, sex differences in mate recognition and sexual partner preference may reflect sex differences in the perception of odours by the main olfactory system.  相似文献   

5.
We previously found that female mice exhibited Fos responses in the accessory olfactory bulb (AOB) after exposure to volatile opposite-sex, but not same-sex, urinary odours. This effect was eliminated by lesioning the main olfactory epithelium, raising the possibility that the AOB receives information about gender via centrifugal inputs originating in the main olfactory system instead of from the vomeronasal organ. We asked which main olfactory forebrain targets send axonal projections to the AOB, and whether these input neurons express Fos in response to opposite-sex urinary volatiles. Female mice received bilateral injections of the retrograde tracer cholera toxin B (CTB), into the AOB, and were exposed to either same- or opposite-sex volatile urinary odours 1 week later. We found CTB-labeled cell bodies in several forebrain sites including the bed nucleus of the accessory olfactory tract, the rostral portion of the medial amygdala (MeA) and the posteromedial cortical nucleus of the amygdala. A significant increase in the percentage of CTB/Fos co-labeled cells was seen only in the MeA of female subjects exposed to male but not to female urinary volatiles. In Experiment 2, CTB-injected females were later exposed to volatile odours from male mouse urine, food, or cat urine. Again, a significant increase in the percentage of CTB/Fos co-labeled cells was seen in the MeA of females exposed to male mouse urinary volatiles but not to food or predator odours. Main olfactory–MeA–AOB signaling may motivate approach behaviour to opposite-sex pheromonal signals that ensure successful reproduction.  相似文献   

6.
We previously found that female aromatase knockout (ArKO) mice showed less investigation of socially relevant odours as well as reduced sexual behaviour. We now ask whether these behavioural deficits might be due to an inadequate processing of odours in female ArKO mice. Therefore, we exposed female ArKO mice to same- and opposite-sex urinary odours and determined the expression of the immediate early gene c-Fos along the main and accessory olfactory projection pathways. We included ArKO males in the present study as we previously observed that they show female-typical detection thresholds of urinary odours, suggesting a role for perinatal oestrogens in these behavioural responses. No sex or genotype differences were observed in the olfactory bulb after urine exposure. By contrast, sex differences in c-Fos responses were observed in wild-type (WT) mice following exposure to male urine in the more central regions of the olfactory pathway; only WT females showed a significant Fos induction in the amygdala, central medial pre-optic area and ventromedial hypothalamus. However, ArKO females did not show a c-Fos response to male odours in the ventromedial hypothalamus, suggesting that the processing of male odours is affected in ArKO females and thus that oestrogens may be necessary for the development of neural responses to sexually relevant odours in female mice. By contrast, c-Fos responses to either male or oestrous female urine were very similar between ArKO and WT males, pointing to a central role of androgen vs. oestrogen signalling in the male circuits that control olfactory investigation and preferences.  相似文献   

7.
The neural mechanisms controlling mate recognition and heterosexual partner preference are sexually differentiated by perinatal actions of sex steroid hormones. We previously showed that the most important action of oestrogen during prenatal development is to defeminise and, to some extent, masculinise brain and behaviour in mice. Female mice deficient in alpha-foetoprotein (AFP) due to a targeted mutation in the Afp gene (AFP-KO) do not show any female sexual behaviour when paired with an active male because they lack the protective action of AFP against maternal oestrogens. In the present study, we investigated whether odour preferences, another sexually differentiated trait in mice, are also defeminised and/or masculinised in AFP-KO females due to their prenatal exposure to oestrogens. AFP-KO females of two background strains (CD1 and C57Bl/6j) preferred to investigate male over female odours when given the choice between these two odour stimuli in a Y-maze, and thus remained very female-like in this regard. Thus, the absence of lordosis behaviour in these females cannot be explained by a reduced motivation of AFP-KO females to investigate male-derived odours. Furthermore, the presence of a strong male-directed odour preference in AFP-KO females suggests a postnatal contribution of oestrogens to the development of preferences to investigate opposite-sex odours.  相似文献   

8.
Peripheral anosmia was previously found to disrupt sex discrimination and partner preference in male and female ferrets. Here we show directly that volatile anal scent gland odourants from male and female ferrets activated overlapping but distinguishable clusters of glomeruli located in the ventral-caudal portion of the main olfactory bulb (MOB) of breeding ferrets of both sexes. No glomerular activation was seen in the accessory olfactory bulb (AOB). The profile of MOB glomerular activation induced in oestrous females by male anal scents was very similar to that induced by direct contact with a male during mating, and oestrogen treatment failed to alter the profile of glomerular activation induced in ovo-hysterectomized females by male anal scents. In rodents, 'atypical' MOB glomeruli, which have dense acetylcholinesterase (AChE) activity in the neuropil, may be activated by body odours from conspecifics. No such AChE-staining 'atypical' glomeruli were found in the ferret's MOB, suggesting that in this carnivore they do not constitute a subset of MOB glomeruli that respond to body odourants. In ferrets of both sexes, volatile body odourants that are detected by the main as opposed to the vomeronasal-AOB accessory olfactory system may play a critical role in mate identification.  相似文献   

9.
Evidence has accumulated demonstrating that the vomeronasal (accessory olfactory) system mediates intraspecific chemosensory communication in several mammals. For example, the neuroendocrine effects of priming pheromones in females and the behavioral responses to signaling pheromones in males are disrupted in mice with damage to the vomeronasal system. The experiment reported here examined the potential involvement of the vomeronasal system in the neuroendocrine reflexes observed in male mice following exposure to female and chemosensory stimuli. Excision of the vomeronasal organ (VNO) or sham VNO ablation was performed on sexually experienced males. Next, consecutive blood samples were withdrawn through chronic, intracardiac cannulas while the males were exposed to female mouse urine and then to an ovariectomized female. Plasma levels of luteinizing hormone (LH) were measured in the sequential samples by radioimmunoassay. Removal of the VNO did not affect the spontaneous pattern of episodic LH release that is characteristic of male mice. Reflexive release of LH following the urine stimulus was blocked in males lacking the VNO, but the female stimulus did cause LH responses in these mice. Our results therefore demonstrate that the VNO mediates pheromonally induced release of LH in male mice and that additional cues which emanate from behaving females also effectively stimulate a hormonal response in sexually experienced males.  相似文献   

10.
Sexually naïve estrous female mice seek out male urinary pheromones; however, they initially display little receptive (lordosis) behavior in response to male mounts. Vomeronasal–accessory olfactory bulb inputs to the medial amygdala (Me) regulate courtship in female rodents. We used a reversible inhibitory chemogenetic technique (Designer Receptors Exclusively Activated by Designer Drugs; DREADDs) to assess the contribution of Me signaling to females’ preference for male pheromones and improvement in receptivity normally seen with repeated testing. Sexually naïve females received bilateral Me injections of an adeno‐associated virus carrying an inhibitory DREADD. Females were later ovariectomized, treated with ovarian hormones, and given behavioral tests following intraperitoneal injections of saline or clozapine‐N‐oxide (CNO; which hyperpolarizes infected Me neurons). CNO attenuated females’ preference to investigate male vs. female urinary odors. Repeated CNO treatment also slowed the increase in lordosis otherwise seen in females given saline. However, when saline was given to females previously treated with CNO, their lordosis quotients were as high as other females repeatedly given saline. No disruptive behavioral effects of CNO were seen in estrous females lacking DREADD infections of the Me. Finally, CNO attenuated the ability of male pheromones to stimulate Fos expression in the Me of DREADD‐infected mice but not in non‐infected females. Our results affirm the importance of Me signaling in females’ chemosensory preferences and in the acute expression of lordosis. However, they provide no indication that Me signaling is required for the increase in receptivity normally seen after repeated hormone priming and testing with a male.  相似文献   

11.
In rodents, sexual advertisement and gender recognition are mostly (if not exclusively) mediated by chemosignals. Specifically, there is ample evidence indicating that female mice are ‘innately’ attracted by male sexual pheromones that have critical non-volatile components and are detected by the vomeronasal organ. These pheromones can only get access to the vomeronasal organ by active pumping mechanisms that require close contact with the source of the stimulus (e.g. urine marks) during chemoinvestigation.We have hypothesised that male sexual pheromones are rewarding to female mice. Indeed, male-soiled bedding can be used as a reinforcer to induce conditioned place preference, provided contact with the bedding is allowed. The neural mechanisms of pheromone reward seem, however, different from those employed by other natural reinforcers, such as the sweetness or postingestive effects of sucrose.In contrast to vomeronasal-detected male sexual pheromones, male-derived olfactory stimuli (volatiles) are not intrinsically attractive to female mice. However, after repeated exposure to male-soiled bedding, intact female mice develop an acquired preference for male odours. On the contrary, in females whose accessory olfactory bulbs have been lesioned, exposure to male-soiled bedding induces aversion to male odorants. These considerations, together with data on the different properties of olfactory and vomeronasal receptors, lead us to make a proposal for the complementary roles that the olfactory and vomeronasal systems play in intersexual attraction and in other forms of intra- or inter-species communication.  相似文献   

12.
Gonadotropin-releasing hormone (GnRH) neurons are derived from progenitor cells in the olfactory placodes and migrate from the vomeronasal organ (VNO) across the cribriform plate into the forebrain. At embryonic day (E)12 in the mouse most of these neurons are still in the nasal compartment but by E15 most GnRH neurons have migrated into the forebrain. Glycoconjugates with carbohydrate chains containing terminal lactosamine are expressed by neurons in the main olfactory epithelium and in the VNO. One of the key enzymes required to regulate the synthesis and expression of lactosamine, beta1,3-N-acetylglucosaminyltransferase-1 (beta3GnT1), is strongly expressed by neurons in the olfactory epithelium and VNO, and on neurons migrating out of the VNO along the GnRH migratory pathway. Immunocytochemical analysis of lactosamine and GnRH in embryonic mice reveals that the percentage of lactosamine+-GnRH+ double-labeled neurons decreases from > 80% at E13, when migration is near its peak, to approximately 30% at E18.5, when most neurons have stopped migrating. In beta3GnT1-/- mice, there is a partial loss of lactosamine expression on GnRH neurons. Additionally, a greater number of GnRH neurons were retained in the nasal compartment of null mice at E15 while fewer GnRH neurons were detected later in embryonic development in the ventral forebrain. These results suggest that the loss of lactosamine on a subset of GnRH neurons impeded the rate of migration from the nose to the brain.  相似文献   

13.
The ability of odors from soiled male bedding to induce neuronal Fos-immunoreactivity (IR) in sensory neurons located in both the apical and basal zones of the vomeronasal organ (VNO) and in two segments of the VNO-projection pathway, the anterior nucleus of the medial amygdala and the bed nucleus of the stria terminalis (BNST), was significantly reduced in adult, ovariectomized, estrogen-treated female mice with a homozygous null mutation of the cyp19 gene (ArKO) which encodes the estrogen biosynthetic P450 enzyme, aromatase. However, a significant odor-induced activation of Fos-IR was seen in other segments of the VNO-projection pathway of ArKO females, including the accessory olfactory bulb (AOB) granule cell layer, the posterior-dorsal medial amygdala (MePD), and the medial preoptic area (MPA). These results suggest that the VNO/accessory olfactory pathway to the hypothalamus was functional in ArKO females even though they had presumably been exposed to less estrogenic stimulation than wild-type (WT) control females throughout development and until the time that estrogen treatment was begun in adulthood. Thus, the hypothesis of Toran-Allerand [Prog. Brain Res. 61 (1984) 63] that female-typical features of neuroendocrine and behavioral function require perinatal exposure to estrogen was not supported, at least for the VNO/accessory olfactory system.  相似文献   

14.
Curtis JT  Liu Y  Wang Z 《Brain research》2001,901(1-2):167-174
The prairie vole (Microtus ochrogaster) is a highly social, monogamous species and displays pair bonding that can be assessed by the presence of selective affiliation with the familiar partner versus a conspecific stranger. In female prairie voles, exposure to a male or to male sensory cues is essential for estrus induction, and the subsequent mating facilitates pair bond formation. In the present study, we examined the role of the vomeronasal organ (VNO) in estrus induction and pair bonding in female prairie voles. VNO lesions did not alter olfaction mediated by the main olfactory system, but did prevent male-induced estrus induction. We by-passed the necessity of the VNO for estrus induction by estrogen priming the females. Despite the fact that all subjects displayed similar levels of mating, social contact and locomotor activities, VNO lesioned females failed to show mating-induced pair bonding whereas intact and sham-lesioned females displayed a robust preference for the familiar partner. Our data not only support previous findings that the VNO is important for estrus induction but also indicate that this structure is crucial for mating-induced pair bonding, suggesting an important role for the VNO in reproductive success in prairie voles.  相似文献   

15.
16.
Previous research demonstrated that exposing gonadectomized adult ferrets to odours in oestrous female bedding induced nuclear Fos-immunoreactivity (Fos-IR; a marker of neuronal activity) in the main as opposed to the accessory olfactory system in a sexually dimorphic fashion, which was further augmented in both sexes by treatment with testosterone propionate. Ferrets are born in an altricial state and presumably use maternal odour cues to locate the nipples until the eyes open after postnatal (P) day 23. We investigated whether maternal odours augment neuronal Fos preferentially in the main versus accessory olfactory system of neonatal male and female ferret kits. Circulating testosterone levels peak in male ferrets on postnatal day P15, and mothers provide maximal anogenital stimulation (AGS) to males at this same age. Therefore, we assessed the ability of maternal odours to augment Fos-IR in the accessory olfactory bulb (AOB), the main olfactory bulb (MOB) and other forebrain regions of male and female ferret kits on P15 and investigated whether artificial AGS (provided with a paintbrush) would further enhance any effects of maternal odours. After separation from their mothers for 4 h, groups of male and female kits that were placed for 1.5 h with their anaesthetized mother had significantly more Fos-IR cells in the MOB granule cell layer and in the anterior-cortical amygdala, but not in the AOB cell layer, compared to control kits that were left on the heating pad. Artificial AGS failed to amplify these effects of maternal odours. Maternal odours (with or without concurrent AGS) failed to augment neuronal Fos-IR in medial amygdaloid and hypothalamic regions that are activated in adult ferrets by social odours. In neonatal ferrets of both sexes, as in adults, socially relevant odours are detected by the main olfactory epithelium and initially processed by the MOB and the anterior-cortical amygdala. In neonates, unlike adults, medial amygdaloid and hypothalamic neurones either do not respond to these inputs or respond in a manner that fails to induce Fos expression.  相似文献   

17.
The prairie vole (Microtus ochrogaster) is a highly social, monogamous species and displays pair bonding that can be assessed by the presence of selective affiliation with the familiar partner versus a conspecific stranger. In female prairie voles, exposure to a male or to male sensory cues is essential for estrus induction, and the subsequent mating facilitates pair bond formation. In the present study, we examined the role of the vomeronasal organ (VNO) in estrus induction and pair bonding in female prairie voles. VNO lesions did not alter olfaction mediated by the main olfactory system, but did prevent male-induced estrus induction. We by-passed the necessity of the VNO for estrus induction by estrogen priming the females. Despite the fact that all subjects displayed similar levels of mating, social contact and locomotor activities, VNO lesioned females failed to show mating-induced pair bonding whereas intact and sham-lesioned females displayed a robust preference for the familiar partner. Our data not only support previous findings that the VNO is important for estrus induction but also indicate that this structure is crucial for mating-induced pair bonding, suggesting an important role for the VNO in reproductive success in prairie voles.  相似文献   

18.
Adult female mice are innately attracted to non-volatile pheromones contained in male-soiled bedding. In contrast, male-derived volatiles become attractive if associated with non-volatile attractive pheromones, which act as unconditioned stimulus in a case of Pavlovian associative learning. In this work, we study the chemoinvestigatory behaviour of female mice towards volatile and non-volatile chemicals contained in male-soiled bedding, in combination with the analysis of c-fos expression induced by such a behaviour to clarify: (i) which chemosensory systems are involved in the detection of the primary attractive non-volatile pheromone and of the secondarily attractive volatiles; (ii) where in the brain male-derived non-volatile and volatile stimuli are associated to induce conditioned attraction for the latter; and (iii) whether investigation of these stimuli activates the cerebral reward system (mesocorticolimbic system including the prefrontal cortex and amygdala), which would support the view that sexual pheromones are reinforcing. The results indicate that non-volatile pheromones stimulate the vomeronasal system, whereas air-borne volatiles activate only the olfactory system. Thus, the acquired preference for male-derived volatiles reveals an olfactory-vomeronasal associative learning. Moreover, the reward system is differentially activated by the primary pheromones and secondarily attractive odorants. Exploring the primary attractive pheromone activates the basolateral amygdala and the shell of nucleus accumbens but neither the ventral tegmental area nor the orbitofrontal cortex. In contrast, exploring the secondarily attractive male-derived odorants involves activation of a circuit that includes the basolateral amygdala, prefrontal cortex and ventral tegmental area. Therefore, the basolateral amygdala stands out as the key centre for vomeronasal-olfactory associative learning.  相似文献   

19.
Sensory cues from male rats, such as odours and vaginal-cervical stimulation (VCS), play a modulatory role in female rat sexual behaviour. For example, exposure to male odours and VCS appears to be at least partially responsible for increases in sexual behaviour following repeated mating of oestradiol-primed female rats. Although there is evidence that VCS influences sexual behaviour via a ligand-independent progestin receptor (PR)-dependent mechanism, the mechanism by which odours influence sexual behaviour is not known. We tested the hypothesis that, similar to VCS, the effects of male odours on sexual behaviour are mediated by progestin receptors. Female rats were injected with the progestin antagonist, RU486, or oil vehicle and were then exposed to male-soiled bedding or clean bedding. Although exposure to male-soiled bedding resulted in higher levels of Fos immunoreactivity in brain areas associated with female sexual behaviour, the progestin antagonist did not reduce this effect. Furthermore, there was minimal coexpression of odour-induced Fos and progestin receptors in brain areas associated with female sexual behaviour. Together, these results suggest that the effects of male odours are not mediated by a PR-dependent mechanism. Therefore, we tested the hypothesis that oestrogen receptor (ER)-containing cells are involved in the effects of olfactory cues. Although there was virtually no coexpression of ERbeta and odour-induced Fos in brain areas associated with female sexual behaviour, exposure to male odours slightly increased the number of cells coexpressing ER(alpha) and odour-induced Fos in the posterodorsal medial amygdala. Although, these results do not support the hypothesis that the effects of odours are mediated by a PR-dependent mechanism, they suggest that integration of male odours and hormonal cues may occur in ER(alpha)-containing cells in the posterodorsal medial amygdala.  相似文献   

20.
In the ovariectomized, hormone-primed rat the peripeduncular area (PPA) has been reported to play a key role in sexual receptivity by integrating the sensory and endocrine inputs necessary for the elicitation of the lordosis reflex. The present study was undertaken to investigate the effect of bilateral peripeduncular lesions induced by ibotenic acid on the lordosis behavior of the normal, cyclic rat. Sexually unexperienced females received a bilateral microinjection of either ibotenic acid (n = 14; lesion group) or phosphate buffer (n = 8; sham-operated group) in the PPA. Following recovery, the receptivity expressed as the lordosis quotient was controlled in the presence of a sexually active male. The results indicate that in both groups the females display a high lordosis quotient (LQ greater than 90%). Therefore, in the cyclic female rat, the manifestation of sexual receptivity does not seem to be affected following bilateral destruction of the PPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号