首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Propagation of odor-induced Ca(2+) transients from the cilia/knob to the soma in mammalian olfactory receptor neurons (ORNs) is thought to be mediated exclusively by high-voltage-activated Ca(2+) channels. However, using confocal Ca(2+) imaging and immunocytochemistry we identified functional T-type Ca(2+) channels in rat ORNs. Here we show that T-type Ca(2+) channels in ORNs also mediate propagation of odor-induced Ca(2+) transients from the knob to the soma. In the presence of the selective inhibitor of T-type Ca(2+) channels mibefradil (10-15 microM) or Ni(2+) (100 microM), odor- and forskolin/3-isobutyl-1-methyl-xanthine (IBMX)-induced Ca(2+) transients in the soma and dendrite were either strongly inhibited or abolished. The percentage of inhibition of the Ca(2+) transients in the knob, however, was 40-50% less than that in the soma. Ca(2+) transients induced by 30 mM K(+) were partially inhibited by mibefradil, but without a significant difference in the extent of inhibition between the knob and soma. Furthermore, an increase of as little as 2.5 mM in the extracellular K(+) concentration (7.5 mM K(+)) was found to induce Ca(2+) transients in ORNs, and such responses were completely inhibited by mibefradil or Ni(2+). Total replacement of extracellular Na(+) with N-methyl-d-glutamate inhibited none of the odor-, forskolin/IBMX- or 7.5 mM K(+)-induced Ca(2+) transients. Positive immunoreactivity to the Ca(v)3.1, Ca(v)3.2 and Ca(v)3.3 subunits of the T-type Ca(2+) channel was observed throughout the soma, dendrite and knob. These data suggest that involvement of T-type Ca(2+) channels in the propagation of odor-induced Ca(2+) transients in ORNs may contribute to signal transduction and odor sensitivity.  相似文献   

2.
We investigated the relation between the intensity of odorant stimulation and the mode of spatiotemporal Ca(2+) dynamics in Fluo-4-loaded rat olfactory receptor neurons (ORNs) using a confocal laser scanning microscope. We found that relatively smaller Ca(2+) transients remained confined to the knob while larger ones spread to the soma with latency. Prolonged odor exposure ensured the spread of Ca(2+) transients from the knob to the soma. Upon exposing ORNs to progressively increasing concentrations of odor, the Ca(2+) transients that were confined to the knob at lower concentrations extended to the soma at higher concentrations. Stimulation with progressively increasing concentrations of forskolin plus IBMX yielded identical results. Partial inhibition of adenylyl cyclase by MDL12330A changed the odor response extending to the soma to a response confined to the knob. Blocking of L-type Ca(2+) channels by nifedipine reduced the magnitude of the response extending to the soma but had no effect on the response confined to the knob. It is thus suggested that Ca(2+) transients confined to the knob represent weak stimulation, and, speculatively, such responses either constitute inhibitory responses or indicate weak excitatory responses that fail to outstand the spontaneous electrical noise of ORNs.  相似文献   

3.
Berke BA  Lee J  Peng IF  Wu CF 《Neuroscience》2006,142(3):629-644
Using Drosophila mutants and pharmacological blockers, we provide the first evidence that distinct types of K(+) channels differentially influence sub-cellular Ca(2+) regulation and growth cone morphology during neuronal development. Fura-2-based imaging revealed in cultured embryonic neurons that the loss of either voltage-gated, inactivating Shaker channels or Ca(2+)-gated Slowpoke BK channels led to robust spontaneous Ca(2+) transients that preferentially occurred within the growth cone. In contrast, loss of voltage-gated, non-inactivating Shab channels did not show such a disparity and sometimes produced soma-specific Ca(2+) transients. The fast spontaneous transients in both the soma and growth cone were suppressed by the Na(+) channel blocker tetrodotoxin, indicating that these Ca(2+) fluctuations stemmed from increases in membrane excitability. Similar differences in regional Ca(2+) regulation were observed upon membrane depolarization by high K(+)-containing saline. In particular, Shaker and slowpoke mutations enhanced the size and dynamics of the depolarization-induced Ca(2+) increase in the growth cone. In contrast, Shab mutations greatly prolonged the Ca(2+) increase in the soma. Differential effects of these excitability mutations on neuronal development were indicated by their distinct alterations in growth cone morphology. Loss of Shaker currents increased the size of lamellipodia and the number of filopodia, structures associated with the actin cytoskeleton. Interestingly, loss of Slowpoke currents strongly influenced tubulin regulation, enhancing the number of microtubule loop structures per growth cone. Together, our findings support the idea that individual K(+) channel subunits differentially regulate spontaneous sub-cellular Ca(2+) fluctuations in growing neurons that may influence activity-dependent growth cone formation.  相似文献   

4.
Nedergaard S 《Neuroscience》2004,125(4):841-852
The discharge properties of dopaminergic neurons in substantia nigra are influenced by slow adaptive responses, which have not been fully identified. The present study describes, in a slice preparation from the rat, a complex afterhyperpolarization (AHP), elicited by action potential trains. The AHP could be subdivided into a fast component (AHP(f)), which was generated near action potential threshold, relaxed within approximately 1 s, and had highest amplitude when evoked by short-lasting (0.1 s) depolarizations, and a slow component (AHP(s)), which lasted several seconds, was evoked from subthreshold potentials, and required prolonged depolarizing stimuli (>0.1 s). A large proportion of the AHP(f) was sensitive to (i) 0.1 microM apamin, (ii) the Ca(2+) antagonists, Cd(2+) (0.2 mM) and Ni(2+) (0.3 mM), (iii) low (0.2 mM) extracellular Ca(2+) concentration, and (iv), Ca(2+) chelation with intracellular EGTA. The AHP(s) was resistant to the above treatments, and it was insensitive to 25 microM dantrolene or prolonged exposure to 1 microM thapsigargin. The reversal potential of the AHP(s) (-97 mV) was close to the K(+) equilibrium potential. It was significantly inhibited by 5 mM 4-aminopyridine, 5 microM haloperidol, 10 microM terfenadine, or high extracellular Mg(2+) (10 mM), but not by 30 mM tetraethylammonium chloride, 50 microM carbachol, 0.5 microM glipizide, 2 microM (-)sulpiride, 100 microM N-allyl-normetazocine, or 100 microM pentazocine. Haloperidol reduced the post-stimulus inhibitory period seen during spontaneous discharge, but had no detectable effect on spike frequency adaptation. It is concluded that the SK-type Ca(2+)-activated K(+) channels underlies a major component of the AHP(f), whereas the AHP(s) is Ca(2+)-independent and relies, in part, on a voltage-dependent K(+) current with properties resembling the ether-a-go-go-related gene K(+) channel. The latter component exerts a slow, spike-independent, inhibitory influence on repetitive discharge and contributes to the prolonged decrease in excitability following sustained depolarizing stimuli.  相似文献   

5.
The generation of activity-evoked extracellular alkaline shifts has been linked to the presence of external Ca(2+) or Ba(2+). We further investigated this dependence using pH- and Ca(2+)-selective microelectrodes in the CA1 area of juvenile, rat hippocampal slices. In HEPES-buffered media, alkaline transients evoked by pressure ejection of RS-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) averaged approximately 0.07 unit pH and were calculated to arise from the equivalent net addition of approximately 1 mM strong base to the interstitial space. These alkaline responses were correlated with a mean decrease in [Ca(2+)](o) of approximately 300 microM. The alkalinizations were abolished reversibly in zero-Ca(2+) media, becoming indiscernible at a [Ca(2+)](o) of 117+/-29 microM. Addition of as little as 30-50 microM Ba(2+) caused the reappearance of an alkaline response. In approximately one-fourth of slices, a persistent alkaline shift of approximately 0.03 unit pH was observed in zero-Ca(2+) saline containing EGTA. In HEPES media, addition of 300 microM Cd(2+), 100 microM Ni(2+), or 100 microM nimodipine inhibited the alkaline shifts by roughly one-half, one-third, and one-third, respectively, whereas Cd(+) and Ni(2+) in combination fully blocked the response. In bicarbonate media, by contrast, Cd(+) and Ni(2+) blocked only two-thirds of the response. In the presence of bicarbonate, Ni(2+) caused an unexpected enhancement of the alkalinization by approximately 150%. However, when the extracellular carbonic anhydrase was blocked by benzolamide, addition of Ni(2+) reduced the alkaline shift. These results suggested that Ni(2+) partially inhibited the interstitial carbonic anhydrase and thereby increased the alkaline responses. These data indicate that an activity-dependent alkaline shift is largely dependent on the entry of Ca(2+) or Ba(2+) via voltage-gated calcium channels. However, sizable alkaline transients still can be generated with little or no external presence of these ions. Implications for the mechanism of the activity-dependent alkaline shift are discussed.  相似文献   

6.
Mudpuppy parasympathetic cardiac neurons exhibit spontaneous miniature outward currents (SMOCs) that are thought to be due to the activation of clusters of large conductance Ca(2+)-activated K(+) channels (BK channels) by localized release of Ca(2+) from internal stores close to the plasma membrane. Perforated-patch whole cell recordings were used to determine whether Ca(2+)-induced Ca(2+) release (CICR) is involved in SMOC generation. We confirmed that BK channels are involved by showing that SMOCs are inhibited by 100 nM iberiotoxin or 500 microM tetraethylammonium (TEA), but not by 100 nM apamin. SMOC frequency is decreased in solutions that contain 0 Ca(2+)/3.6 mM Mg(2+), and also in the presence of 1 microM nifedipine and 3 microM omega-conotoxin GVIA, suggesting that SMOC activation is dependent on calcium influx. However, Ca(2+) influx alone is not sufficient; SMOC activation is also dependent on Ca(2+) release from the caffeine- and ryanodine-sensitive Ca(2+) store, because exposure to 2 mM caffeine consistently caused an increase in SMOC frequency, and 10-100 microM ryanodine altered the configuration of SMOCs and eventually inhibited SMOC activity. Depletion of intracellular Ca(2+) stores by the Ca-ATPase inhibitor cyclopiazonic acid (10 microM) inhibited SMOC activity, even when Ca(2+) influx was not compromised. We also tested the effects of the membrane-permeable Ca(2+) chelators, bis-(o-aminophenoxy)-N,N,N', N'-tetraacetic acid-AM (BAPTA-AM) and EGTA-AM. EGTA-AM (10 microM) caused no inhibition of SMOC activation, whereas 10 microM BAPTA-AM consistently inhibited SMOCs. After SMOCs were completely inhibited by BAPTA, 3 mM caffeine caused SMOC activity to resume. This effect was reversible on removal of caffeine and suggests that the source of Ca(2+) that triggers the internal Ca(2+) release channel is different from the source of Ca(2+) that activates clusters of BK channels. We propose that influx of Ca(2+) through voltage-dependent Ca(2+) channels is required for SMOC generation, but that the influx of Ca(2+) triggers CICR from intracellular stores, which then activates the BK channels responsible for SMOC generation.  相似文献   

7.
The pulsatile release of gonadotropin releasing hormone (GnRH) is driven by the intrinsic activity of GnRH neurons, which is characterized by bursts of action potentials correlated with oscillatory increases in intracellular Ca(2+). The role of K(+) channels in this spontaneous activity was studied by examining the effects of commonly used K(+) channel blockers on K(+) currents, spontaneous action currents, and spontaneous Ca(2+) signaling. Whole-cell recordings of voltage-gated outward K(+) currents in GT1-1 neurons revealed at least two different components of the current. These included a rapidly activating transient component and a more slowly activating, sustained component. The transient component could be eliminated by a depolarizing prepulse or by bath application of 1.5 mM 4-aminopyridine (4-AP). The sustained component was partially blocked by 2 mM tetraethylammonium (TEA). GT1-1 cells also express inwardly rectifying K(+) currents (I(K(IR))) that were activated by hyperpolarization in the presence of elevated extracellular K(+). These currents were blocked by 100 microM Ba(2+) and unaffected by 2 mM TEA or 1.5 mM 4-AP. TEA and Ba(2+) had distinct effects on the pattern of action current bursts and the resulting Ca(2+) oscillations. TEA increased action current burst duration and increased the amplitude of Ca(2+) oscillations. Ba(2+) caused an increase in the frequency of action current bursts and Ca(2+) oscillations. These results indicate that specific subtypes of K(+) channels in GT1-1 cells can have distinct roles in the amplitude modulation or frequency modulation of Ca(2+) signaling. K(+) current modulation of electrical activity and Ca(2+) signaling may be important in the generation of the patterns of cellular activity responsible for the pulsatile release of GnRH.  相似文献   

8.
Although D2 dopamine receptors have been localized to olfactory receptor neurons (ORNs) and dopamine has been shown to modulate voltage-gated ion channels in ORNs, dopaminergic modulation of either odor responses or excitability in mammalian ORNs has not previously been demonstrated. We found that <50 microM dopamine reversibly suppresses odor-induced Ca2+ transients in ORNs. Confocal laser imaging of 300-microm-thick slices of neonatal mouse olfactory epithelium loaded with the Ca(2+)-indicator dye fluo-4 AM revealed that dopaminergic suppression of odor responses could be blocked by the D2 dopamine receptor antagonist sulpiride (<500 microM). The dopamine-induced suppression of odor responses was completely reversed by 100 microM nifedipine, suggesting that D2 receptor activation leads to an inhibition of L-type Ca2+ channels in ORNs. In addition, dopamine reversibly reduced ORN excitability as evidenced by reduced amplitude and frequency of Ca2+ transients in response to elevated K(+), which activates voltage-gated Ca2+ channels in ORNs. As with the suppression of odor responses, the effects of dopamine on ORN excitability were blocked by the D2 dopamine receptor antagonist sulpiride (<500 microM). The observation of dopaminergic modulation of odor-induced Ca2+ transients in ORNs adds to the growing body of work showing that olfactory receptor neurons can be modulated at the periphery. Dopamine concentrations in nasal mucus increase in response to noxious stimuli, and thus D2 receptor-mediated suppression of voltage-gated Ca2+ channels may be a novel neuroprotective mechanism for ORNs.  相似文献   

9.
A critical role of Ca(2+) in vertebrate olfactory receptor neurons (ORNs) is to couple odor-induced excitation to intracellular feedback pathways that are responsible for the regulation of the sensitivity of the sense of smell, but the role of intracellular Ca(2+) stores in this process remains unclear. Using confocal Ca(2+) imaging and perforated patch recording, we show that salamander ORNs contain a releasable pool of Ca(2+) that can be discharged at rest by the SERCA inhibitor thapsigargin and the ryanodine receptor agonist caffeine. The Ca(2+) stores are spatially restricted; emptying produces compartmentalized Ca(2+) release and capacitative-like Ca(2+) entry in the dendrite and soma but not in the cilia, the site of odor transduction. We deplete the stores to show that odor stimulation causes store-dependent Ca(2+) mobilization. This odor-induced Ca(2+) release does not seem to be necessary for generation of an immediate electrophysiological response, nor does it contribute significantly to the Ca(2+) transients in the olfactory cilia. Rather, it is important for amplifying the magnitude and duration of Ca(2+) transients in the dendrite and soma and is thus necessary for the spread of an odor-induced Ca(2+) wave from the cilia to the soma. We show that this amplification process depends on Ca(2+)-induced Ca(2+) release. The results indicate that stimulation of ORNs with odorants can produce Ca(2+) mobilization from intracellular stores without an immediate effect on the receptor potential. Odor-induced, store-dependent Ca(2+) mobilization may be part of a feedback pathway by which information is transferred from the distal dendrite of an ORN to its soma.  相似文献   

10.
11.
Wang ZF  Shi YL 《Neuroscience》2001,104(1):41-47
The effect of toosendanin, a selective presynaptic blocker and effective antibotulismic agent, on large-conductance Ca(2+)-activated K(+) channels was studied in inside-out patches of pyramidal neurons freshly isolated from the hippocampal CA1 region of the rat. Toosendanin (1 x 10(-6)g/ml approximately 1 x 10(-4)g/ml) was found to inhibit large-conductance Ca(2+)-activated K(+) channels by reducing its open probability significantly in a concentration-dependent manner, although the effective concentration of toosendanin was lower in a symmetrical K(+) (150 mM) solution than under asymmetrical conditions (changing K(+) concentration in pipette solution to 5mM). The action was partially reversible by washing. By decreasing the slow open time constant, toosendanin shortened the open dwell time of large-conductance Ca(2+)-activated K(+) channels in a dose-dependent manner. A dose-dependent reduction of unitary current amplitude of the channel was detected after toosendanin perfusion. On elevating the intracellular free calcium concentration from 1 to 10 microM, a similar effect on large-conductance Ca(2+)-activated K(+) channels by toosendanin was also observed, but its efficacy was diminished.These results show that toosendanin inhibits large-conductance Ca(2+)-activated K(+) channels in hippocampal neurons by reducing the open probability and unitary current amplitude of the channel, and that Ca(2+) interferes with the effect. These data provide an explanation for toosendanin-induced facilitation of neurotransmitter release and the antibotulismic effect of the drug.  相似文献   

12.
Among autonomic neurons, sympathetic neurons of the major pelvic ganglia (MPG) are unique by expressing low-voltage-activated T-type Ca2+ channels. To date, the T-type Ca2+ channels have been poorly characterized, although they are believed to be potentially important for functions of the MPG neurons. In the present study, thus we investigated characteristics and molecular identity of the T-type Ca2+ channels using patch-clamp and RT-PCR techniques. When the external solution contained 10 mM Ca2+ as a charge carrier, T-type Ca2+ currents were first activated at -50 mV and peaked around -20 mV. Besides the low-voltage activation, T-type Ca2+ currents displayed typical characteristics including transient activation/inactivation and voltage-dependent slow deactivation. Overlap of the activation and inactivation curves generated a prominent window current around resting membrane potentials. Replacement of the external Ca2+ with 10 mM Ba2+ did not affect the amplitudes of T-type Ca2+ currents. Mibefradil, a known T-type Ca2+ channel antagonist, depressed T-type Ca2+ currents in a concentration-dependent manner (IC50 = 3 microM). Application of Ni2+ also produced a concentration-dependent blockade of T-type Ca2+ currents with an IC50 of 10 microM. The high sensitivity to Ni2+ implicates alpha1H in generating the T-type Ca2+ currents in MPG neurons. RT-PCR experiments showed that MPG neurons predominantly express mRNAs encoding splicing variants of alpha1H (called pelvic Ta and Tb, short and long forms of alpha1H, respectively). Finally, we tested whether the low-threshold spikes could be generated in sympathetic MPG neurons expressing T-type Ca2+ channels. When hyperpolarizing currents were injected under a current-clamp mode, sympathetic neurons produced postanodal rebound spikes, while parasympathetic neurons were silent. The number of the rebound spikes was reduced by 10 microM Ni2+ that blocked 50% of T-type Ca2+ currents and had a little effect on HVA Ca2+ currents in sympathetic MPG neurons. Furthermore, generation of the rebound spikes was completely prevented by 100 microM Ni2+ that blocked most of the T-type Ca2+ currents. In conclusions, T-type Ca2+ currents in MPG neurons mainly arise from alpha1H among the three isoforms (alpha1G, alpha1H, and alpha1I) and may contribute to generation of low-threshold spikes in sympathetic MPG neurons.  相似文献   

13.
The effects of mibefradil, a non-dihydropyridine Ca2+ channel antagonist, on the action potential configuration of isolated rabbit sino-atrial node preparations, membrane currents of guinea-pig ventricular myocytes and the contractile force of isolated ventricular papillary muscles were examined. In sino-atrial node preparations, 10 microM mibefradil decreased the slope of the pacemaker depolarization (phase 4 depolarization) and maximum rate of rise, and shifted the threshold potential to the positive direction with no effect on action potential duration. In ventricular myocytes, 1 microM mibefradil inhibited the T-type Ca2+ current by about 40% while it had no effect on the L-type Ca2+ current. At 10 microM, mibefradil inhibited the L-type and T-type Ca2+ currents by about 40% and 90%, respectively. Mibefradil had no effect on contractile force at concentrations up to 1 microM. Thus, mibefradil was shown to produce potent prolongation of the pacemaker depolarization, mainly through inhibition of the T-type Ca2+ current. It is suggested that the T-type Ca2+ current may not be involved in ventricular contraction.  相似文献   

14.
Maintaining the extracellular K(+) concentration ([K(+)](o)) between 15 and 60 mM induced oscillations in the intracellular Ca(2+) concentration ([Ca(2+)](i)) in rat submandibular acinar cells during stimulation with acetylcholine (ACh, 1 micro M). These [Ca(2+)](i) oscillations were also induced by 1 micro M thapsigargin and were inhibited by 50 micro M La(3+), 1 micro M Gd(3+), or the removal of extracellular Ca(2+), indicating that the [Ca(2+)](i) oscillations were generated by store-operated Ca(2+) entry (SOC). The frequency of the ACh-evoked [Ca(2+)](i) oscillations increased from 0.8 to 2.3 mHz as [K(+)](o) was increased from 15 to 50 mM. TEA (an inhibitor of K(+) channels) also induced [Ca(2+)](i) oscillations at [K(+)](o) of 4.5 or 7.5 mM in ACh-stimulated cells. These data suggest that depolarization causes [Ca(2+)](i) to oscillate in ACh-stimulated submandibular acinar cells. Pertussis toxin (PTX, an inhibitor of G proteins) caused [Ca(2+)](i) to be sustained at a high level in ACh-stimulated cells at 25 mM or 60 mM [K(+)](o). This suggests that the [Ca(2+)](i) oscillations are generated by a periodic inactivation of the SOC channels via PTX-sensitive G proteins, which are stimulated by depolarization. Moreover, in the presence of DBcAMP or forskolin which accumulated cAMP the frequency of the [Ca(2+)](i) oscillations remained constant (approximately 1.2 mHz) when [K(+)](o) was maintained in the range 25-60 mM. Based on these observations in ACh-stimulated submandibular acinar cells, we conclude that depolarization stimulates the PTX-sensitive G proteins, which inactivate the SOC channels periodically ([Ca(2+)](i) oscillation), while hyperpolarization or PTX inhibits the G proteins, maintaining the activation of the SOC channels. Accumulation of cAMP is likely to modulate the PTX-sensitive G proteins.  相似文献   

15.
We investigated the nature of afterdepolarizing potentials in AH neurons from the guinea-pig duodenum using whole-cell patch-clamp recordings in intact myenteric ganglia. Afterdepolarizing potentials were minimally activated following action-potential firing under normal conditions, but after application of charybdotoxin (40 nM) or tetraethyl ammonium (TEA; 10-20 mM) to the bathing solution, prominent afterdepolarizing potentials followed action potentials. The whole-cell current underlying afterdepolarizing potentials (I(ADP)) in the presence of TEA (10-20 mM) reversed at -38 mV and was not voltage-dependent. Reduction of NaCl in the bathing (Krebs) solution to 58 mM shifted the reversal potential of the I(ADP) to -58 mV, suggesting that the current underlying the afterdepolarizing potential was carried by a mixture of cations. The relative contributions of Na(+) and K(+) to this current were estimated to be about 1:5. Substitution of external Na(+) with N-methyl D-glucamine blocked the current while replacement of internal Cl(-) with gluconate did not block the I(ADP). The I(ADP) was also inhibited when CsCl-filled patch pipettes were used. The I(ADP) was blocked or substantially decreased in amplitude in the presence of N-type Ca(2+) channel antagonists, omega-conotoxin GVIA and omega-conotoxin MVIIC, respectively, and was eliminated by external Cd(2+), indicating that it was dependent on Ca(2+) entry. The I(ADP) was also inhibited by ryanodine (10-20 microM), indicating that Ca(2+)-induced Ca(2+) release was involved in its activation. Niflumic acid consistently inhibited the I(ADP) with an IC(50) of 63 microM. Using antibodies against the pore-forming subunits of L-, N- and P/Q-type voltage-gated Ca(2+) channels, we have demonstrated that myenteric AH neurons express N- and P/Q, but not L-type voltage-gated Ca(2+) channels. We conclude that the ADP in myenteric AH neurons, in the presence of an L-type Ca(2+)-channel blocker, is generated by the opening of Ca(2+)-activated non-selective cation channels following action potential-mediated Ca(2+) entry mainly through N-type Ca(2+) channels. Ca(2+) release from ryanodine-sensitive stores triggered by Ca(2+) entry contributes significantly to the activation of this current.  相似文献   

16.
The patch-clamp technique was used to demonstrate the presence of ATP-sensitive K(+) channels and Ca(2+)-activated K(+) channels in lamprey ( Petromyzon marinus) red blood cell membrane. Whole-cell experiments indicated that the membrane current under isosmotic (285 mosmol l(-1)) conditions is carried by K(+). In the inside-out configuration an ATP-sensitive K(+) channel (70-80 pS inward, 35-40 pS outward) was present in 35% of patches. Application of ATP to the intracellular side reduced unitary current with half-maximal inhibition in the range 10-100 microM. A block was obtained with 100 microM lidocaine and inhibition was obtained with 0.5 mM barium acetate. A Ca(2+)-activated K(+) channel (25-30 pS inward, 10-15 pS outward) was present in 57% of patches. Inhibition was produced by 10 mM TEA and 500 nM apamin and sensitivity to Ba(2+) was lower than for ATP-sensitive channels. No spontaneous channel activity was recorded in the cell-attached configuration under isotonic conditions. With hypotonic saline 68% of patches showed spontaneous single-channel activity, and, of 75 active patches, 66 cell-attached patches showed channel activity corresponding to Ca(2+)-activated K(+) channels.  相似文献   

17.
Like voltage-operated Ca(2+) channels, store-operated CRAC channels become permeable to monovalent cations in the absence of external divalent cations. Using the whole-cell patch-clamp technique, we have characterized the permeation and selectivity properties of store-operated channels in the rat basophilic leukemia (RBL-1) cell line. Store depletion by dialysis with InsP(3) and 10 mM EGTA resulted in the rapid development of large inward currents in Na(+)- and Li(+)-based divalent-free solutions. Cs(+) permeated the channels poorly (P(Cs)/ P(Na)=0.01). Trimethylamine (TMA(+)), tetramethylammonium (TeMA(+)), tetraethylammonium (TEA(+)), N-methyl- D-glucamine (NMDG(+)) and TRIS(+) were not measurably permeant. NH(4)(+) was conducted well. We estimated the minimum pore diameter under divalent-free conditions to be between 0.32 nm and 0.55 nm. When cells were dialysed with buffered Ca(2+) solution and I(CRAC) activated by application of thapsigargin, P(Cs)/ P(Na) was still low (0.08). Outward currents through CRAC channels were carried by intracellular Na(+), K(+) and, to a much lesser extent, by Cs(+). Currents were unaffected by dialysis with Mg(2+)-free solution. The Na(+) current was inhibited by external Ca(2+) (half-maximal blocking concentration of 10 microM). This Ca(2+)-dependent block could be alleviated by hyperpolarization. The monovalent Na(+) current was voltage dependent, increasing as the holding potential depolarized above 0 mV. Our results suggest that CRAC channels in RBL-1 cells have a smaller pore diameter than voltage-operated Ca(2+) channels, discriminate between Group I cations, and differ markedly in their selectivity from CRAC channels reported in lymphocytes.  相似文献   

18.
Simultaneous fluorescence imaging and electrophysiologic recordings were used to investigate the Ca(2+) influx initiated by action potentials (APs) into dorsal cochlear nucleus (DCN) pyramidal cell (PC) and cartwheel cell (CWC) dendrites. Local application of Cd(2+) blocked Ca(2+) transients in PC and CWC dendrites, demonstrating that the Ca(2+) influx was initiated by dendritic Ca(2+) channels. In PCs, TTX eliminated the dendritic Ca(2+) transients when APs were completely blocked. However, the Ca(2+) influx could be partially recovered during an incomplete block of APs or when a large depolarization was substituted for the blocked APs. In CWCs, dendritic Ca(2+) transients evoked by individual APs, or simple spikes, were blocked by TTX and could be recovered during an incomplete block of APs or by a large depolarization. In contrast, dendritic Ca(2+) transients evoked by complex spikes, a burst of APs superimposed on a slow depolarization, were not blocked by TTX, despite eliminating the APs superimposed on the slow depolarization. These results suggest two different mechanisms for the retrograde activation of dendritic Ca(2+) channels: the first requires fast Na(+) channel-mediated APs or a large somatic depolarization, whereas the second is independent of Na(+) channel activation, requiring only the slow depolarization underlying complex spikes.  相似文献   

19.
Rises in cytosolic Ca2+ induced by a high K+ concentration (30 or 60 mM) (K+-induced Ca2+ transient) were recorded by fluorimetry of Ca2+ indicators in cultured rabbit otic ganglion cells. When external Ca2+ ([Ca2+]o) was reduced to a micromolar (10-40 microM) or nanomolar (<10 nM) level prior to high-K+ treatment, K+-induced Ca2+ transients of considerable amplitude (50% of control) were generated in most cells, although those initiated at normal [Ca2+]o were reduced markedly or abolished by reducing [Ca2+]o during exposure to a high K+ concentration. Lowering [Ca2+]o alone occasionally caused a transient rise in cytosolic Ca2+. K+-induced Ca2+ transients at micromolar [Ca2+]o were repeatedly generated and propagated inwardly at a speed slower than that at normal [Ca2+]o, while those at nanomolar [Ca2+]o occurred only once. K+-induced Ca2+ transients at micromolar [Ca2+]o were not blocked by ryanodine (10 microM), carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP, 5 microM: at 20-22 degrees C but blocked at 31-34 degrees C) or thapsigargin (1-2 microM), but were blocked by Ni2+ (1 mM) or nicardipine (10 microM). Thus, there is a ryanodine-insensitive Ca2+-release mechanism in FCCP- and thapsigargin-insensitive Ca2+ stores in rabbit otic ganglion cells, which is primed by lowering [Ca2+]o and then activated by depolarization-induced Ca2+ entry. This Ca2+-induced Ca2+ release may operate when [Ca2+]o is decreased by intense neuronal activity.  相似文献   

20.
We employed whole cell patch-clamp recordings to establish the effect of Zn(2+) on the gating the brain specific, T-type channel isoform Ca(V)3.3 expressed in HEK-293 cells. Zn(2+) (300 microM) modified the gating kinetics of this channel without influencing its steady-state properties. When inward Ca(2+) currents were elicited by step depolarizations at voltages above the threshold for channel opening, current inactivation was significantly slowed down while current activation was moderately affected. In addition, Zn(2+) slowed down channel deactivation but channel recovery from inactivation was only modestly changed. Zn(2+) also decreased whole cell Ca(2+) permeability to 45% of control values. In the presence of Zn(2+), Ca(2+) currents evoked by mock action potentials were more persistent than in its absence. Furthermore, computer simulation of action potential generation in thalamic reticular cells performed to model the gating effect of Zn(2+) on T-type channels (while leaving the kinetic parameters of voltage-gated Na(+) and K(+) unchanged) revealed that Zn(2+) increased the frequency and the duration of burst firing, which is known to depend on T-type channel activity. In line with this finding, we discovered that chelation of endogenous Zn(2+) decreased the frequency of occurrence of ictal-like epileptiform discharges in rat thalamocortical slices perfused with medium containing the convulsant 4-aminopyridine (50 microM). These data demonstrate that Zn(2+) modulates Ca(V)3.3 channel gating thus leading to increased neuronal excitability. We also propose that endogenous Zn(2+) may have a role in controlling thalamocortical oscillations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号