首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study aimed to investigate the protective role of limonene in lipopolysaccharide (LPS)-induced acute lung injury (ALI). ALI was induced in mice by intratracheal instillation of LPS (0.5 mg/kg), and limonene (25, 50, and 75 mg/kg) was injected intraperitoneally 1 h prior to LPS administration. After 12 h, bronchoalveolar lavage fluid (BALF) and lung tissue were collected. Limonene pretreatment at doses of 25, 50, and 75 mg/kg decreased LPS-induced evident lung histopathological changes, lung wet-to-dry weight ratio, and lung myeloperoxidase activity. In addition, pretreatment with limonene inhibited inflammatory cells and proinflammatory cytokines including tumor necrosis factor-α, interleukin-1β, and interleukin-6 in BALF. Furthermore, we demonstrated that limonene blocked the phosphorylation of IκBα, nuclear factor-κB (NF-κB) p65, p38 mitogen-activated protein kinase (MAPK), c-Jun NH2-terminal kinase, and extracellular signal-regulated kinase in LPS-induced ALI. The results presented here suggest that the protective mechanism of limonene may be attributed partly to decreased production of proinflammatory cytokines through the inhibition of NF-κB and MAPK activation.  相似文献   

2.
3.
The present study was designed to investigate the effects of p-cymene on lipopolysaccharide (LPS)-induced inflammatory cytokine production both in vitro and in vivo. The production of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and interleukin-10 (IL-10) in LPS-stimulated RAW 264.7 cells and C57BL/6 mice was evaluated by sandwich ELISA. Meanwhile, the mRNA levels of cytokine genes were examined in vitro by semiquantitative RT-PCR. In a further study, we analyzed the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways by western blotting. We found that p-cymene significantly regulated TNF-α, IL-1β, and IL-6 production in LPS-stimulated RAW 264.7 cells. Furthermore, the levels of relative mRNAs were also found to be downregulated. In in vivo trail, p-cymene markedly suppressed the production of TNF-α and IL-1β and increased IL-10 secretion. We also found that p-cymene inhibited LPS-induced activation of extracellular signal receptor-activated kinase 1/2, p38, c-Jun N-terminal kinase, and IκBα. These results suggest that p-cymene may have a potential anti-inflammatory action on cytokine production by blocking NF-κB and MAPK signaling pathways.  相似文献   

4.
5.
6.
The acute lung injury (ALI) is a leading cause of morbidity and mortality in critically ill patients. Amygdalin is derived from the bitter apricot kernel, an efficacious Chinese herbal medicine. Although amygdalin is used by many cancer patients as an antitumor agent, there is no report about the effect of amygdalin on acute lung injury. Here we explored the protective effect of amygdalin on ALI using lipopolysaccharide (LPS)-induced murine model by detecting the lung wet/dry ratio, the myeloperoxidase (MPO) in lung tissues, inflammatory cells in the bronchoalveolar lavage fluid (BALF), inflammatory cytokines production, as well as NLRP3 and NF-κB signaling pathways. The results showed that amygdalin significantly reduced LPS-induced infiltration of inflammatory cells and the production of TNF-α, IL-1β, and IL-6 in the BALF. The activity of MPO and lung wet/dry ratio were also attenuated by amygdalin. Furthermore, the western blotting analysis showed that amygdalin remarkably inhibited LPS-induced NF-κB and NLRP3 activation. These findings indicate that amygdalin has a protective effect on LPS-induced ALI in mice. The mechanism may be related to the inhibition of NF-κB and NLRP3 signaling pathways.  相似文献   

7.
Jun Hu  Jun Liu 《Inflammation》2016,39(2):569-574
Licochalcone A (Lico A), a flavonoid found in licorice root (Glycyrrhiza glabra), has been reported to have anti-inflammatory activity. However, the protective effects of Lico A on lipopolysaccharide (LPS)-induced acute kidney injury (AKI) remains unclear. In this study, using a mouse model of LPS-induced AKI, we investigated the protective effects and mechanism of Lico A on LPS-induced AKI in mice. LPS-induced kidney injury was assessed by detecting kidney histological study, blood urea nitrogen (BUN), and creatinine levels. The production of inflammatory cytokines TNF-α, IL-6, and IL-1β in serum and kidney tissues was detected by ELISA. The activation of NF-κB was measured by western blot analysis. Our results showed that Lico A dose-dependently attenuated LPS-induced kidney histopathologic changes, serum BUN, and creatinine levels. Lico A also suppressed LPS-induced TNF-α, IL-6, and IL-1β production both in serum and kidney tissues. Furthermore, our results showed that Lico A significantly inhibited LPS-induced NF-κB activation. In conclusion, our results suggest that Lico A has protective effects against LPS-induced AKI and Lico A exhibits its anti-inflammatory effects through inhibiting LPS-induced NF-κB activation.  相似文献   

8.

Background  

Acute lung injury (ALI) is a devastating disorder of the lung by various causes and its cardinal features are tissue inflammation, pulmonary edema, low lung compliance, and widespread capillary leakage. Among phosphoinositide 3-kinases (PI3Ks), PI3K-γ isoform has been shown to play an important role in a number of immune/inflammatory responses.  相似文献   

9.
10.
11.
Remifentanil significantly represses cell immune responses and influences neutrophil migration through endothelial cell monolayers. The present study determines the beneficial effects of remifentanil and the mechanisms by which it attenuates lipopolysaccharide (LPS)-induced acute lung injury (ALI). Rats were intratracheally instilled with 2 mg/kg LPS to induce ALI. Results showed that remifentanil could resolve lung injury, as evidenced by remarkable decreases in lung edema (wet-to-dry weight ratio), neutrophil infiltration (myeloperoxidase activity), and pulmonary permeability [total number of cells and protein concentrations in bronchoalveolar lavage fluid (BALF)]. Remifentanil also attenuated the concentrations of proinflammatory cytokines tumor necrosis factor alpha, interleukin-1β, and interleukin-6 in BALF, as well as effectively repressed the activation of nuclear factor-kappaB (NF-κB), which has been associated with the inhibition of IκBα degradation.These results suggest that remifentanil may be a suitable treatment for LPS-induced ALI. Remifentanil exerts beneficial effects on the inhibition of proinflammatory cytokine production by downregulating the NF-κB pathway.  相似文献   

12.
13.
Xu  Zixuan  Hao  Wenting  Xu  Daxiang  He  Yan  Yan  Ziyi  Sun  Fenfen  Li  Xiangyang  Yang  Xiaoying  Yu  Yinghua  Tang  Renxian  Zheng  Kuiyang  Pan  Wei 《Inflammation》2022,45(4):1507-1519
Inflammation - Rheumatoid arthritis (RA) is a chronic autoimmune joint disease that causes cartilage and bone damage or even disability, seriously endangering human health. Chronic synovial...  相似文献   

14.
Plumbagin has been reported to modulate cellular redox status and suppress NF-κB. In the present study, we investigated the effect of plumbagin on lipopolysaccharide (LPS)-induced endotoxic shock, oxidative stress and inflammatory parameters in vitro and in vivo. Plumbagin inhibited LPS-induced nitric oxide, TNF-α, IL-6 and prostaglandin-E2 production in a concentration-dependent manner in RAW 264.7 cells without inducing any cell death. Plumbagin modulated cellular redox status in RAW cells. Plumbagin treatment significantly reduced MAPkinase and NF-κB activation in macrophages. Plumbagin prevented mice from endotoxic shock-associated mortality and decreased serum levels of pro-inflammatory markers. Plumbagin administration ameliorated LPS-induced oxidative stress in peritoneal macrophages and splenocytes. Plumbagin also attenuated endotoxic shock-associated changes in liver and lung histopathology and decreased the activation of ERK and NF-κB in liver. These findings demonstrate the efficacy of plumbagin in preventing LPS-induced endotoxemia and also provide mechanistic insights into the anti-inflammatory effects of plumbagin.  相似文献   

15.
Thymol is a natural monoterpene phenol primarily found in thyme, oregano, and tangerine peel. It has been shown to possess anti-inflammatory property both in vivo and in vitro. In the present paper, we studied the anti-inflammatory effect of thymol in lipopolysaccharide (LPS)-stimulated mouse mammary epithelial cells (mMECs). The mMECs were stimulated with LPS in the presence or absence of thymol (10, 20, 40 μg/mL). The concentrations of tumor necrosis factor α (TNF-α), interleukin (IL)-6, and IL-1β in the supernatants of culture were determined using enzyme-linked immunosorbent assay. Cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), nuclear factor-κB (NF-κB), and inhibitor protein of NF-κB (IκBα) were measured using western blot. The results showed that thymol markedly inhibited the production of TNF-α and IL-6 in LPS-stimulated mMECs. The expression of iNOS and COX-2 was also suppressed by thymol in a dose-dependent manner. Furthermore, thymol blocked the phosphorylation of IκBα, NF-κB p65, ERK, JNK, and p38 mitogen-activated protein kinases (MAPKs) in LPS-stimulated mMECs. These results indicate that thymol exerted anti-inflammatory property in LPS-stimulated mMECs by interfering the activation of NF-κB and MAPK signaling pathways. Thereby, thymol may be a potential therapeutic agent against mastitis.  相似文献   

16.
Stevioside, a diterpene glycoside isolated from Stevia rebaudiana, has been reported to have anti-inflammatory properties. However, the underlying molecular mechanisms are not well understood. The objective of this study was to investigate the molecular mechanism of stevioside in modifying lipopolysaccharide (LPS)-induced signal pathways in RAW264.7 cells. RAW264.7 cells were stimulated with LPS in the presence or absence of stevioside. The expression of pro-inflammatory cytokines was determined by enzyme-linked immunosorbent assay and quantitative real-time polymerase chain reaction. Nuclear factor-κB (NF-κB), inhibitory kappa B (IκBα) protein, p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) were determined by western blot. The results showed that stevioside dose-dependently inhibited the expression of tumor necrosis factor-α, interleukin-6, and interleukin-1β in LPS-stimulated RAW264.7 cells. Western blot analysis showed that stevioside suppressed LPS-induced NF-κB activation, IκBa degradation, phosphorylation of ERK, JNK, and P38. Our results suggest that stevioside exerts an anti-inflammatory property by inhibiting the activation of NF-κB and mitogen-activated protein kinase signaling and the release of proinflammatory cytokines. These findings suggest that stevioside may be a therapeutic agent against inflammatory diseases.  相似文献   

17.
Cryptotanshinone (CTS), a major constituent extracted from the medicinal herb Salvia miltiorrhiza Bunge, has well-documented antioxidative and anti-inflammatory effects. In the present study, the pharmacological effects and underlying molecular mechanisms of CTS on lipopolysaccharide (LPS)-induced inflammatory responses were investigated. By enzyme-linked immunosorbent assay, we observed that CTS reduced significantly the production of proinflammatory mediators (tumor necrosis factor-α and interleukin-6) induced by LPS in murine macrophage-like RAW264.7 cells. Mechanistically, CTS inhibited markedly the phosphorylation of mitogen-activated protein kinases (MAPKs), including ERK1/2, p38MAPK, and JNK, which are crucially involved in regulation of proinflammatory mediator secretion. Moreover, immunofluorescence and western blot analysis indicated that CTS abolished completely LPS-triggered nuclear factor-κB (NF-κB) activation. Taken together, these data implied that NF-κB and MAPKs might be the potential molecular targets for clarifying the protective effects of CTS on LPS-induced inflammatory cytokine production in macrophages.  相似文献   

18.
Our previous study have reported that 1α,25-Dihydroxyvitamin D3 (calcitriol) suppresses seawater aspiration-induced ALI in vitro and in vivo. We also have confirmed that treatment with calcitriol ameliorates seawater aspiration-induced inflammation and pulmonary edema via the inhibition of NF-κB and RhoA/Rho kinase pathway activation. In our further work, we investigated the effect of calcitriol on nuclear translocation of NF-κB and membrane translocation of RhoA in vitro. A549 cells and rat pulmonary microvascular endothelial cells (RPMVECs) were cultured with calcitriol or not for 48 h and then stimulated with 25% seawater for 40 min. After these treatments, cells were collected and performed with immunofluorescent staining to observe the translocation of NF-κB and RhoA and the cytoskeleton remodeling. In vitro, seawater stimulation activates nuclear translocation of NF-κB and membrane translocation of RhoA in A549 cells. In addition, seawater administration also induced cytoskeleton remodeling in A549 cells and RPMVECs. However, pretreatment with calcitriol significantly inhibited the activation of NF-κB and RhoA/Rho kinase pathways, as demonstrated by the reduced nuclear translocation of NF-κB and membrane translocation of RhoA in A549 cells. Meanwhile, treatment of calcitriol also regulated the cytoskeleton remodeling in both A549 cells and RPMVECs. These results demonstrated that treatment with calcitriol ameliorates seawater aspiration-induced ALI via inhibition of nuclear translocation of NF-κB and membrane translocation of RhoA and protection of alveolar epithelial and pulmonary microvascular endothelial barrier.  相似文献   

19.
Hesperetin (Hesp), a common flavanone glycoside, was extracted from the fruit peel of Citrus aurantium L. (Rutaceae). Hesp has been shown to possess various biological properties, including antioxidant, neuroprotective, and anti-inflammatory properties. In this study, we investigated the protective effect of Hesp on inflammatory responses in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Our results indicated that Hesp treatment dramatically suppressed secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β; reduced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) gene expression; inhibited NF-κB (p65) phosphorylation; and blocked IκBα phosphorylation and degradation. Further studies revealed Hesp markedly enhanced the heme oxygenase (HO)-1 and nuclear factor erythroid 2-related factor 2 (Nrf2) expression, which were involved with inducing Nrf2 nuclear translocation and decreasing Keap1 protein expression. Together, these results indicated that the anti-inflammatory effect of Hesp may be associated with NF-κB inhibition and Nrf2/HO-1 activation.  相似文献   

20.
The present study was performed to determine whether genistein could inhibit in vivo LPS-induced alveolar macrophage TNF production and thus reduce the alveolar neutrophil influx following LPS. In vitro incubation with genistein completely inhibited LPS-induced TNF production by alveolar macrophages (AM) from BALB/c mice. Subsequently mice were pretreated with intraperitoneal genistein or vehicle, then received nasal LPS to induce an alveolitis. Genistein was then administered every eight hours for five days following LPS. At 24 hours after LPS, the bronchoalveolar lavage (BAL) TNF and ex vivo TNF production from AM, were lower in the genistein treated animals. As well, total BAL white blood cell (WBC) count was reduced in the genistein as compared to the vehicle-only group. The percent neutrophils and the resolution of neutrophils were similar between genistein and vehicle groups. Therefore, genistein was able to decrease AM TNF production, and was associated with a decrease in BAL WBC count post-LPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号