首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to better characterize the pathogenesis of alpha 2u-globulin (alpha 2uG) nephropathy, cell proliferation was quantitated within the three proximal tubule segments of the kidney (P1, P2, and P3) and proximal tubule segments affected by chronic progressive nephrosis (CPN) in male and female F344 rats exposed to 10, 70, or 300 ppm unleaded gasoline (UG) or 50 ppm 2,2,4-trimethylpentane (TMP) from 3 to 50 weeks. The P2 segment of male rats exposed to UG or TMP responded with dose-related increases in cell turnover (up to 11-fold) that persisted during chronic exposure. This proliferative response closely paralleled the extent and severity of immunohistochemically detectable alpha 2uG in the P2 segment. Neither alpha 2uG nor cytotoxicity was evident in cells of the P1 or P3 segment; however, cell proliferation was increased (up to 8-fold) for up to 22 weeks of exposure in the P3 segment. Increased numbers of proximal tubules affected by CPN were found in males exposed to UG or TMP for 22 or 48 weeks, compared to controls. These lesions contained epithelial cells that were highly proliferative. Control or treated female rats exhibited neither alpha 2uG nephropathy nor increases in P2 or P3 cell turnover, and the extent of CPN was greatly reduced as compared to male rats. The results of this and related studies suggest that chronic cell proliferation associated with alpha 2uG nephropathy and CPN in male rats exposed to UG or isoparaffinic components of UG, such as TMP, may be responsible for the sex- and species-specific nephrocarcinogenic effects of UG.  相似文献   

2.
Biochemical and histopathologic parameters of nephrotoxicity were measured in groups of male Fischer-344 rats after a 2-week, 5-days-a-week schedule of oral administration (0.5 ml/kg) of the following substances: aviation gasoline (grade 100) (AVG), automobile regular unleaded gasoline (ULG) and 2,2,4-trimethylpentane (TMP). Results of renal histopathologic examinations and biochemical parameters were compatible with the following order of increasing nephrotoxicity: ULG less than TMP less than AVG. The high nephrotoxic potential of aviation gasoline may be related to its elevated content in branched hydrocarbons.  相似文献   

3.
In a recent chronic inhalation exposure study, unleaded gasoline (UG) produced kidney tumors in male rats and liver tumors in female mice, but did not increase the incidence of liver tumors in male mice or rats of either sex. To examine the possible basis for this pattern of hepatocarcinogenesis, unscheduled DNA synthesis (UDS) as an indicator of genotoxic activity and replicative DNA synthesis (RDS) as an indicator of cell proliferation were measured in rat and mouse hepatocytes following in vivo and in vitro exposures to UG and 2,2,4-trimethylpentane (TMP), a nephrotoxic component of UG. Primary hepatocyte cultures, prepared from cells isolated from Fischer-344 rats, B6C3F1 mice, or human surgical material, were incubated with [3H]thymidine and the test agent. UDS was measured by quantitative autoradiography as net nuclear grains (NG). By similar methods, UDS and RDS (S-phase cells) were measured in hepatocytes isolated from rats and mice treated by gavage with TMP (500 mg/kg) or UG (100 to 5,000 mg/kg). A dose-related increase in UDS activity was observed in rat hepatocytes treated in vitro with 0.05 to 0.10% (v/v) UG. These doses were, however, toxic in both mouse and human hepatocyte cultures. Weak UDS activity was observed in hepatocytes isolated from male and female mice treated 12 hr previously with UG. No UDS was induced in rat hepatocytes treated in vivo or in vitro with TMP. Twenty- and fourfold increases in the percentage of cells in S-phase were observed 24 hr after treatment with TMP in male and female mice, respectively, as compared to a fivefold increase in male rats. UG increased the percentage of S-phase cells in male mice by ninefold but failed to induce RDS in females. Thus, there appears to be genotoxic compounds in UG that can be detected in cultured hepatocytes and in the livers of exposed mice. The lack of UDS activity in rat liver was consistent with the reported lack of liver tumors in chronically exposed rats. However, neither the UDS nor the RDS responses in mice exposed by gavage correlated to the sex-specific pattern of liver tumors observed in the 2-year bioassay.  相似文献   

4.
Dimethyl methylphosphonate (DMMP) is a widely used chemical. Diethyl ethylphosphonate (DEEP) has been proposed as a replacement for DMMP in several applications. A long-term carcinogenesis study with DMMP in rats and mice showed a significant increase in the incidence of kidney tumors after 2 years of exposure in male but not in female rats and both sexes of mice. DMMP is not genotoxic. Due to these findings, a role of alpha(2u)-globulin accumulation in organ-specific tumorigenicity may be possible. alpha(2u)-Globulin is a low-molecular-weight protein synthesized in male rats under androgen control. Several male rat specific renal carcinogens have been shown to bind to alpha(2u)-globulin and to impair the renal degradation of this protein. This impairment results in alpha(2u)-globulin accumulation in the kidney, lysosomal overload, cell death, cell proliferation, and finally, renal tumor induction. To further characterize the toxicology of DMMP and DEEP, we investigated the biotransformation of these compounds and their ability to induce alpha(2u)-globulin accumulation in kidney. Biotransformation of both DMMP and DEEP were studied in male and female rats after single oral doses of 50 and 100 mg/kg. 31P-NMR and GC/MS showed that unchanged DMMP was excreted with urine; methyl phosphonate was identified as the only metabolite in urine. Unchanged DEEP was also excreted with urine; in addition, ethyl ethylphosphonate and ethylphosphonate were urinary metabolites. The majority of the applied dose of both compounds was recovered in urine within 24 h indicating rapid absorption and excretion. No sex-differences in rates of formation or excretion of metabolites were seen. To investigate alpha(2u)-globulin accumulation in the kidney after DMMP and DEEP, male and female Fischer-344 rats were administered DMMP or DEEP daily for five consecutive days by gavage. DMMP doses were 500- and 1,000-mg/kg body weight (bw); due to marked toxicity, daily DEEP dose of 50 and 100 mg/kg had to be used. Control rats received corn oil only and positive controls received five doses of 500-mg/kg bw trimethylpentane (TMP). Relative kidney weights were increased in male rats dosed with DMMP, DEEP, and TMP. alpha(2u)-Globulin in kidney cytosol was separated and quantified by capillary electrophoresis and by SDS-PAGE and Western blotting. In DMMP-, DEEP-, and TMP-treated rats, dose-dependent increases in the alpha(2u)-globulin content were observed by both methods in male, but not female rats. The increase of alpha(2u)-globulin accumulation was accompanied by the formation of protein droplets in the proximal tubules of male rats. These data demonstrate that the sex specific increase in kidney tumors by DMMP in male rats may be due to alpha(2u)-globulin accumulation and that similar toxic effects are to be expected from DEEP.  相似文献   

5.
Saturated branched-chain aliphatic hydrocarbons, found in motor fuels, induce nephrotoxicity in male rats. Treatment of male rats with unleaded gasoline (0.04-2.0 ml/kg body wt, po) for 9 days increased markedly the number and size of hyaline (protein resorption) droplets in epithelial cells of the renal proximal convoluted tubules (PCT) and enhanced cellular exfoliation at high dose levels. No other treatment-related pathological effects were observed in the glomeruli, distal tubules, or medulla. The renal content of alpha 2u-globulin, a major urinary protein of male rats, was increased maximally by about 4.4-fold after gasoline administration (1.0 ml/kg, po, 9 days); no further increase was observed at higher doses. Immunoperoxidase staining of kidney tissue sections for alpha 2u-globulin revealed large accumulations of antigen localized in many of the PCT epithelial cells which contained hyaline droplets. The hepatic content of alpha 2u-globulin and its mRNA were not altered by gasoline administration. These data show, for the first time, that alpha 2u-globulin is accumulated in the kidneys of gasoline-intoxicated male rats and sequestered specifically in some of the hyaline droplets characteristic of gasoline-induced nephropathy. A hydrocarbon-induced defect in the renal lysosomal degradation of low-molecular-weight urinary proteins, rather than increased synthesis of these proteins, appears to cause hyaline droplet accumulation.  相似文献   

6.
Diisononyl phthalate (DINP), a widely used plasticizer, has been evaluated in two chronic studies in rats and one in mice. In the early 1980s, Exxon found no carcinogenic potential at the estimated maximum tolerated dose (MTD) of 0.6% (307 mg/kg/ day for male rats) administered in the diet of rats for 2 years. A recent study conducted at dietary levels up to 1.2% DINP (733 mg/kg/d for male rats) reported kidney tumors in male rats at the high treatment level, but not in female rats nor mice of either sex. Because these tumors occurred only in male rats, and only at high doses, the male rat-specific alpha 2u-globulin (alpha2UG) mechanism of action was investigated. Technological advances in immunohistochemical staining and computerized image analysis techniques permitted measuring the accumulation of alpha2UG in archived kidneys from the earlier Exxon study. Using archived tissue obtained at the 12-month interim sacrifice, we identified a dose-dependent accumulation of alpha2UG in specific regions of male rat kidneys only. An increase in cell proliferation was confirmed by immunohistochemical detection of proliferating-cell nuclear antigen (PCNA) and was confined to the areas of alpha2UG accumulation. H and E-stained sections revealed tubular epithelial hypertrophy and regeneration, consistent with the immunohistopathology findings. These findings are consistent with the alpha2UG mechanism of tumorigenesis, which is not regarded as relevant for humans. Thus, exposure to DINP produced a dose-dependent alpha2UG accumulation in male rat kidneys, significant at a dietary level of 0.6% and a likely mechanism for the kidney tumors seen only in male rats administered higher dietary levels of DINP.  相似文献   

7.
Unleaded gasoline (UG) induces renal toxicity and neoplasia in male but not female rats after chronic inhalation exposure. Before a meaningful determination of the potential human health risk of UG can be made, it is imperative that the mechanism responsible for its carcinogenic action be understood. The purpose of the present investigation was to determine whether the induction of kidney tumors by UG is related to genotoxic or to cell-proliferative effects. Unscheduled DNA synthesis (UDS), as an indicator of genotoxicity, was measured autoradiographically as the incorporation of [3H]thymidine in isolated rat kidney cells following in vivo or in vitro exposure to UG. As an indicator of proliferative activity, cells in S-phase were quantitated in isolated cell preparations obtained from exposed rats. UG was administered to rats by inhalation (2000 ppm) or by gavage (up to 5000 mg/kg). The ability of the in vivo/in vitro kidney cell UDS assay to detect genotoxicants was verified using a variety of compounds. No UDS activity was elicited by UG under any of the conditions employed, including inhalation exposure to a concentration that produced kidney tumors in the 2-year bioassay. A five- to eightfold increase in the percentage of cells in S-phase was observed in male rats exposed to UG for 18 days either by inhalation or by gavage. Cell turnover was not markedly enhanced in identically treated female rats. These data indicate that UG does not evoke UDS in the rat kidney even after exposures that, in all probability, resulted in greater tissue concentrations of UG components than was realized in the long-term inhalation bioassay. The sex-specific induction of replicative DNA synthesis in the kidney paralleled the carcinogenic activity of UG, suggesting that induced cell turnover may be an important factor in the carcinogenic action of this motor fuel.  相似文献   

8.
alpha 2u-Globulin (alpha 2u) has been shown to accumulate in the kidneys of male rats treated with 2,2,4-trimethylpentane (TMP). 2,4,4-Trimethyl-2-pentanol (TMP-2-OH), a metabolite of TMP, is found reversibly bound to alpha 2u isolated from the kidneys of these treated rats. The objectives of the following study were to characterize the ability of [3H]TMP-2-OH to bind to alpha 2u in vitro and to determine whether other compounds that cause this protein to accumulate have the same binding characteristics. Although compounds that have been shown to cause the accumulation of alpha 2u in male rat kidneys compete in vitro with [3H]TMP-2-OH for binding to alpha 2u, they do so to varying degrees. The binding affinity (Kd) of the [3H]TMP-2-OH-alpha 2u complex was calculated to be on the order of 10(-7) M. The inhibition constant values (Ki) determined for d-limonene, 1,4-dichlorobenzene, and 2,5-dichlorophenol were all in the range 10(-4) M, whereas the Ki values for isophorone, 2,4,4- or 2,2,4-trimethyl-1-pentanol, and d-limonene oxide were determined to be in the range 10(-6) and 10(-7) M, respectively. TMP and 2,4,4- and 2,2,4-trimethylpentanoic acid did not compete for binding. This suggests that other factors, besides binding, are involved in the accumulation of alpha 2u. In this study the ability of a chemical to bind to alpha 2u was used as a measure of biological activity to assess structure-activity relationships among the chemicals tested and known to cause the accumulation of alpha 2u. The results so far suggest that binding is dependent on both hydrophobic interactions and hydrogen bonding.  相似文献   

9.
Trichloroethylene (TCE), perchloroethylene (PER), and pentachloroethane (PENT) are used extensively as industrial solvents. These agents cause an increased incidence of renal tumors in male, but not female, rats. Male and female F-344 rats were gavaged for 10 days with TCE (1000 mg/kg), PER (1000 mg/kg), and PENT (150 mg/kg) to determine if chlorinated hydrocarbon-induced changes in levels of renal alpha-2 mu-globulin (alpha 2 mu), protein droplet accumulation (PDA), and cell replication were male rat specific. The animal strain, dose, and route of administration were the same as previous chronic bioassays in order to better understand the relationship between alpha 2 mu, PDA, and cell replication to the sex-specific renal carcinogenicity. In male rats, increases in protein droplet and crystalloid accumulation in the cytoplasm of the P2 segment of the proximal tubule were evident after PER and more notably PENT administration. Cell replication rates in male rats increased specifically in the histologically damaged P2 segments after PER or PENT exposure. Protein droplets and cell replication did not differ from controls in TCE-treated male rats or in female rats treated with TCE, PER, or PENT. Immunohistochemical staining for alpha 2 mu revealed a marked correlation between the presence of alpha 2 mu and the protein droplets. Renal alpha 2 mu concentrations in male rats increased after PER or PENT but not TCE administration. The protein droplet nephropathy induced in male rats after PER and PENT treatment appears identical to that observed with other male-rat-specific renal carcinogens such as unleaded gasoline. The differences observed in male and female rats after chlorinated hydrocarbon exposure suggest that increases in cell replication may be directly linked to the male-rat-specific protein alpha 2 mu. Since compensatory cell division is postulated to affect all stages of the carcinogenic process, the increased incidence of renal tumors in male rats after PER or PENT treatment may be related to nephrotoxicity and resulting enhanced cell replication. Mechanisms involved in TCE-induced renal carcinogenicity appear to be different from PER- and PENT-induced renal carcinogenicity.  相似文献   

10.
Similarly to unleaded gasoline, 1,4-dichlorobenzene (1,4-DCB) administered for 2 years caused a dose-related increase in the incidence of renal tumors in male but not in female rats or in either sex of mice. Unleaded gasoline and 2,2,4-trimethylpentane (TMP), a component of unleaded gasoline, increased protein droplet formation and cell proliferation in male but not in female rat kidneys. These protein droplets contained, alpha 2u-globulin, a male rat-specific low-molecular-weight protein and 2,4,4-trimethyl-2-pentanol, a metabolite of TMP that was reversibly bound to this protein. Studies were undertaken to determine if 1,4-DCB produced similar effects; 1,2-DCB was used for comparison since it did not produce renal carcinogenesis in male rats. Gel filtration chromatography of a 116,000g supernatant prepared from kidneys of 1,4-[14C]DCB-treated rats showed that radiolabel coeluted with alpha 2u-globulin as one sharp peak as opposed to a multipeak pattern observed for 1,2-[14C]DCB; the maximal quantity of radiolabel for 1,4-DCB was twice that for 1,2-DCB. Equilibrium dialysis of kidney cytosol in the presence or absence of sodium dodecyl sulfate demonstrated that the radiolabel was reversibly bound to alpha 2u-globulin; the amount for 1,4-[14C]DCB-treated rats was almost twice as much as that for 1,2-[14C]DCB-treated rats. 1,2-DCB was also shown to be covalently bound to renal alpha 2u-globulin, and covalently bound to liver and plasma high-molecular-weight proteins. 1,4-DCB and, to a minor extent, 2,5-dichlorophenol, the major metabolite of 1,4-DCB, were reversibly bound to renal alpha 2u-globulin from 1,4-DCB-treated rats. 1,4-DCB increased protein droplet formation in male but not in female rat kidneys, whereas equimolar doses of 1,2-DCB showed no effect in either sex. Renal cell proliferation, measured by [3H]thymidine incorporation into renal DNA, was increased after 1,4-DCB but not after 1,2-DCB treatment. Nephrotoxicity and biochemical alterations induced by 1,4-DCB resemble those of unleaded gasoline and suggest that a similar mechanism is involved in the induction of alpha 2u-globulin nephropathy in male rats.  相似文献   

11.
Short-term oral administration of unleaded gasoline to male rats reproduces the accumulation of phagolysosomes (hyaline droplets) in epithelial cells of the renal proximal convoluted tubules (PCT) observed following long-term inhalation of wholly volatilized gasoline. Phagolysosomes are partially composed of alpha 2u-globulin, a low-molecular-weight protein, unique to male rats. In this study, dose-dependent and chronologic alterations of phagolysosomes caused by gasoline were observed by transmission electron microscopy. Exposure to commercially available unleaded gasoline (0.4-2.0 ml/kg, po, once daily, 9 d) increased the number and size of phagolysosomes in epithelial cells of the PCT in male rat kidney. However, administration of 0.04 ml gasoline/kg or less was ineffective in inducing phagolysosomal accumulation. Subcellular analysis revealed that many of the phagolysosomes observed in treated rats (doses greater than 0.4 ml/kg) were angular and had cross-sectional diameters varying from 0.5 to 9 microns; in controls the majority of phagolysosomes were round and their diameter varied from 0.5 to 2.5 microns. Treatment of male rats with gasoline (2.0 ml/kg body weight, po, 1-9 d) caused a progressive increase in the number and size of phagolysosomes in PCT epithelial cells dependent on treatment duration. Alterations in phagolysosomal morphology and quantity occurred within 20 h following a single dose of gasoline, emphasizing that the process of phagolysosome accumulation is a dynamic phenomenon. Many of the enlarged phagolysosomes contained a condensed, crystalline core of greater electron density than the surrounding matrix. Furthermore, the rapid increase in abnormal, condensed contents in the phagolysosomes may indicate that a derangement of renal protein catabolism is the primary mechanism by which fuel hydrocarbons cause hyaline droplet nephropathy in male rats.  相似文献   

12.
NCI-Black-Reiler (NBR) Male Rats Fail to Develop Renal Diseasefollowing Exposure to Agents That Induce 2u-Globulin (2u) Nephropathy.Dietrich, D. R., and Swenberg, J. A. (1991). Fundam. Appl. Toxicol16, 749–762. The NCI-Black-Reiter (NBR) rat is the onlystrain of male rat known not to synthesize the hepatic formof the low molecular weight protein, 2u-globulin. In previousstudies, NBR rats were shown not to develop renal disease whenexposed to decalin, a compound known to induce 2u-globulin nephropathyin other rat strains. The objective of this study was to showthat the presence of 2u-globulin (2u-) is essential for thedevelopment of this syndrome in rats exposed to 2,2,4-trimethylpentane(TMP), 1,4-dichlorobenzene (DCB), isopho-rone (IP), PS-6 unleadedgasoline (UG), and d-limonene (d-L). The induction of 2u-nephropathyin F344 male rats with lindane was used as a positive controland this response was contrasted to male NBR and female F344rats treated with lindane. Five to seven 11-week-old male NBRrats were exposed to TMP (500 mg/kg/day), DCB (500 mg/kg/day),IP (1000 mg/kg/day), UG (500 mg/kg/day), d-L (1650 mg/kg/day),or lindane (10 mg/kg/day) and five 11-week-old male and femaleF344 rats were exposed to lindane (10 mg/kg/day) by oral gavageon 4 consecutive days. NBR male and F344 male and female ratsgavaged with corn oil were incorporated in the study as vehiclecontrols. The presence of hyaline droplets was assessed in perfusion-fixedkidneys by staining paraffin sections with Mallory-Heidenheinstain and in GMA sections with Lee's methylene basic blue fuchsinstain. Paraffin sections were also analyzed immunohistochemicallyfor the presence of 2u-. Under exposure conditions that clearlyinduce 2u-nephropathy in male F344 rats, no lesions, hyalinedroplets, or 2u- were detectable in treated or control maleNBR and female F344 rats. It is thus concluded that the presenceof 2u is causal to the development of renal disease in ratsexposed to TMP, DCB, IP, UG, d-L, and lindane.  相似文献   

13.
To evaluate the potential of unleaded gasoline vapor for developmental toxicity, a sample was prepared by slowly heating API 94-02 (1990 industry average gasoline) and condensing the vapor. The composition of this vapor condensate, which comprises 10.4% by volume of the starting gasoline, is representative of real-world exposure to gasoline vapor encountered at service stations and other occupational settings and consists primarily of volatile short chain (C4-C6) aliphatic hydrocarbons (i.e. paraffins) with small amounts of cycloparaffins and aromatic hydrocarbons. A preliminary study in rats and mice resulted in no developmental toxicity in either species. However, a slight reduction in maternal body weight gain in rats led to the selection of rats for this guideline study. Groups of pregnant rats (n = 24/group) were exposed to unleaded gasoline vapor at concentrations of 0, 1000, 3000, or 9000 (75% lower explosive limit) ppm equivalent to 0, 2653, 7960, or 23,900 mg/m3, for 6 h/day on gestation days 6-19. All rats were sacrificed on gestation day 20. No maternal toxicity was observed. Developmentally, there were no differences between treated and control groups in malformations, total variations, resorptions, fetal body weight, or viability. The maternal and developmental NOAEL is 9000 ppm. Under conditions of this study, unleaded gasoline vapors did not produce evidence of developmental toxicity.  相似文献   

14.
Trimethylpentane (TMP) produces nephrotoxicity in male but not in female rats. The toxicity is characterized by an increase in protein droplets in proximal convoluted tubular cells and an increase in the renal concentration of the male-rat-specific protein alpha 2u-globulin. Subcellular fractionation of the kidneys from male rats 24 hr after [3H]TMP administration showed that about 60% of the radiolabeled material was localized in the 116,000g supernatant. Column chromatography of this supernatant resolved the radioactivity into two components; one, which contained about 26% of the radiolabel, coeluted with alpha 2u-globulin and cross-reacted with an antibody specific for alpha 2u-globulin. The remaining component eluted in the low-molecular-weight range (less than 1000 Da) and was assumed to be TMP metabolites. Radiolabel from [3H]TMP in male rat urine also resolved into two components with about 0.1% of the radiolabel in urine coeluting with the alpha 2u-globulin-containing fraction. Radiolabel from TMP in male rat liver 116,000g supernatant and plasma and in female rat kidney 116,000g supernatant eluted as a single component in the low-molecular-weight range. Dialysis (1000-Da cutoff) of male kidney 116,000g supernatant led to a loss of the low-molecular-weight components, but nondialyzable radiolabel (about 20%) still coeluted with the alpha 2u-globulin after gel chromatography. Dialysis against 0.1% sodium dodecyl sulfate led to a loss of both the low- and high-molecular-weight radioactive material. These results suggested that the high-molecular-weight radioactive material was formed by the reversible binding of a radioactive component of TMP to a male-rat-specific protein. Gas chromatography-mass spectrometry of an ethyl acetate extract of the alpha 2u-globulin-containing fractions of TMP-treated male rat kidney 116,000g supernatant identified 2,4,4-trimethyl-2-pentanol as the only bound metabolite to alpha 2u-globulin. These studies provide the first evidence for a reversible binding between a metabolite of TMP and a male-rat-specific protein in the kidney and thus provide important insight delineating a potential mechanism of hydrocarbon-induced hyaline-droplet nephropathy.  相似文献   

15.
Unleaded gasoline induces nephropathy, characterized by rapid accumulation of hyaline (protein resorption) droplets in epithelial cells of the renal proximal convoluted tubules, only in male rats. The hepatic synthesis of the male rat-specific protein alpha 2u-globulin, a constituent of renal hyaline droplets, is unaltered by gasoline treatment (Olson et al., 1987). Renal alpha 2u-globulin content increased to 210% of control within 18 h of a single oral dose of gasoline (2.0 ml/kg); maximal levels (320% of control) were attained following gasoline administration for 3 d. Increases in renal alpha 2u-globulin caused by gasoline were accompanied by concurrent proliferation of hyaline droplets. However, within 3 d of terminating gasoline administration renal alpha 2u-globulin content decreased to the same level as that in unexposed rats, although renal hyaline droplet number returned to pretreatment levels somewhat more slowly. The conjoint effect of postexposure recovery and estradiol (an inhibitor of hepatic alpha 2u-globulin synthesis) administration was also determined in male rats. On postexposure d 3, 6, and 9, estradiol treatment (1 mg/kg, sc, 4 d, starting on d 9 of gasoline treatment) decreased renal alpha 2u-globulin content to 75%, 59%, and 48%, respectively, of that in rats allowed to recover from gasoline with no hormone treatment. Hepatic alpha 2u-globulin content in estradiol-treated rats was decreased by 74%, 97%, and 96% at the same intervals. Estradiol treatment during recovery from gasoline also appeared to increase the removal of accumulated hyaline droplets from the renal cortex. Thus, accumulation of alpha 2u-globulin-containing hyaline droplets after subacute exposure of male rats to gasoline is rapidly reversible, dependent on continuous exposure to gasoline and maintenance of the normal rate of hepatic alpha 2u-globulin synthesis. These results emphasize the dynamic state of renal cortical hyaline droplets and suggest strongly that gasoline hydrocarbons cause hyaline droplet accumulation by prolonging the half-time of degradation of alpha 2u-globulin.  相似文献   

16.
2,2,4-Trimethylpentane (TMP), a component of unleaded gasoline, causes nephrotoxicity in male, but not in female, rats. In the present study, male and female Fischer 344 rats were treated with a single oral dose of [14C]TMP (4.4 mmol/kg; 2 microCi/mmol). Radiolabeled material in kidney, liver, and plasma was determined at 4, 8, 12, 24, and 48 hr after dosing. Maximum concentration of TMP-derived radioactivity in kidney, liver, and plasma of male rats was found after 12 hr (1252, 1000, and 403 nmol eq/g, respectively), whereas those measured in females were found after 8 hr (577, 1163, and 317 nmol eq/g, respectively). A selective retention of the TMP-derived radiolabel in the kidneys of male rats was noted when peak tissue concentration was expressed as a percentage of administered dose. Kidney concentrations of TMP-derived radiolabel increased in a nonlinear, but dose-dependent, manner; the kidney to plasma ratio was greater at low doses than at higher doses. Increased retention of radiolabel material in the kidney was associated with a significant increase in renal concentration of the male-rat-specific protein, alpha 2u-globulin, 24 and 48 hr after TMP administration. Total radioactivity collected in urine 48 hr after TMP administration was similar in males and females (32 and 31% of dose). Identification and quantitation of the urinary metabolites of TMP showed that both male and female rats metabolize TMP via the same pathway and at a similar rate. Female rats, however, excreted more conjugates of 2,4,4-trimethyl-2-pentanol in urine than males. 2,4,4-Trimethyl-2-pentanol was the major metabolite present in the male rat kidney, but was absent in the female rat kidney. The renal retention of 2,4,4-trimethyl-2-pentanol appears to account for the delayed clearance observed in the disposition of [14C]TMP-derived radiolabel. Based on the concomitant accumulations in renal alpha 2u-globulin concentration and renal 2,4,4-trimethyl-2-pentanol concentration, an association is speculated between these two components. The male-rat-specific accumulation of 2,4,4-trimethyl-2-pentanol may therefore reflect the accumulation of a "metabolite-alpha 2u-globulin" complex. This may be relevant to the male-rat-specific nephrotoxicity produced by TMP.  相似文献   

17.
Hyaline droplet formation was stimulated markedly in the kidneys of post-puberty male rats 24-48 h after a single oral dose of 12/24 mmol/kg 2,2,4-trimethylpentane [TMP]. Renal hyaline droplet formation could not be detected in female rats or in pre-puberty male rats following similar doses of TMP. A dose-dependent increase in the renal concentration of the androgen-dependent low molecular weight protein, alpha 2U-globulin was observed in post-puberty male rats 24 h after a single oral dose of TMP, over the range 0.3-12.0 mmol/kg. After administration of a single dose of 12 mmol/kg TMP to male rats, the renal concentration of alpha 2U-globulin rose steadily up to a peak after 48 h and then returned slowly to near normal after 7 days. Renal alpha 2U-globulin could not be detected in female rats and in pre-puberty male rats. An immunocytochemical assay was developed to examine the distribution of alpha 2U-globulin within the kidney. alpha 2U-Globulin was localised primarily in the S2 segment of renal proximal tubules in untreated male rats. Rats which received a single dose of 12 mmol TMP/kg showed not only a greater staining intensity, due to the presence of a higher concentration of alpha 2U-globulin, but also staining in adjacent segments of the renal cortex. Several urinary biochemical indicators of nephrotoxicity were measured daily in male rats for up to 72 h following a single dose of 12 mmol TMP/kg. Renal proximal tubular function was unimpaired by TMP treatment. On the basis of studies in untreated and TMP-treated rats, a strong association has been found between the presence of renal hyaline droplets and the occurrence of renal alpha 2U-globulin. The findings in the present study provide an explanation for the occurrence of renal hyaline droplets only in adult male rats, but do not, as yet, establish the toxicological significance of increases in renal hyaline droplet formation.  相似文献   

18.
tert-Butyl alcohol (TBA) is widely used in the manufacturing of certain perfumes, cosmetics, drugs, paint removers, methyl tert-butyl ether (MTBE), and industrial solvents. In both rodents and humans, TBA is a major metabolite of MTBE, an oxygenated fuel additive. Chronic TBA exposure causes protein droplet nephropathy, alpha2u-globulin (alpha2u) accumulation, renal cell proliferation, and with chronic exposure, renal tumors in male, but not female, rats. These effects suggest an alpha2u-mediated mechanism for renal tumors. The objective of the present study was to determine whether TBA or its metabolites bind to alpha2u. Mature male and female F-344 rats were administered a single gavage dose of 500 mg/kg TBA, 500 mg/kg (14)C-TBA, or corn oil. TBA equivalents/gram or ml of tissue in the male rat kidney, liver, and blood were higher than the levels measured in female rat tissue 12 h after (14)C-TBA administration. Gel filtration and anion-exchange chromatography demonstrated that (14)C-TBA-derived radioactivity co-eluted with alpha2u from male kidney cytosol. Protein dialysis studies demonstrated that the interaction between (14)C-TBA-derived radioactivity and alpha2u was reversible. Incubations of the low-molecular-weight protein fraction (LMWPF) isolated from (14)C-TBA-treated male rat kidneys with d-limonene oxide (a chemical with a high affinity to alpha2u) demonstrated that (14)C-TBA-derived radioactivity was displaced. Gas chromatography-mass spectrometry analysis confirmed that TBA was present in this LMWPF fraction. These results demonstrate that TBA interacts with alpha2u, which explains the accumulation of alpha2u in the male rat kidney following TBA exposure.  相似文献   

19.
Alpha 2u-Globulin (alpha 2u) nephropathy is a male rat-specific condition caused by a diverse group of xenobiotics. Features of this nephropathy include hyaline droplet accumulation in proximal tubules, tubular epithelial necrosis and regeneration, exacerbation of spontaneous renal disease, and induction of renal epithelial tumors. Nephrocarcinogenicity of compounds that cause this nephropathy may be a consequence of increased proximal tubular proliferation resulting from cell injury. These studies document alpha 2u nephropathy without primary renal epithelial tumors in male Wistar rats administered 1-(aminomethyl)cyclohexaneacetic acid (gabapentin), a therapeutic agent with antiepileptic/anticonvulsant properties. In a series of preclinical studies gabapentin was administered to rats at the following doses and durations: 50 and 2000 mg/kg for 2 weeks; 250, 1000, 2000, and 3000 mg/kg for 13 weeks; 250, 1000, and 2000 mg/kg for 52 and 104 weeks. Renal effects were evaluated by biochemical, immunocytochemical, histopathologic, and ultrastructural techniques. Reversible increases in size and distribution of hyaline droplets within proximal tubular epithelium occurred through 1 year of treatment at a severity that was dose-dependent. In males given 2000 mg/kg, alpha 2u accumulation, degeneration, and necrosis of the P2 segment and intraluminal cellular casts were seen after 2 days of treatment. In the 2-week study, the size and number of phagolysosomes containing alpha 2u and the renal tissue alpha 2u increased with increasing dose and time. By Day 7, polymorphic crystalline inclusions were abundant in phagolysosomes of 2000 mg/kg males. In subchronic and chronic studies, spontaneous glomerulonephrosis was exacerbated in males given 2000 mg/kg, and, interestingly, no drug-related effect on renal tumor incidence was observed. To the best of our knowledge, this is the first documentation of the absence of nephrocarcinogenic effect in male rats treated for up to 104 weeks with a compound that causes acute and chronic lesions of alpha 2u nephropathy.  相似文献   

20.
Gasoline (CAS 86290-81-5) is one of the world's largest volume commercial products. Although numerous toxicology studies have been conducted, the potential for reproductive toxicity has not been directly assessed. Accordingly, a two-generation reproductive toxicity study in rats was conducted to provide base data for hazard assessment and risk characterization. The test material, vapor recovery unit gasoline (68514-15-8), is the volatile fraction of formulated gasoline and the material with which humans are most likely to come in contact. The study was of standard design. Exposures were by inhalation at target concentrations of 5000, 10 000, and 20 000 mg/m(3). The highest exposure concentration was approximately 50% of the lower explosive limit and several orders of magnitude above anticipated exposure during refueling. There were no treatment-related clinical or systemic effects in the parental animals, and no microscopic changes other than hyaline droplet nephropathy in the kidneys of the male rats. None of the reproductive parameters were affected, and there were no deleterious effects on offspring survival and growth. The potential for endocrine modulation was also assessed by analysis of sperm count and quality as well as time to onset of developmental landmarks. No toxicologically important differences were found. Therefore, the NOAEL for reproductive toxicity in this study was > or =20 000 mg/m(3). The only systemic effects, in the kidneys of the male rats, were consistent with an alpha-2 u-globulin-mediated process. This is a male rat-specific effect and not relevant to human health risk assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号