首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Hypercapnia induces cerebral vasodilation and increases cerebral blood volume (CBV), and hypocapnia induces cerebral vasoconstriction and decreases CBV. Cerebral blood volume measured by positron emission tomography (PET) is the sum of three components, that is, arterial, capillary, and venous blood volumes. Changes in arterial blood volume (V(a)) and CBV during hypercapnia and hypocapnia were investigated in humans using PET with H(2)(15)O and (11)CO. Arterial blood volume was determined from H(2)(15)O PET data by means of a two-compartment model that takes V(a) into account. Baseline CBV and values during hypercapnia and hypocapnia in the cerebral cortex were 0.034+/-0.003, 0.038+/-0.003, and 0.031+/-0.003 mL/mL (mean+/-s.d.), respectively. Baseline V(a) and values during hypercapnia and hypocapnia were 0.015+/-0.003, 0.025+/-0.011, and 0.007+/-0.003 mL/mL, respectively. Cerebral blood volume changed significantly owing to changes in PaCO(2), and V(a) changed significantly in the direction of CBV changes. However, no significant change was observed in venous plus capillary blood volume (=CBV-V(a)). This indicates that changes in CBV during hypercapnia and hypocapnia are caused by changes in arterial blood volume without changes in venous and capillary blood volume.  相似文献   

2.
The magnitude of the blood oxygenation level-dependent (BOLD) signal depends on cerebral blood flow (CBF), cerebral blood volume (CBV) and cerebral metabolic rate of oxygen (CMRO2). Thus, it is difficult to separate CMRO2 changes from CBF and CBV changes. To detect the BOLD signal changes induced only by CMRO2 responses without significant evoked CBF and CBV changes, BOLD and CBV functional magnetic resonance imaging (fMRI) responses to visual stimulation were measured under normal and hypotension conditions in isoflurane-anesthetized cats at 4.7 T. When the mean arterial blood pressure (MABP) decreased from 89+/-10 to 50+/-1 mm Hg (mean+/-standard deviation, n=5) by infusion of vasodilator sodium nitroprusside, baseline CBV in the visual cortex increased by 28.4%+/-8.3%. The neural activity-evoked CBV increase in the visual cortex was 10.8%+/-3.9% at normal MABP, but was negligible at hypotension. Positive BOLD changes of +1.8%+/-0.5% (gradient echo time=25 ms) at normal MABP condition became prolonged negative changes of -1.2%+/-0.3% at hypotension. The negative BOLD response at hypotension starts approximately 1 sec earlier than positive BOLD response, but similar to CBV change at normal MABP condition. Our finding shows that the negative BOLD signals in an absence of CBV changes are indicative of an increase in CMRO2. The vasodilator-induced hypotension model simplifies the physiological source of the BOLD fMRI signals, providing an insight into spatial and temporal CMRO2 changes.  相似文献   

3.
The blood oxygenation level-dependent (BOLD) contrast mechanism can be modeled as a complex interplay between CBF, cerebral blood volume (CBV), and CMRO2. Positive BOLD signal changes are presumably caused by CBF changes in excess of increases in CMRO2. Because this uncoupling between CBF and CMRO2 may not always be present, the magnitude of BOLD changes may not be a good index of CBF changes. In this study, the relation between BOLD and CBF was investigated further. Continuous arterial spin labeling was combined with a single-shot, multislice echo-planar imaging to enable simultaneous measurements of BOLD and CBF changes in a well-established model of functional brain activation, the electrical forepaw stimulation of alpha-chloralose-anesthetized rats. The paradigm consisted of two 18- to 30-second stimulation periods separated by a 1-minute resting interval. Stimulation parameters were optimized by laser Doppler flowmetry. For the same cross-correlation threshold, the BOLD and CBF active maps were centered within the size of one pixel (470 microm). However, the BOLD map was significantly larger than the CBF map. Measurements taken from 15 rats at 9.4 T using a 10-millisecond echo-time showed 3.7 +/- 1.7% BOLD and 125.67 +/- 81.7% CBF increases in the contralateral somatosensory cortex during the first stimulation, and 2.6 +/- 1.2% BOLD and 79.3 +/- 43.6% CBF increases during the second stimulation. The correlation coefficient between BOLD and CBF changes was 0.89. The overall temporal correlation coefficient between BOLD and CBF time-courses was 0.97. These results show that under the experimental conditions of the current study, the BOLD signal changes follow the changes in CBF.  相似文献   

4.
Calibrated functional magnetic resonance imaging (fMRI) provides a noninvasive technique to assess functional metabolic changes associated with normal aging. We simultaneously measured both the magnitude of the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) responses in the visual cortex for separate conditions of mild hypercapnia (5% CO(2)) and a simple checkerboard stimulus in healthy younger (n = 10, mean: 28-years-old) and older (n = 10, mean: 53-years-old) adults. From these data we derived baseline CBF, the BOLD scaling parameter M, the fractional change in the cerebral metabolic rate of oxygen consumption (CMRO(2)) with activation, and the coupling ratio n of the fractional changes in CBF and CMRO(2). For the functional activation paradigm, the magnitude of the BOLD response was significantly lower for the older group (0.57 +/- 0.07%) compared to the younger group (0.95 +/- 0.14%), despite the finding that the fractional CBF and CMRO(2) changes were similar for both groups. The weaker BOLD response for the older group was due to a reduction in the parameter M, which was significantly lower for older (4.6 +/- 0.4%) than younger subjects (6.5 +/- 0.8%), most likely reflecting a reduction in baseline CBF for older (41.7 +/- 4.8 mL/100 mL/min) compared to younger (59.6 +/- 9.1 mL/100 mL/min) subjects. In addition to these primary responses, for both groups the BOLD response exhibited a post-stimulus undershoot with no significant difference in this magnitude. However, the post-undershoot period of the CBF response was significantly greater for older compared to younger subjects. We conclude that when comparing two populations, the BOLD response can provide misleading reflections of underlying physiological changes. A calibrated approach provides a more quantitative reflection of underlying metabolic changes than the BOLD response alone.  相似文献   

5.
The ability of the magnetic resonance imaging transverse relaxation time, R2 = 1/T2, to quantify cerebral blood volume (CBV) without the need for an exogenous contrast agent was studied in cats (n = 7) under pentobarbital anesthesia. This approach is possible because R2 is directly affected by changes in CBF, CBV, CMRO2, and hematocrit (Hct), a phenomena better known as the blood-oxygenation-level-dependent (BOLD) effect. Changes in CBF and CBV were accomplished by altering the carbon dioxide pressure, PaCO2, over a range from 20 to 140 mm Hg. For each PaCO2 value, R2 in gray and white matter were determined using MRI, and the whole-brain oxygen extraction ratio was obtained from arteriovenous differences (sagittal sinus catheter). Assuming a constant CMRO2, the microvascular CBV was obtained from an exact fit to the BOLD theory for the spin-echo effect. The resulting CBV values at normal PaCO2 and normalized to a common total hemoglobin concentration of 6.88 mmol/L were 42+/-18 microL/g (n = 7) and 29+/-19 microL/g (n = 5) for gray and white matter, respectively, in good agreement with the range of literature values published using independent methodologies. The present study confirms the validity of the spin-echo BOLD theory and, in addition, shows that blood volume can be quantified from the magnetic resonance imaging spin relaxation rate R2 using a regulated carbon dioxide experiment.  相似文献   

6.
Using functional magnetic resonance imaging techniques CBF and oxygenation changes were measured during sustained checkerboard stimulation in 38 right-handed healthy volunteers (18 men and 20 women). The average blood oxygenation level dependent (BOLD) contrast technique signal intensity change was 1.67 +/- 0.6% in the group of male volunteers and 2.15 +/- 0.6% in the group of female volunteers (P < .05). Baseline regional CBF (rCBF) values in activated gray matter areas within the visual cortex were 57 +/- 10 mL x 100 g(-1) x min(-1) in women and 50 +/- 12 mL x 100 g(-1) x min(-1) in men, respectively (P = .09). Despite a broad overlap between both groups the rCBF increase was significantly higher in women compared to men (33 +/- 5 mL x 100 g(-1) x min(-1) versus 28 +/- 4 mL x 100 g(-1) x min(-1), P < .01). The increase of rCBF was not correlated with the baseline rCBF (mL x 100 g(-1) x min(-1)) (r(s) = 0.01, P = .9). Moreover, changes of rCBF were not correlated with changes in BOLD signal intensities (r(s) = 0.1, P = .7). Enhanced rCBF response in women during visual stimulation could be related to gender differences in visual physiology or may reflect gender differences in the vascular response to focal neuronal activation. Gender differences must be considered when interpreting the results of functional magnetic resonance imaging studies.  相似文献   

7.
The blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) method, which is sensitive to vascular paramagnetic deoxyhemoglobin, is dependent on regional values of cerebral metabolic rate of oxygen utilization (CMR(O2)), blood flow (CBF), and volume (CBV). Induced changes in deoxyhemoglobin function as an endogenous contrast agent, which in turn affects the transverse relaxation rates of tissue water that can be measured by gradient-echo and spin-echo sequences in BOLD fMRI. The purpose here was to define the quantitative relation between BOLD signal change and underlying physiologic parameters. To this end, magnetic resonance imaging and spectroscopy methods were used to measure CBF, CMR(O2), CBV, and relaxation rates (with gradient-echo and spin-echo sequences) at 7 Tesla in rat sensorimotor cortex, where cerebral activity was altered pharmacologically within the autoregulatory range. The changes in tissue transverse relaxation rates were negatively and linearly correlated with changes in CBF, CMR(O2), and CBV. The multiparametric measurements revealed that CBF and CMR(O2) are the dominant physiologic parameters that modulate the BOLD fMRI signal, where the ratios of (deltaCMR(O2)/CMR(O2)/(deltaCBF/ CBF) and (deltaCBV/CBV)/(deltaCBF/CBF) were 0.86 +/- 0.02 and 0.03 +/- 0.02, respectively. The calibrated BOLD signals (spatial resolution of 48 microL) from gradient-echo and spin-echo sequences were used to predict changes in CMR(O2) using measured changes in CBF, CBV, and transverse relaxation rates. The excellent agreement between measured and predicted values for changes in CMR(O2) provides experimental support of the current theory of the BOLD phenomenon. In gradient-echo sequences, BOLD contrast is affected by reversible processes such as static inhomogeneities and slow diffusion, whereas in spin-echo sequences these effects are refocused and are mainly altered by extravascular spin diffusion. This study provides steps by which multiparametric MRI measurements can be used to obtain high-spatial resolution CMR(O2) maps.  相似文献   

8.
The authors describe a new ultrasonographic method for analysis of global cerebral blood volume (CBV) and its application under controlled hyperventilation. CBV was determined as the product of global cerebral blood flow volume (CBF) and global cerebral circulation time. CBF was measured by duplex sonography and calculated as the sum of flow volumes in both internal carotid arteries and vertebral arteries. Extracranial Doppler assessed cerebral circulation time by determining the time interval of echo-contrast bolus arrival between internal carotid artery and contralateral internal jugular vein. Forty-four healthy volunteers (mean age 45 +/- 19 years, range 20-79 years) were studied. Mean CBV was 77 +/- 13 mL. CBV did not correlate with age, end-tidal carbon dioxide level, heart rate, or blood pressure. Hypocapnia was induced in 10 subjects by controlled hyperventilation. Mean reduction of end-tidal carbon dioxide values by 9 +/- 1 mm Hg led to a significant increase in cerebral circulation time (6.1 +/- 0.9 to 8.4 +/- 1.1 second, P < 0.0001) and a significant CBF decrease (742 +/- 85 to 526 +/- 77 mL/min, P < 0.0001), whereas CBV remained unchanged (75 +/- 6 to 73 +/- 10 mL).  相似文献   

9.
The influence of naturally occurring opioid peptides (Met-enkephalin (Met-Enk), dynorphin (DYN), β-endorphin (β-EP)) as well as morphine and the opiate antagonist naloxone and specific antisera on cerebral blood flow autoregulation was studied in anesthetized, artificially ventillated rats. Local hypothalamic blood flow (CBF, H2-gas clearance technique) and total cerebral blood volume (CBV, photoelectric method) were simultaneously recorded. Autoregulation was tested by determining CBF and CBV during consecutive stepwise lowering of the systemic mean arterial pressure to 80, 60 and 40 mm Hg, by hemorrhage. Resting CBF decreased following Met-Enk, DYN, β-EP or morphine administration without simultaneous changes in CBV. Naloxone administration, on the contrary, increased CBV without affecting local CBF. Autoregulation of cerebral blood flow was maintained until 80 mm Hg, but not completely at 60 and 40 mm Hg arterial pressure in the control group. General opiate receptor blockade by 1 mg/kg s.c. naloxone abolished autoregulation at all levels, since CBF and CBV passively followed the arterial pressure changes. Intracerebroventricularly injected naloxone (1 μg/kg) as well as a specific antiserum against β-EP, but not against Met-Enk or DYN, resulted in the very same effect as peripherally injected naloxone. The present findings suggest that central, periventricular β-endorphinergic mechanisms might play a major role in CBF autoregulation.  相似文献   

10.
Changes in cerebral blood flow (CBF), volume (CBV), and oxygenation (blood-oxygenation level dependent (BOLD)) during functional activation are important for calculating changes in cerebral metabolic rate of oxygen consumption (CMRo2) from calibrated functional MRI (fMRI). An important part of this process is the CBF/CBV relationship, which is signified by a power-law parameter: gamma=ln (1+DeltaCBV/CBV)/ln (1+DeltaCBF/CBF). Because of difficulty in measuring CBF and CBV with MRI, the value of gamma is therefore assumed to be approximately 0.4 from a prior primate study under hypercapnia. For dynamic fMRI calibration, it is important to know if the value of gamma varies after stimulation onset. We measured transient relationships between DeltaCBF, DeltaCBV, and DeltaBOLD by multimodal MRI with temporal resolution of 500 ms (at 7.0 T) from the rat somatosensory cortex during forepaw stimulation, where the stimulus duration ranged from 4 to 32 secs. Changes in CBF and BOLD were measured before the administration of the contrast agent for CBV measurements in the same subjects. We observed that the relationship between DeltaCBF and DeltaCBV varied dynamically from stimulation onset for all stimulus durations. Typically after stimulation onset and at the peak or plateau of the DeltaCBF, the value of gamma ranged between 0.1 and 0.2. However, after stimulation offset, the value of gamma increased to 0.4 primarily because of rapid and slow decays in DeltaCBF and DeltaCBV, respectively. These results suggest caution in using dynamic measurements of DeltaCBF and DeltaBOLD required for calculating DeltaCMRo2 for functional stimulation, when either DeltaCBV has not been accurately measured or a fixed value of gamma during hypercapnia perturbation is used.  相似文献   

11.
Hypercapnia induces cerebral vasodilation and increases cerebral blood flow (CBF), and hypocapnia induces cerebral vasoconstriction and decreases CBF. The relation between changes in CBF and cerebral blood volume (CBV) during hypercapnia and hypocapnia in humans, however, is not clear. Both CBF and CBV were measured at rest and during hypercapnia and hypocapnia in nine healthy subjects by positron emission tomography. The vascular responses to hypercapnia in terms of CBF and CBV were 6.0 +/- 2.6%/mm Hg and 1.8 +/- 1.3%/mm Hg, respectively, and those to hypocapnia were -3.5 +/- 0.6%/mm Hg and -1.3 +/- 1.0%/mm Hg, respectively. The relation between CBF and CBV was CBV = 1.09 CBF0.29. The increase in CBF was greater than that in CBV during hypercapnia, indicating an increase in vascular blood velocity. The degree of decrease in CBF during hypocapnia was greater than that in CBV, indicating a decrease in vascular blood velocity. The relation between changes in CBF and CBV during hypercapnia was similar to that during neural activation; however, the relation during hypocapnia was different from that during neural deactivation observed in crossed cerebellar diaschisis. This suggests that augmentation of CBF and CBV might be governed by a similar microcirculatory mechanism between neural activation and hypercapnia, but diminution of CBF and CBV might be governed by a different mechanism between neural deactivation and hypocapnia.  相似文献   

12.
After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O(2) utilization (CMRO(2)), (5) dynamic responses of BOLD, CBF, CMRO(2), and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means.  相似文献   

13.
Reflex-mediated reduction in human cerebral blood volume.   总被引:3,自引:0,他引:3  
Adrenergic nerves innervate the human cerebrovasculature, yet the functional role of neurogenic influences on cerebral hemodynamics remains speculative. In the current study, regional cerebrovascular responses to sympathoexcitatory reflexes were evaluated. In eight volunteers, contrast-enhanced computed tomography was performed at baseline, -40 mmHg lower body negative pressure (LBNP), and a cold pressor test (CPT). Cerebral blood volume (CBV), mean transit time (MTT), and cerebral blood flow (CBF) were evaluated in cortical gray matter (GM), white matter (WM), and basal ganglia/thalamus (BGT) regions. Lower body negative pressure resulted in tachycardia and decreased central venous pressure while mean arterial pressure was maintained. Cold pressor test resulted in increased mean arterial pressure concomitant with tachycardia but no change in central venous pressure. Neither reflex altered end-tidal carbon dioxide. Cerebral blood volume was reduced in GM during both LBNP and CPT (P<0.05) but was unchanged in WM and BGT. Mean transit time was reduced in WM and GM during CPT (P<0.05). Cerebral blood flow was only modestly affected with either reflex (P<0.07). The combined reductions in GM CBV (approximately -25%) and MTT, both with and without any change in central venous pressure, with small CBF changes (approximately -11%), suggest that active venoconstriction contributed to the volume changes. These data demonstrate that CBV is reduced during engagement of sympathoexcitatory reflexes and that these cerebrovascular changes are heterogeneously distributed.  相似文献   

14.
Positron emission tomography (PET) and 15O-labeled radiotracers were used to measure regional CBF, cerebral blood volume (CBV), CMRO2, and oxygen extraction in 32 right-handed subjects at rest. Mean left hemispheric CBF (46.2 +/- 6.8 ml/100 g/min) and CMRO2 (2.60 +/- 0.59 ml/100 g/min) were significantly lower than right hemispheric values (47.4 +/- 7.2 and 2.66 +/- 0.61 ml/100 g/min, respectively; p less than 0.0001 for both), whereas left and right hemispheric CBV and oxygen extraction were not significantly different. We further investigated these asymmetries by comparing left- and right-sided values for specific cortical and subcortical regions. We found that left-sided CBF and CMRO2 were significantly lower than right-sided values for sensorimotor, occipital, and superior temporal regions, whereas only left-sided CBF values were lower for anterior cingulum. CBV was asymmetric for the anterior cingulate and mid-frontal regions, and oxygen extraction was asymmetric for the sensorimotor area. No asymmetries were observed in inferior parietal cortex, thalamus, putamen, or pallidum. Knowledge of these normal physiological asymmetries is essential for proper interpretation of PET studies of physiology and pathology. Furthermore, the ability to detect asymmetries with PET may lead to a better understanding of the lateralization of specific functions in the human brain.  相似文献   

15.
The hemodynamic mechanism of increase in cerebral blood flow (CBF) during neural activation has not been elucidated in humans. In the current study, changes in both regional CBF and cerebral blood volume (CBV) during visual stimulation in humans were investigated. Cerebral blood flow and CBV were measured by positron emission tomography using H(2)(15)O and (11)CO, respectively, at rest and during 2-Hz and 8-Hz photic flicker stimulation in each of 10 subjects. Changes in CBF in the primary visual cortex were 16% +/- 16% and 68% +/- 20% for the visual stimulation of 2 Hz and 8 Hz, respectively. The changes in CBV were 10% +/- 13% and 21% +/- 5% for 2-Hz and 8-Hz stimulation, respectively. Significant differences between changes in CBF and CBV were observed for visual stimulation of 8 Hz. The relation between CBF and CBV values during rest and visual stimulation was CBV = 0.88CBF(0.30). This indicates that when the increase in CBF during neural activation is great, that increase is caused primarily by the increase in vascular blood velocity rather than by the increase in CBV. This observation is consistent with reported findings obtained during hypercapnia.  相似文献   

16.
CBF obtained by the hydrogen clearance technique and cerebral blood volume (CBV) calculated from the [14C]dextran space were measured in three groups of rats subjected to temporary four-vessel occlusion to produce 15 min of ischaemia, followed by 60 min of reperfusion. In the control animals, mean CBF was 93 +/- 6 ml 100 g-1 min-1, which fell to 5.5 +/- 0.5 ml 100 g-1 min-1 during ischaemia. There was a marked early postischaemic hyperaemia (262 +/- 18 ml 100 g-1 min-1), but 1 h after the onset of ischaemia, there was a significant hypoperfusion (51 +/- 3 ml 100 g-1 min-1). Mean cortical dextran space was 1.58 +/- 0.09 ml 100 g-1 prior to ischaemia. Early in reperfusion there was a significant increase in CBV (1.85 +/- 0.24 ml 100 g-1) with a decrease during the period of hypoperfusion (1.33 +/- 0.03 ml 100 g-1). Therefore, following a period of temporary ischaemia, there are commensurate changes in CBF and CBV, and alterations in the permeability-surface area product at this time may be due to variations in surface area and not necessarily permeability.  相似文献   

17.
Recent reports showed noxious forepaw stimulation in rats evoked an unexpected sustained decrease in cerebral blood volume (CBV) in the bilateral striatum, whereas increases in spike activity and Fos-immunoreactive cells were observed. This study aimed to further evaluate the hemodynamic and metabolic needs in this model and the sources of negative functional magnetic resonance imaging (fMRI) signals by measuring blood oxygenation-level-dependent (BOLD), cerebral-blood-flow (CBF), CBV, and oxygen-consumption (i.e., cerebral metabolic rate of oxygen (CMRO2)) changes using an 11.7-T MRI scanner, and glucose-consumption (i.e., cerebral metabolic rate of glucose (CMRglc)) changes using micro-positron emission tomography. In the contralateral somatosensory cortex, BOLD, CBF, CBV, CMRO2 (n=7, P<0.05), and CMRglc (n=5, P<0.05) increased. In contrast, in the bilateral striatum, BOLD, CBF, and CBV decreased (P<0.05), CMRO2 decreased slightly, although not significantly from baseline, and CMRglc was not statistically significant from baseline (P>0.05). These multimodal functional imaging findings corroborate the unexpected negative hemodynamic changes in the striatum during noxious forepaw stimulation, and support the hypothesis that striatal hemodynamic response is dominated by neurotransmitter-mediated vasoconstriction, overriding the stimulus-evoked fMRI signal increases commonly accompany elevated neuronal activity. Multimodal functional imaging approach offers a means to probe the unique attributes of the striatum, providing novel insights into the neurovascular coupling in the striatum. These findings may have strong implications in fMRI studies of pain.  相似文献   

18.
Evaluation of cerebral hemodynamics with perfusion CT]   总被引:1,自引:0,他引:1  
We report on the evaluation of cerebral ischemic lesions with perfusion CT. Cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) of 52 patients mostly with ischemic cerebrovascular disease were analysed using the box-modulation transfer function method with 30 ml of contrast medium intravenously injected at 5 ml/sec. CBF, CBV and MTT of the middle cerebral artery (MCA) territory were 43.5 +/- 4.6 ml/100 g/min, 1.9 +/- 0.2 ml/100 g and 2.9 +/- 0.6 seconds at the unaffected side, and 37.7 +/- 7.3 ml/100 g/min, 2.1 +/- 0.3 ml/100 g, 3.7 +/- 0.9 seconds at the lesion side with stenosis or occlusion in the main MCA trunks or internal carotid artery, respectively. A statistically significant difference was shown in CBF and MTT values. Furthermore, there was a close correlation in CBF values of MCA territories between Xe-CT and perfusion CT (r = 0.645, n = 76, p < 0.0001). MTT showed a positive correlation with CBV in those subjects when MTT was below 4.1 seconds (r = 0.526, p < 0.0001, n = 83). MTT also showed a negative correlation with CBF in those patients when MTT indicated more than 4.1 seconds (r = 0.818, p < 0.001, n = 21). These results suggest that the progression of cerebral ischemia may be classified in 4 stages using perfusion CT. The stages are as follows: stage 0; normal CBF without prolonged MTT and increased CBV, stage 1; relatively increased CBV, stage 2; significantly prolonged MTT, and stage 3; significantly decreased CBF with prolonged MTT.  相似文献   

19.
Near-infrared spectroscopy (NIRS) enables continuous non-invasive quantification of blood and tissue oxygenation, and may be useful for quantification of cerebral blood volume (CBV) changes. In this study, changes in cerebral oxy- and deoxyhemoglobin were compared to corresponding changes in CBF and CBV as measured by positron emission tomography (PET). Furthermore, the results were compared using a physiological model of cerebral oxygenation. In five healthy volunteers changes in CBF were induced in a randomized order by hyperventilation or inhalation of 6% CO(2). Arterial content of O(2) and CO(2) was measured several times during each scanning. Changes in deoxyhemoglobin (deltaHb), oxyhemoglobin (deltaHbO(2)) and total hemoglobin (deltaHb(tot)) were continuously recorded with NIRS equipment. CBF and CBV was also determined in MRI-coregistered PET-slices in regions determined by the placement of the two optodes, as localized from the transmission scan. The PET-measurements showed an average CBV of 5.5+/-0.74 ml 100 g(-1) in normoventilation, with an increase of 29% during hypercapnia, whereas no significant changes were seen during hyperventilation. CBF was 51+/-10 in normoventilation, increased by 37% during 6% CO(2) and decreased by 25% during hyperventilation. NIRS showed significant increases in oxygenation during hypercapnia, and a trend towards decreases during hyperventilation. Changes in CBV measured with both techniques were significantly correlated to CO(2) levels. However, deltaCBV(NIRS) was much smaller than deltaCBV(PET), and measured NIRS parameters smaller than those predicted from the model. It is concluded that while qualitatively correct, NIRS measurements of CBV should be used with caution when quantitative results are needed.  相似文献   

20.
We investigated whether total cerebral blood flow (CBF) was associated with brain atrophy, and whether this relation was modified by white matter lesions (WML). Within the Second Manifestations of ARTerial disease-magnetic resonance (SMART-MR) study, a prospective cohort study among patients with arterial disease, cross-sectional analyses were performed in 828 patients (mean age 58+/-10 years, 81% male) with quantitative flow, atrophy, and WML measurements on magnetic resonance imaging (MRI). Total CBF was measured with MR angiography and was expressed per 100 mL brain volume. Total brain volume and ventricular volume were divided by intracranial volume to obtain brain parenchymal fraction (BPF) and ventricular fraction (VF). Lower BPF indicates more global brain atrophy, whereas higher VF indicates more subcortical brain atrophy. Mean CBF was 52.0+/-10.2 mL/min per 100 mL, mean BPF was 79.2+/-2.9%, and mean VF was 2.03+/-0.96%. Linear regression analyses showed that lower CBF was associated with more subcortical brain atrophy, after adjusting for age, sex, vascular risk factors, intima-media thickness, and lacunar infarcts, but only in patients with moderate to severe WML (upper quartile of WML): Change in VF per s.d. decrease in CBF 0.18%, 95% CI: 0.02 to 0.34%. Our findings suggest that cerebral hypoperfusion in the presence of WML may be associated with subcortical brain atrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号