首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Past research has shown that calcium influx through NMDA receptors (NMDARs) depresses GABA(A) currents. We examined upstream triggers of this suppression, including involvement of target synaptic GABA(A) receptors and the NMDARs triggering suppression. In hippocampal neurons, conditioning with 20 μM NMDA for 20 s caused 50% suppression of GABA responses. The suppression was delayed by ≈ 60 s following NMDA application and persisted for at least 5 min following conditioning. Pharmacology experiments suggested a shift in both the sensitivity to GABA and a loss of functional receptors. NMDA conditioning strongly suppressed inhibitory postsynaptic currents and speeded decay kinetics. Synaptic NMDAR conditioning was necessary to suppress GABA current in pyramidal neurons; extrasynaptic NMDAR activation did not suppress, even when matched to synaptic activation. We found no evidence that specific synaptic NMDAR subunits mediate depression of GABA responses. Although physical colocalization of glutamate and GABA(A) receptors is mostly likely in extrasynaptic regions, our evidence suggests that NMDAR-induced suppression of GABA responsiveness prominently affects precise, moment-to-moment signaling from synaptic receptors to synaptic receptors.  相似文献   

2.
Wang K  Zheng C  Wu C  Gao M  Liu Q  Yang K  Ellsworth K  Xu L  Wu J 《Neuroscience letters》2008,441(1):66-71
alpha-Chloralose is an anesthetic characterized by its ability to maintain animals in physiological conditions though immobilized and anesthetized. In addition, alpha-chloralose induces a loss of consciousness with little influence on either pain response or cardiovascular reflexes. The pharmacological mechanisms of alpha-chloralose's actions are poorly understood. In vitro experiments have demonstrated alpha-chloralose enhances GABA(A) receptor function, which may underlie its anesthetic effect. However, how alpha-chloralose affects hippocampal synaptic function and neuronal network synchronization is unknown. In the present study, we performed electrophysiological recordings to examine the effects of alpha-chloralose on synaptic transmission, tetanic stimulation-induced gamma oscillations (30-80 Hz) and neuronal receptor function in rat hippocampal slices and dissociated hippocampal CA1 pyramidal neurons. The results demonstrated that alpha-chloralose (30-100 microM) diminished tetanic stimulation-induced gamma oscillations without affecting single stimulation-induced field potential responses. In single, dissociated hippocampal CA1 pyramidal neurons, alpha-chloralose activated GABA(A) receptors at a high concentration while it potentiated GABA(A) receptor-mediated currents at low concentrations. However, alpha-chloralose did not affect glutamate-, glycine-, or ACh-induced currents. Slice-patch recordings revealed alpha-chloralose enhanced GABAergic leak current and prolonged the decay constant of spontaneous inhibitory postsynaptic currents (sIPSCs). It is concluded that alpha-chloralose suppresses hippocampal gamma oscillations without significantly affecting basic synaptic transmission or ionotropic glutamate, choline and glycine receptor function. Enhancement of GABAergic leak current and prolongation of GABAergic sIPSCs by alpha-chloralose likely underlie its disruption of neuronal network synchronization in the hippocampus.  相似文献   

3.
Nicotinic acetylcholine receptors (nAChRs) are expressed in the hippocampus, and their functional roles are beginning to be delineated. The effect of nAChR activation on the activity of both interneurons and pyramidal neurons in the CA1 region was studied in rat hippocampal slices. In CA1 stratum radiatum with muscarinic receptors inhibited, local pressure application of acetylcholine (ACh) elicited a nicotinic current in 82% of the neurons. The majority of the ACh-induced currents were sensitive to methyllycaconitine, which is a specific inhibitor of alpha7-containing nAChRs. Methyllycaconitine-insensitive nicotinic currents also were present as detected by a nonspecific nAChR inhibitor. The ACh-sensitive neurons in the s. radiatum were identified as GABAergic interneurons by their electrophysiological properties. Pressure application of ACh induced firing of action potentials in approximately 70% of the interneurons. The ACh-induced excitation of interneurons could induce either inhibition or disinhibition of pyramidal neurons. The inhibition was recorded from the pyramidal neuron as a burst of GABAergic synaptic activity. That synaptic activity was sensitive to bicuculline, indicating that GABA(A) receptors mediated the ACh-induced synaptic currents. The disinhibition was recorded from the pyramidal neuron as a reduction of spontaneous GABAergic synaptic activity when ACh was delivered onto an interneuron. Both the inhibition and disinhibition were sensitive to either methyllycaconitine or mecamylamine, indicating that activation of nicotinic receptors on interneurons was necessary for the effects. These results show that nAChRs are capable of regulating hippocampal circuits by exciting interneurons and, subsequently, inhibiting or disinhibiting pyramidal neurons.  相似文献   

4.
GABAergic interneurons in the hippocampus express high levels of alpha7 nicotinic acetylcholine receptors, but because of the diverse roles played by hippocampal interneurons, the impact of activation of these receptors on hippocampal output neurons (i.e., CA1 pyramidal cells) is unclear. Activation of hippocampal interneurons could directly inhibit pyramidal neuron activity but could also produce inhibition of other GABAergic cells leading to disinhibition of pyramidal cells. To characterize the inhibitory circuits activated by these receptors, exogenous acetylcholine was applied directly to CA1 interneurons in hippocampal slices, and the resulting postsynaptic responses were recorded from pyramidal neurons or interneurons. Inhibitory currents mediated by GABA(A) receptors were observed in 27/131 interneuron/pyramidal cell pairs, but no instances of disinhibition of spontaneous inhibitory events or GABA(B) receptor-mediated responses were observed. Two populations of bicuculline-sensitive GABA(A) receptor-mediated currents could be distinguished based on their kinetics and amplitude. Anatomical reconstructions of the interneurons in a subset of connected pairs support the hypothesis that these two populations correspond to inhibitory synapses located either on the somata or dendrites of pyramidal cells. In 11 interneuron/interneuron cell pairs, one presynaptic neuron was observed that produced strong inhibitory currents in several nearby interneurons, suggesting that disinhibition of pyramidal neurons may also occur. All three types of inhibitory responses (somatic-pyramidal, dendritic-pyramidal, and interneuronal) were blocked by the alpha7 receptor-selective antagonist methyllycaconitine. These data suggest activation of these functionally distinct circuits by alpha7 receptors results in significant inhibition of both hippocampal pyramidal neurons as well as interneurons.  相似文献   

5.
By acting on neurokinin 1 (NK1) receptors, neuropeptides of the tachykinin family can powerfully excite rat hippocampal GABAergic interneurons located in the CA1 region and by this way indirectly inhibit CA1 pyramidal neurons. In addition to contact pyramidal neurons, however, GABAergic hippocampal interneurons can also innervate other interneurons. We thus asked whether activation of tachykinin-sensitive interneurons could indirectly inhibit other interneurons. The study was performed in hippocampal slices of young adult rats. Synaptic events were recorded using the whole-cell patch clamp technique. We found that substance P enhanced GABAergic inhibitory postsynaptic currents in a majority of the interneurons tested. Miniature, action potential-independent inhibitory postsynaptic currents were unaffected by substance P, as were evoked inhibitory synaptic currents. This suggests that the peptide acted at the somatodendritic membrane of interneurons, rather than at their axon terminals. The effect of substance P was mimicked by a selective NK1 receptor agonist, but not by neurokinin 2 (NK2) or neurokinin 3 (NK3) receptor agonists, and was suppressed by a NK1 selective receptor antagonist. In contrast to substance P, oxytocin, another peptide capable of activating hippocampal interneurons, had no effect on the inhibitory synaptic drive onto interneurons. We conclude that tachykinins, by acting on NK1 receptors, can influence the hippocampal activity by indirectly inhibiting both pyramidal neurons and GABAergic interneurons. Depending on the precise balance between these effects, tachykinins may either activate or depress hippocampal network activity.  相似文献   

6.
The hippocampus, a limbic brain region involved in the encoding and retrieval of memory, has a well-defined structural network assembled from excitatory principal neurons and inhibitory interneurons. Because the GABAergic interneurons form synapses onto both pyramidal neurons and interneurons, the activation of nicotinic acetylcholine receptors (nAChRs) present on certain interneurons could induce either inhibition or disinhibition in the hippocampal circuitry. To understand the role of nAChRs in controlling synaptic transmission in the hippocampus, we evaluated the magnitude of nAChR-modulated GABAergic postsynaptic currents (PSCs) in pyramidal neurons and various interneurons of the CA1 region. Using whole cell patch-clamp recording and post hoc identification of neuronal types in rat hippocampal slices, we show that brief (12-s) nAChR activation by ACh (1 mM) or choline (10 mM) enhances the frequency of GABAergic PSCs in both pyramidal neurons and CA1 interneurons. The magnitude of alpha7 nAChR-mediated GABAergic inhibition, as assessed by the net charge of choline-induced PSCs, was highest in stratum lacunosum moleculare interneurons followed by pyramidal neurons and s. radiatum interneurons. In contrast, the magnitude of alpha4beta2 nAChR-mediated GABAergic inhibition, as assessed by the difference between the net charge of PSCs induced by ACh and choline, was highest in pyramidal neurons followed by s. lacunosum moleculare and s. radiatum interneurons. The present results suggest that cholinergic cues transmitted via specific subtypes of nAChRs modify the synaptic function in the hippocampus by inducing a differential degree of GABAergic inhibition in the target neurons.  相似文献   

7.
Jang IS  Nakamura M  Ito Y  Akaike N 《Neuroscience》2006,138(1):25-35
Mossy fiber-derived giant spontaneous miniature excitatory postsynaptic currents have been suggested to be large enough to generate action potentials in postsynaptic CA3 pyramidal neurons. Here we report on the functional roles of presynaptic GABA(A) receptors on excitatory terminals in contributing to spontaneous glutamatergic transmission to CA3 neurons. In mechanically dissociated rat hippocampal CA3 neurons with adherent presynaptic nerve terminals, spontaneous excitatory postsynaptic currents were recorded using conventional whole-cell patch clamp recordings. In most recordings, unusually large spontaneous excitatory postsynaptic currents up to 500 pA were observed. These large spontaneous excitatory postsynaptic currents were highly sensitive to group II metabotropic glutamate receptor activation, and were still observed even after the blockade of voltage-dependent Na(+) or Ca(2+) channels. Exogenously applied muscimol (0.1-3 microM) significantly increased the frequency of spontaneous excitatory postsynaptic currents including the large ones. This facilitatory effect of muscimol was completely inhibited in the presence of 10 microM 6-imino-3-(4-methoxyphenyl)-1(6H)-pyridazinebutanoic acid HBr, a specific GABA(A) receptor antagonist. Pharmacological data suggest that activation of presynaptic GABA(A) receptors directly depolarizes glutamatergic terminals resulting in the facilitation of spontaneous glutamate release. In the current-clamp condition, a subset of large spontaneous excitatory postsynaptic potentials triggered action potentials, and muscimol greatly increased the frequency of spontaneous excitatory postsynaptic potential-triggered action potentials in postsynaptic CA3 pyramidal neurons. The results suggest that presynaptic GABA(A) receptors on glutamatergic terminals play an important role in the excitability of CA3 neurons as well as in the presynaptic modulation of glutamatergic transmission onto hippocampal CA3 neurons.  相似文献   

8.
Proper operation of a neural circuit relies on both excitatory and inhibitory synapses. We previously showed that cell adhesion molecules nectin‐1 and nectin‐3 are localized at puncta adherentia junctions of the hippocampal mossy fiber glutamatergic excitatory synapses and that they do not regulate the excitatory synaptic transmission onto the CA3 pyramidal cells. We studied here the roles of these nectins in the GABAergic inhibitory synaptic transmission onto the CA3 pyramidal cells using nectin‐1‐deficient and nectin‐3‐deficient cultured mouse hippocampal slices. In these mutant slices, the amplitudes and frequencies of miniature excitatory postsynaptic currents were indistinguishable from those in the control slices. In the nectin‐1‐deficient slices, but not in the nectin‐3‐deficient slices, however, the amplitude of miniature inhibitory postsynaptic currents (mIPSCs) was larger than that in the control slices, although the frequency of the mIPSCs was not different between these two groups of slices. In the dissociated culture of hippocampal neurons from the nectin‐1‐deficient mice, the amplitude and frequency of mIPSCs were indistinguishable from those in the control neurons. Nectin‐1 was not localized at or near the GABAergic inhibitory synapses. These results indicate that nectin‐1 regulates the neuronal activities in the CA3 region of the hippocampus by suppressing the GABAergic inhibitory synaptic transmission.  相似文献   

9.
Dopamine (DA) is an endogenous neuromodulator in the mammalian brain. However, it is still controversial how DA modulates excitability and input-output relations in cortical neurons. It was suggested that DA innervation of dendritic spines regulates glutamatergic inputs to pyramidal neurons, but no experiments were done to test this idea. By recording individual neurons under direct visualization we found that DA enhances inhibitory neuron excitability but decreases pyramidal cell excitability, through depolarization and hyperpolarization, respectively. Accordingly, DA also increased the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs). In the presence of TTX, DA did not affect the frequency, amplitude, or kinetics of miniature IPSCs and excitatory postsynaptic currents in inhibitory interneurons or pyramidal cells. Our results suggest that DA can directly excite cortical interneurons, but there is no detectable DA gate to regulate spontaneous GABA and glutamate release or the properties of postsynaptic GABA and glutamate receptors in neocortical neurons.  相似文献   

10.
Kainate receptor agonists are powerful convulsants and excitotoxins. Until recently, there have been several contradictory views as to the roles of these receptors in the CNS. We report here experiments showing that application of kainate led to concentration-dependent increases in evoked GABAergic inhibitory postsynaptic currents (phasic currents) in interneurons in field CA1 of guinea pig hippocampus slices. This evidently occurred as a result of a decrease in the action potential generation threshold in inhibitory axons and an increase in the number of endings responding at a given stimulus strength. Increases in phasic inhibitory postsynaptic currents were accompanied by increases in the tonic GABAergic current (the constant component of GABAergic conduction). Increases in the tonic current occurred because of increases in the discharge frequency of interneurons, leading to action-potential-dependent GABA release and, as a result, increases in the extracellular concentration of endogenous agonist. The high level of extracellular GABA after addition of kainate led to desensitization of synaptic GABAergic receptors, while the tonic conductivity led to shunting of synaptic currents. Thus, while 1 microM kainate increased inhibitory postsynaptic currents, this was preceded by a transient depression. The different dynamics of the effects of kainate on phasic and tonic inhibitory GABAergic currents in hippocampal interneurons and the decrease in inhibition of glutamatergic pyramidal cells which may result from these changes may explain the epileptogenic properties of kainate.  相似文献   

11.
Pyramidal neurons in hippocampal CA1 regions are highly sensitive to cerebral ischemia. Alterations of excitatory and inhibitory synaptic transmission may contribute to the ischemia-induced neuronal degeneration. However, little is known about the changes of GABAergic synaptic transmission in the hippocampus following reperfusion. We examined the GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) in CA1 pyramidal neurons 12 and 24 h after transient forebrain ischemia in rats. The amplitudes of evoked inhibitory postsynaptic currents (eIPSCs) were increased significantly 12 h after ischemia and returned to control levels 24 h following reperfusion. The potentiation of eIPSCs was accompanied by an increase of miniature inhibitory postsynaptic current (mIPSC) amplitude, and an enhanced response to exogenous application of GABA, indicating the involvement of postsynaptic mechanisms. Furthermore, there was no obvious change of the paired-pulse ratio (PPR) of eIPSCs and the frequency of mIPSCs, suggesting that the potentiation of eIPSCs might not be due to the increased presynaptic release. Blockade of adenosine A1 receptors led to a decrease of eIPSCs amplitude in post-ischemic neurons but not in control neurons, without affecting the frequency of mIPSCs and the PPR of eIPSCs. Thus, tonic activation of adenosine A1 receptors might, at least in part, contribute to the enhancement of inhibitory synaptic transmission in CA1 neurons after forebrain ischemia. The transient enhancement of inhibitory neurotransmission might temporarily protect CA1 pyramidal neurons, and delay the process of neuronal death after cerebral ischemia.  相似文献   

12.
Chen Q  Pan HL 《Neuroscience》2006,142(2):595-606
The hypothalamic paraventricular (PVN) neurons projecting to the spinal cord and brainstem play an important role in the control of homeostasis and the sympathetic nervous system. Although GABA(B) receptors are present in the PVN, their function in the control of synaptic inputs to PVN presympathetic neurons is not clear. Using retrograde tracing and whole-cell patch-clamp recordings in rat brain slices, we determined the role of presynaptic GABA(B) receptors in regulation of glutamatergic and GABAergic inputs to spinally projecting PVN neurons. The GABA(B) receptor agonist baclofen (1-50 microM) dose-dependently decreased the frequency but not the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) and inhibitory postsynaptic currents (sIPSCs). The effect of baclofen on sEPSCs and sIPSCs was completely blocked by 10 microM CGP52432, a selective GABA(B) receptor antagonist. Baclofen also significantly reduced the frequency of both miniature excitatory and miniature inhibitory postsynaptic currents (mEPSCs and mIPSCs). Furthermore, uncoupling pertussis toxin-sensitive G(i/o) proteins with N-ethylmaleimide abolished baclofen-induced inhibition of mEPSCs and mIPSCs. However, the inhibitory effect of baclofen on the frequency of mIPSCs and mEPSCs persisted in the presence of either Cd2+, a voltage-gated Ca2+ channel blocker, or 4-aminopyridine, a blocker of voltage-gated K+ channels. Our results suggest that activation of presynaptic GABA(B) receptors inhibits synaptic GABA and glutamate release to PVN presympathetic neurons. This presynaptic action of GABA(B) receptors is mediated by the N-ethylmaleimide-sensitive G(i/o) proteins, but independent of voltage-gated Ca2+ and K+ channels.  相似文献   

13.
Reelin signaling through the low-density lipoprotein receptor family members, apoliproprotein E receptor 2 (apoER2) and very-low-density lipoprotein receptor (VLDLR), plays a pivotal role in dictating neuronal lamination during embryonic brain development. Recent evidence suggests that this signaling system also plays a role in the postnatal brain to modulate synaptic transmission, plasticity, and cognitive behavior, mostly likely due to a functional coupling with N-methyl-d-aspartate (NMDA) receptors. In this study, we investigated the effects of reelin on the maturation of CA1 glutamatergic function using electrophysiological and biochemical approaches. In cultured hippocampal slices, reelin treatment increased the amplitude of AMPAR-mediated miniature excitatory postsynaptic currents and the evoked AMPA/NMDA receptor current ratios. In addition, reelin treatment also reduced the number of silent synapses, facilitated a developmental switch from NR2B to NR2A of NMDARs, and increased surface expression of AMPARs in CA1 tissue. In cultured hippocampal neurons from reeler embryos, reduced numbers of AMPAR subunit GluR1 and NMDAR subunit NR1 clustering were observed compared with those obtained from wild-type embryos. Supplementing reelin in the reeler culture obliterated these genotypic differences. These results demonstrate that reelin- and lipoprotein receptor-mediated signaling may operate during developmental maturation of hippocampal glutamatergic function and thus represent a potential important mechanism for controlling synaptic strength and plasticity in the postnatal hippocampus.  相似文献   

14.
In the hippocampus, glutamatergic inputs to pyramidal neurons and interneurons are modulated by alpha7* and alpha3beta4* nicotinic acetylcholine receptors (nAChRs), respectively, present in glutamatergic neurons. This study examines how nicotinic AMPA, and NMDA receptor nAChR activities are integrated to regulate the excitability of CA1 stratum radiatum (SR) interneurons in rat hippocampal slices. At resting membrane potentials and in the presence of extracellular Mg2+ (1 mM), nicotinic agonists triggered in SR interneurons excitatory postsynaptic currents (EPSCs) that had two components: one mediated by AMPA receptors, and the other by NMDA receptors. As previously shown, nicotinic agonist-triggered EPSCs resulted from glutamate released by activation of alpha3beta4* nAChRs in glutamatergic neurons/fibers synapsing directly onto the neurons under study. The finding that CNQX caused more inhibition of nicotinic agonist-triggered EPSCs than expected from the blockade of postsynaptic AMPA receptors indicated that this nicotinic response also depended on the AMPA receptor activity in the glutamatergic neurons synapsing onto the interneuron under study. Nicotinic agonists always triggered action potentials in CA1 SR interneurons. In most interneurons, these action potentials resulted from activation of somatodendritic AMPA receptors and alpha7* nAChRs. In interneurons expressing somatodendritic alpha4beta2* nAChRs, activation of these receptors caused sufficient membrane depolarization to remove the Mg2+-induced block of somatodendritic NMDA receptors; in these neurons, nicotinic agonist-triggered action potentials were partially dependent on NMDA receptor activation. Removing extracellular Mg2+ or clamping the neuron at positive membrane potentials revealed the existence of a tonic NMDA current in SR interneurons that was unaffected by nAChR activation or inhibition. Thus integration of the activities of nAChRs, NMDA, and AMPA receptors in different compartments of CA1 neurons contributes to the excitability of CA1 SR interneurons.  相似文献   

15.
Zinc is found throughout the CNS in synaptic vesicles of glutamatergic neurons and has been suggested to have a modulatory role in the brain because of its interaction with voltage- and ligand-gated ion channels. We took advantage of zinc transporter 3 knockout mice, which lack vesicular zinc, to study the possible physiological role of this heavy metal in hippocampal mossy fiber neurotransmission. We examined postsynaptic responses evoked by mossy fiber activation, recorded in CA3 pyramidal cells in hippocampal slices prepared from zinc transporter 3 knockout and wild-type mice. Field-potential response threshold and amplitude, input-output curves, and paired-pulse evoked responses were the same in slices from zinc transporter 3 knockout and wild-type mice. Furthermore, neither amplitude nor duration of pharmacologically isolated N-methyl-D-aspartate, non-N-methyl-D-aspartate, GABA(A), and GABA(B) receptor-mediated postsynaptic potentials differed between zinc transporter 3 knockout and wild-type mice. There was no difference in the magnitude of epileptiform discharges evoked by repetitive stimulation or kainic acid application. However, in slices from zinc transporter 3 knockout mice, there was greater attenuation of GABA(A)-mediated inhibitory postsynaptic potentials during tetanic stimulation compared with slices from wild-type animals. We conclude that lack of vesicular zinc in mossy fibers does not significantly affect the mossy fiber-associated synaptic excitability of CA3 pyramidal cells; however, zinc may modulate GABAergic synaptic transmission under conditions of intensive activation.  相似文献   

16.
Neurotensin (NT) is a tridecapeptide that interacts with three NT receptors; NTS1, NTS2, and NTS3. Although NT has been reported to modulate GABAergic activity in the brain, the underlying cellular and molecular mechanisms of NT are elusive. Here, we examined the effects of NT on GABAergic transmission and the involved cellular and signaling mechanisms of NT in the hippocampus. Application of NT dose-dependently increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) recorded from CA1 pyramidal neurons with no effects on the amplitude of sIPSCs. NT did not change either the frequency or the amplitude of miniature (m)IPSCs recorded in the presence of tetrodotoxin. Triple immunofluorescent staining of recorded interneurons demonstrated the expression of NTS1 on GABAergic interneurons. NT increased the action potential firing rate but decreased the afterhyperpolarization (AHP) amplitude in identified CA1 interneurons. Application of L-type calcium channel blockers (nimodipine and nifedipine) abolished NT-induced increases in action potential firing rate and sIPSC frequency and reduction in AHP amplitude, suggesting that the effects of NT are mediated by interaction with L-type Ca(2+) channels. NT-induced increase in sIPSC frequency was blocked by application of the specific NTS1 antagonist SR48692, the phospholipase C (PLC) inhibitor U73122, the IP(3) receptor antagonist 2-APB, and the protein kinase C inhibitor GF109203X, suggesting that NT increases gamma-aminobutyric acid release via a PLC pathway. Our results provide a cellular mechanism by which NT controls GABAergic neuronal activity in hippocampus.  相似文献   

17.
At glutamatergic synapses, calcium influx through NMDA receptors (NMDARs) is required for long-term potentiation (LTP); this is a proposed cellular mechanism underlying memory and learning. Here we show that in lateral amygdala pyramidal neurons, SK channels are also activated by calcium influx through synaptically activated NMDARs, resulting in depression of the synaptic potential. Thus, blockade of SK channels by apamin potentiates fast glutamatergic synaptic potentials. This potentiation is blocked by the NMDAR antagonist AP5 (D(-)-2-amino-5-phosphono-valeric acid) or by buffering cytosolic calcium with BAPTA. Blockade of SK channels greatly enhances LTP of cortical inputs to lateral amygdala pyramidal neurons. These results show that NMDARs and SK channels are colocalized at glutamatergic synapses in the lateral amygdala. Calcium influx through NMDARs activates SK channels and shunts the resultant excitatory postsynaptic potential. These results demonstrate a new role for SK channels as postsynaptic regulators of synaptic efficacy.  相似文献   

18.
Using whole cell patch-clamp recording from pyramidal cells and interneurons in the CA1 area of hippocampal slices, the effect of IEM-1460, a selective channel blocker of Ca2+ permeable AMPA receptors (AMPARs), on postsynaptic currents (PSCs) was studied. Excitatory postsynaptic currents (EPSCs) were evoked by stimulation of Schaffer collaterals (SCs) in the presence of APV and bicuculline to pharmacologically isolate the EPSCs mediated by AMPAR activation. IEM-1460 (50 microM) did not affect the amplitude of EPSCs in CA1 pyramidal cells but reversibly decreased their amplitude in interneurons of pyramidal layer (15 cells), radiatum (37 cells) and border radiatum-lacunosum-moleculare (R-LM) (55 cells) layers. The ability of IEM-1460 to decrease EPSC amplitude correlated with EPSC rectification properties in CA1 interneurons, providing evidence for synaptic localization of Ca2+ permeable AMPARs at the SC synaptic input. Independent of their localization, the majority of interneurons studied exhibited only modest sensitivity to IEM-1460 (EPSC amplitude decreased by less than 30%), while in 15% of interneurons IEM-1460 induced more than 50% reduction in EPSC amplitude. To reveal possible afferent-specific localization of Ca2+ permeable AMPARs on R-LM interneurons, the effect of IEM-1460 on EPSCs evoked by stimulation of SC was compared with that of perforant path (PP). Although average sensitivities did not differ significantly, in 61% of R-LM layer interneurons, the SC-evoked EPSCs exhibited higher sensitivity to IEM-1460 than the PP-evoked EPSCs. Moreover, in 54% of R-LM layer interneurons the EPSCs evoked by SC stimulation were complex, having an initial peak followed by one or several late components. Kinetics, latency distribution and reversal potential of late components suggest di- and polysynaptic origin of the late components. Late EPSCs were strongly and reversibly inhibited by IEM-1460 indicating that Ca2+ permeable AMPARs are involved in the indirect excitation of R-LM layer interneurons. Despite the ability to decrease the excitatory synaptic input to interneurons, IEM-1460 did not affect interneuron-mediated inhibitory postsynaptic currents (IPSCs) evoked in pyramidal neurons by SC stimulation. These data suggest that interneurons with a synaptic input highly sensitive to IEM-1460 do not contribute specifically to the feed-forward inhibition of hippocampal pyramidal neurons.  相似文献   

19.
N-methyl-d-aspartate (NMDA) receptors (NMDARs) are highly expressed in the CNS and mediate the slow component of excitatory transmission. The present study was aimed at characterizing the temperature dependence of the kinetic properties of native NMDARs, with special emphasis on the deactivation of synaptic NMDARs. We used patch-clamp recordings to study synaptic NMDARs at layer II/III pyramidal neurons of the rat cortex, recombinant GluN1/GluN2B receptors expressed in human embryonic kidney (HEK293) cells, and NMDARs in cultured hippocampal neurons. We found that time constants characterizing the deactivation of NMDAR-mediated excitatory postsynaptic currents (EPSCs) were similar to those of the deactivation of responses to a brief application of glutamate recorded under conditions of low NMDAR desensitization (whole-cell recording from cultured hippocampal neurons). In contrast, the deactivation of NMDAR-mediated responses exhibiting a high degree of desensitization (outside-out recording) was substantially faster than that of synaptic NMDA receptors. The time constants characterizing the deactivation of synaptic NMDARs and native NMDARs activated by exogenous glutamate application were only weakly temperature sensitive (Q10=1.7–2.2), in contrast to those of recombinant GluN1/GluN2B receptors, which are highly temperature sensitive (Q10=2.7–3.7). Ifenprodil reduced the amplitude of NMDAR-mediated EPSCs by ∼50% but had no effect on the time course of deactivation. Analysis of GluN1/GluN2B responses indicated that the double exponential time course of deactivation reflects mainly agonist dissociation and receptor desensitization. We conclude that the temperature dependences of native and recombinant NMDAR are different; in addition, we contribute to a better understanding of the molecular mechanism that controls the time course of NMDAR-mediated EPSCs.  相似文献   

20.
Tonically activated neuronal currents mediated by N-methyl-d-aspartate receptors (NMDARs) have been hypothesized to contribute to normal neuronal function as well as to neuronal pathology resulting from excessive activation of glutamate receptors (e.g., excitotoxicity). Whereas cortical excitatory cells are very vulnerable to excitotoxic insult, the data regarding resistance of inhibitory cells (or interneurons) are inconsistent. Types of neurons with more pronounced tonic NMDAR current potentially associated with the activation of extrasynaptic NMDARs could be expected to be more vulnerable to excessive activation by glutamate. In this study, we compared tonic activation of NMDARs in excitatory pyramidal cells and inhibitory fast-spiking interneurons in prefrontal cortical slices. We assessed tonic NMDAR current by measuring holding current shift as well as noise reduction following NMDAR blockade after removal of spontaneous glutamate release. In addition, we compared NMDAR miniature excitatory postsynaptic currents (EPSCs) in both cell types. We have demonstrated for the first time that tonic NMDAR currents are present in inhibitory fast-spiking interneurons. We found that the magnitude of tonic NMDAR current is similar in pyramidal cells and fast-spiking interneurons, and that quantal release of glutamate does not significantly impact tonic NMDAR current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号