首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dermott JM  Ha JH  Lee CH  Dhanasekaran N 《Oncogene》2004,23(1):226-232
Based on the findings that the overexpression of the wild-type Galpha(12) (Galpha(12)WT) result in the oncogenic transformation of NIH3T3 cells in a serum-dependent manner, a model system has been established in which the mitogenic and subsequent cell transformation pathways activated by Galpha(12) can be turned on or off by the addition or removal of serum. Using this model system, our previous studies have shown that the stimulation of Galpha(12)WT or the expression of an activated mutant of Galpha(12) (Galpha(12)QL) leads to increased cell proliferation and subsequent oncogenic transformation of NIH3T3 cells, as well as persistent activation of Jun N-terminal kinases (JNKs). In the present studies, we show that the stimulation of Galpha(12)WT or the expression of Galpha(12)QL results in a potent inhibition of p38MAPK, and that the mechanism by which Galpha(12) inhibits p38MAPK activity involves the dual specificity kinases upstream of p38MAPK. The results indicate that Galpha(12) attenuates the activation of MKK3 and MKK4, which are known to stimulate only p38MAPK or p38MAPK and JNK, respectively. The results also suggest that Galpha(12) activates JNKs specifically through the stimulation of the JNK-specific upstream kinase MKK7. These findings demonstrate for the first time that Galpha(12) differentially regulates JNK and p38MAPK by specifically activating MKK7, while inhibiting MKK3 and MKK4 in NIH3T3 cells. Since the stimulation of p38MAPK is often associated with apoptotic responses, our findings suggest that Galpha(12) stimulates cell proliferation and neoplastic transformation of NIH3T3 cells by attenuating p38MAPK-associated apoptotic responses, while activating the mitogenic responses through the stimulation of ERK- and JNK-mediated signaling pathways.  相似文献   

2.
Hepatocyte I kappaB kinase beta (IKK beta) inhibits hepatocarcinogenesis by suppressing accumulation of reactive oxygen species (ROS) and liver damage, whereas JNK1 activation promotes ROS accumulation, liver damage, and carcinogenesis. We examined whether hepatocyte p38 alpha, found to inhibit liver carcinogenesis, acts similarly to IKK beta in control of ROS metabolism and cell death. Hepatocyte-specific p38 alpha ablation enhanced ROS accumulation and liver damage, which were prevented upon administration of an antioxidant. In addition to elevated ROS accumulation, hepatocyte death, augmented by loss of either IKK beta or p38 alpha, was associated with release of IL-1 alpha. Inhibition of IL-1 alpha action or ablation of its receptor inhibited carcinogen-induced compensatory proliferation and liver tumorigenesis. IL-1 alpha release by necrotic hepatocytes is therefore an important mediator of liver tumorigenesis.  相似文献   

3.
MAP17 is a small, 17-kDa, non-glycosylated membrane protein that is overexpressed in a percentage of carcinomas. In the present work, we have analyzed the role of MAP17 expression during mammary cancer progression. We have found that MAP17 is expressed in 60% human mammary tumors while it is not expressed in normal or benign neoplasias. MAP17 levels increased with breast tumor stage and were strongly correlated with mammary tumoral progression. A significant increase in the levels of reactive oxygen species (ROS) was observed in MAP17-expressing cells, as compared with parental cells. This increase was further paralleled by an increase in the tumorigenic capacity of carcinoma cells but not in immortal non-tumoral breast epithelial cells, which provides a selective advantage once tumorigenesis has begun. Expression of specific MAP17 shRNA in protein-expressing tumor cells reduced their tumorigenic capabilities, which suggests that this effect is dependent upon MAP17 protein expression. Our data show that ROS functions as a second messenger that enhances tumoral properties, which are inhibited in non-tumoral cells. We have found that p38α activation mediates this response. MAP17 triggers a ROS-dependent, senescence-like response that is abolished in the absence of p38a activation. Furthermore, in human breast tumors, MAP17 activation is correlated with a lack of phosphorylation of p38α. Therefore, MAP17 is overexpressed in late-stage breast tumors, in which oncogenic activity relies on p38 insensitivity to induce intracellular ROS.  相似文献   

4.
Denley A  Kang S  Karst U  Vogt PK 《Oncogene》2008,27(18):2561-2574
The catalytic subunits of class I PI3Ks comprise four isoforms: p110alpha, p110beta, p110delta and p110gamma. Cancer-specific gain-of-function mutations in p110alpha have been identified in various malignancies. Cancer-specific mutations in the non-alpha isoforms of class I PI3K have not yet been identified, however overexpression of either wild-type p110beta, p110gamma or p110delta is sufficient to induce cellular transformation in chicken embryo fibroblasts. The mechanism whereby these non-alpha isoforms of class I mediate oncogenic signals is unknown. Here we show that potently transforming class I isoforms signal via Akt/mTOR, inhibit GSK3beta and cause degradation of FoxO1. A functional Erk pathway is required for p110gamma and p110beta transformation but not for transformation by p110delta or the H1047R mutant of p110alpha. Transformation and signaling by p110gamma and p110beta are sensitive to loss of interaction with Ras, which acts as a membrane anchor. Mutations in the C2 domain of p110delta reduce transformation, most likely by interfering with membrane association. Several small molecule inhibitors potently and specifically inhibit the oncogenic signaling and transformation of each of the class I PI3K, and, when used in combination with MEK inhibitors, can additively reduce the transformation induced by p110beta and p110gamma.  相似文献   

5.
6.
Our previous studies demonstrated that manumycin A, a farnesyltransferase inhibitor, induced apoptosis of anaplastic thyroid cancer cells via the intrinsic apoptosis pathway and induced reactive oxygen species (ROS), which mediated DNA damage. In this study, we investigated the hypothesis that the mechanism of apoptosis induced by manumycin in anaplastic thyroid cancer cells fits the general pattern of the "xenobiotic apoptosis pathway," the hallmarks of which are induction of oxidative stress, mitogen-activated protein kinase (MAPK) signaling, and cytochrome c release, which activates the intrinsic apoptosis pathway. We found that manumycin reduced intracellular glutathione and generated ROS: nitric oxide and superoxide anions. Manumycin-induced apoptosis correlated with increase in ROS. Quenching of ROS with N-acetyl-L-cysteine prevented cytochrome c release by manumycin. Manumycin induced phosphorylation of p38 MAPK, which was blocked by N-acetyl-L-cysteine. p38 MAPK may be an important signaling mediator in the activation of the intrinsic apoptotic pathway by manumycin because the p38 MAPK inhibitor SB203580 inhibited cytochrome c release and activation of caspase-3 by manumycin. In conclusion, manumycin activated the intrinsic apoptosis pathway via activation of p38 MAPK by oxidative stress. The mechanism of apoptosis induced by manumycin fits the emerging general pattern for apoptosis induced by xenobiotics.  相似文献   

7.
Effective strategies for cancer prevention and treatment can be identified by understanding the mechanism of apoptotic pathways. In this study, we investigated the regulatory mechanism of quercetin-induced apoptosis through apoptosis signal-regulating kinase (ASK)-1 and mitogen-activated protein kinase pathways. Our results showed that quercetin increased apoptotic cell death through reactive oxygen species (ROS) generation and was responsible for ASK1 activation. Increasing ASK1 activity was accompanied by p38 activation. Interestingly, AMP-activated protein kinase (AMPK) seemed to be a critical controller of quercetin-regulated ASK1/p38 activation. Blocking AMPKα1 activity using Compound C, a synthetic inhibitor or siRNA showed that quercetin-activated ASK1 could not stimulate p38 activity. Thus, we suggested that quercetin-exerted apoptotic effects involve ROS/AMPKα1/ASK1/p38 signaling pathway, and AMPKα1 is a necessary element for apoptotic event induced by ASK1.  相似文献   

8.
Myatt SS  Burchill SA 《Oncogene》2008,27(7):985-996
The Ewing's sarcoma family of tumours (ESFT) are small round cell tumours characterized by the non-random EWS-ETS gene rearrangements. We have previously demonstrated that ESFT are highly sensitive to fenretinide-induced death, effected in part through a reactive oxygen species (ROS)-dependent pathway. Here, we demonstrate for the first time that the sensitivity of ESFT cells to fenretinide-induced cell death is decreased following downregulation of the oncogenic fusion protein EWS-Fli1; siRNA targeting EWS-Fli1 attenuated fenretinide-induced cell death in cell lines expressing EWS-Fli1, but not EWS-ERG. This decrease in cell death was independent of the level of ROS produced following exposure to fenretinide, but was effected through EWS-Fli1-dependent modulation of p38(MAPK) activity. Furthermore, inhibition of p38(MAPK) activity and knockdown of EWS-Fli1 reduced fenretinide-induced mitochondrial permeabilization, cytochrome c release, caspase and PARP cleavage, consistent with the hypothesis that p38(MAPK) is critical for activation of the death cascade by fenretinide in ESFT cells. These data demonstrate that expression of EWS-Fli1 enhances fenretinide-induced cell death in ESFT and that this is effected at least in part through modulation of p38(MAPK) activity.  相似文献   

9.
We have recently demonstrated that overexpression of PKCepsilon is oncogenic in colonic epithelial cells. To test whether PI3K might be an upstream effector of PKCepsilon in cell transformation, we have overexpressed the p110alpha PI3K subunit in non-transformed D/WT colonic epithelial cells. Transfectants displayed the major in vitro features of transformed cells. Interestingly, no transformation occurred when p110alpha was co-transfected with a dead-kinase PKCepsilon mutant. The p85alpha subunit of PI3K, displaying a dominant-negative-like effect, was then transfected in PKCepsilon-transformed D/epsilon cells. The transformed profile of these cells was markedly reduced. To identify which by-products of PI3K might be involved in cell transformation we have transfected the D/WT cell line with cDNAs encoding the PI3 kinases hVps34 and C2beta. Overexpression of hVps34 did not cause cell transformation. Conversely, in vitro transformation was observed when C2beta was transfected into D/WT cells. These results indicate that phosphatidylinositol-3 monophosphate does not seem to be involved in cell transformation, and that phosphatidylinositol-3,4 bisphosphate and phosphatidylinositol-3,4,5 trisphosphate are more likely involved in this process. Thus, our data support the hypothesis of a linkage between PI3K and PKCepsilon, and indicate that PI3K may act as a source of second messengers responsible for oncogenic activation of PKCepsilon.  相似文献   

10.
Cryptotanshinone (CPT), a natural compound isolated from the plant Salvia miltiorrhiza Bunge, is a potential anticancer agent. However, the underlying mechanism is not well understood. Here, we show that CPT induced caspase-independent cell death in human tumor cells (Rh30, DU145, and MCF-7). Besides downregulating antiapoptotic protein expression of survivin and Mcl-1, CPT increased phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-jun N-terminal kinase (JNK), and inhibited phosphorylation of extracellular signal-regulated kinases 1/2 (Erk1/2). Inhibition of p38 with SB202190 or JNK with SP600125 attenuated CPT-induced cell death. Similarly, silencing p38 or c-Jun also in part prevented CPT-induced cell death. In contrast, expression of constitutively active mitogen-activated protein kinase kinase 1 (MKK1) conferred resistance to CPT inhibition of Erk1/2 phosphorylation and induction of cell death. Furthermore, we found that all of these were attributed to CPT induction of reactive oxygen species (ROS). This is evidenced by the findings that CPT induced ROS in a concentration- and time-dependent manner; CPT induction of ROS was inhibited by N-acetyl-L-cysteine (NAC), a ROS scavenger; and NAC attenuated CPT activation of p38/JNK, inhibition of Erk1/2, and induction of cell death. The results suggested that CPT induction of ROS activates p38/JNK and inhibits Erk1/2, leading to caspase-independent cell death in tumor cells.  相似文献   

11.
PURPOSE: There is an urgent need for new therapeutic strategies in Ewing's sarcoma family of tumors (ESFT). In this study, we have evaluated the effect of fenretinide [N-(4-hydroxyphenyl)retinamide] in ESFT models. EXPERIMENTAL DESIGN: The effect of fenretinide on viable cell number and apoptosis of ESFT cell lines and spheroids and growth of s.c. ESFT in nu/nu mice was investigated. The role of the stress-activated kinases p38(MAPK) and c-Jun NH(2)-terminal kinase in fenretinide-induced death was investigated by Western blot and inhibitor experiments. Accumulation of reactive oxygen species (ROS) and changes in mitochondrial transmembrane potential were investigated by flow cytometry. RESULTS: Fenretinide induced cell death in all ESFT cell lines examined in a dose- and time-dependent manner. ESFT cells were more sensitive to fenretinide than the neuroblastoma cell lines examined. Furthermore, fenretinide induced cell death in ESFT spheroids and delayed s.c. ESFT growth in mice. p38(MAPK) was activated within 15 minutes of fenretinide treatment and was dependent on ROS accumulation. Inhibition of p38(MAPK) activity partially rescued fenretinide-mediated cell death in ESFT but not in SH-SY5Y neuroblastoma cells. c-Jun NH(2)-terminal kinase was activated after 4 hours and was dependent on ROS accumulation but not on activation of p38(MAPK). After 8 hours, fenretinide induced mitochondrial depolarization (Deltapsi(m)) and release of cytochrome c into the cytoplasm in a ROS- and p38(MAPK)-dependent manner. CONCLUSIONS: These data show that the high sensitivity of ESFT cells to fenretinide is dependent in part on the rapid and sustained activation of p38(MAPK). The efficacy of fenretinide in preclinical models demands the evaluation of fenretinide as a potential therapeutic agent in ESFT.  相似文献   

12.
Kim HJ  Chakravarti N  Oridate N  Choe C  Claret FX  Lotan R 《Oncogene》2006,25(19):2785-2794
N-(4-hydroxyphenyl)retinamide (4HPR), a synthetic retinoid effective in cancer chemoprevention and therapy, is thought to act via apoptosis induction resulting from increased reactive oxygen species (ROS) generation. As ROS can activate MAP kinases and protein kinase C (PKC), we examined the role of such enzymes in 4HPR-induced apoptosis in HNSCC UMSCC22B cells. 4HPR increased ROS level within 1 h and induced activation of caspase 3 and PARP cleavage within 24 h. Activation of MKK3/6 and MKK4, JNK, p38 and ERK was detected between 6 and 12 h, increased up to 24 h and preceded apoptosis. 4HPR-induced activation of these kinases was abrogated by the antioxidants BHA and vitamin C. SP600125, a JNK inhibitor, suppressed 4HPR-induced c-Jun phosphorylation, cytochrome c release from mitochondria and apoptosis. Suppression of JNK1 and JNK2 using siRNA decreased, whereas overexpression of wild type-JNK1 enhanced 4HPR-induced apoptosis. PD169316, a p38, inhibitor suppressed phosphorylation of Hsp27 and apoptosis. PD98059, an MEK1/2 inhibitor, also suppressed ERK1/2 activation and apoptosis induced by 4HPR. Likewise, PKC inhibitor GF109203X suppressed ERK and p38 phosphorylation and PARP cleavage. These data indicate that 4HPR-induced apoptosis is triggered by ROS increase, leading to the activation of the mitogen-activated protein serine/threonine kinases JNK, p38, PKC and ERK, and subsequent apoptosis.  相似文献   

13.
A previous study has shown that UV activates the PI3K/AKT cell survival pathway while inducing cell death in human skin in vivo and cultured human keratinocytes in vitro, and yet the upstream pathway leading to the activation of AKT has not been thoroughly investigated. In this study we found that UV-induced phosphorylation of p38 and AKT in a time-dependent manner. The phosphorylation of p38 started at 5 min post UV irradiation, peaked at about 30 min, and remained elevated up to 2 h. The phosphorylation of AKT started at 15 min post UV treatment, peaked at about 1 h, and remained elevated up to 2 h. We also found that H2O2 induced phosphorylation of p38 and AKT in a time- dependent manner. Pretreatment with NAC abolished UV-induced AKT phosphorylation, suggesting the involvement of reactive oxygen species in AKT activation. Interestingly, SB203085, a known p38 inhibitor, had partially inhibited UV-induced AKT phosphorylation. Further studies showed that cytokines such as TNF-alpha and IL-1beta induced AKT phosphorylation in a time-dependent manner. Pretreatment with SB203085 inhibited IL-1beta-induced p38 and AKT phosphorylation. Collectively, our data suggest that UV activation of PI 3-kinase/AKT pathway is initiated by ROS and prolonged by feedback activation of p38 induced by released cytokines in response to UV irradiation in cultured human keratinocytes.  相似文献   

14.
15.
AIMP3 (previously known as p18) was shown to up-regulate p53 in response to DNA damage. Here, we show that AIMP3 couples oncogenic stresses to p53 activation to prevent cell transformation. Growth factor- or Ras-dependent induction of p53 was blocked by single allelic loss of AIMP3 as well as by suppression of AIMP3. AIMP3 heterozygous cells became susceptible to cell transformation induced by oncogenes such as Ras or Myc alone. The transformed AIMP3+/- cells showed severe abnormality in cell division and chromosomal structure. Thus, AIMP3 plays crucial roles in p53-mediated tumor-suppressive response against oncogenic stresses via differential activation of ATM and ATR, and in the maintenance of genomic stability.  相似文献   

16.
17.
Dihydroartemisinin (DHA), the main active metabolite of artemisinin derivatives, is one of the most effective anti-malarial analogs of artemisinin. In the current study, we found that DHA inhibited the proliferation of a panel of tumor cells originated from different tissue types. DHA effectively induced apoptosis in human promyelocytic leukemia HL-60 cells, which was accompanied with mitochondrial dysfunction and caspases activation. Further studies indicated that DHA-induced apoptosis was iron-dependent. Though DHA slightly elicited superoxide anion, these reactive oxygen species (ROS) contribute little to DHA-induced apoptosis in HL-60 cells. Moreover, DHA time-dependently activated mitogen-activeted protein kinases (MAPKs) and specific inhibition of p38 MAPK, but not c-Jun-NH2-terminal kinase (JNK) or extracellular signal-regulated kinase (ERK), abolished DHA-induced apoptosis, indicating that activation of p38 MAPK is required for DHA-induced apoptosis in HL-60 cells. Altogether, our data uncover that DHA induces apoptosis is dependent of iron and p38 MAPK activation but not ROS in HL-60 cells.  相似文献   

18.
The balance between cell death and survival, two critical aspects of oncogenic transformation, determines the outcome of tumorigenesis. Nuclear factor-kappaB (NF-kappaB) is a critical regulator of survival; it is induced by the oncogene Ras and, when inhibited, accounts for the cell death response of Ras-transformed cells. Here, we show that the signaling adaptor p62 is induced by Ras, its levels are increased in human tumors, and it is required for Ras-induced survival and transformation. p62-/- mice are resistant to Ras-induced lung adenocarcinomas. p62 is necessary for Ras to trigger IkappaB kinase (IKK) through the polyubiquitination of tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6), and its deficiency produces increased reactive oxygen species (ROS) levels, which account for the enhanced cell death and reduced tumorigenicity of Ras in the absence of p62.  相似文献   

19.
The oncogenic K-Ras can transform various mammalian cells and plays a critical role in development of pancreatic cancer. MicroRNAs (miRNA) have been shown to contribute to tumorigenic progression. However, the nature of miRNAs involved in K-Ras transformation remains to be investigated. Here, by using microarray we identified miR-155 as the most upregulated miRNA after both acute and prolonged activation of K-Ras in a doxycyline-inducible system. Pharmacological inhibition of MAPK and NF-κB pathway blocked the induction of miR-155 in response to K-Ras activation. Overexpression of miR-155 caused inhibition of Foxo3a, leading to decrease of major antioxidants including SOD2 and catalase, and enhanced pancreatic cell proliferation induced by ROS generation. Importantly, correlations of K-Ras, miR-155 and Foxo3a were also validated in human pancreatic cancer tissues. Therefore, we propose that miR-155 plays an important role in oncogenic K-Ras transformation mediated by cellular redox regulation.  相似文献   

20.
Cellular transformation is a complex process involving genetic alterations associated with multiple signaling pathways. Development of a transformation model using defined genetic elements has provided an opportunity to elucidate the role of oncogenes and tumor suppressor genes in the initiation and development of ovarian cancer. To study the cellular and molecular mechanisms of Ras-mediated oncogenic transformation of ovarian epithelial cells, we used a proteomic approach involving two-dimensional electrophoresis and mass spectrometry to profile two ovarian epithelial cell lines, one immortalized with SV40 T/t antigens and the human catalytic subunit of telomerase and the other transformed with an additional oncogenic ras(V12) allele. Of approximately 2200 observed protein spots, we have identified >30 protein targets that showed significant changes between the immortalized and transformed cell lines using peptide mass fingerprinting. Among these identified targets, one most notable group of proteins altered significantly consists of enzymes involved in cellular redox balance. Detailed analysis of these protein targets suggests that activation of Ras-signaling pathways increases the threshold of reactive oxidative species (ROS) tolerance by up-regulating the overall antioxidant capacity of cells, especially in mitochondria. This enhanced antioxidant capacity protects the transformed cells from high levels of ROS associated with the uncontrolled growth potential of tumor cells. It is conceivable that an enhanced antioxidation capability may constitute a common mechanism for tumor cells to evade apoptosis induced by oxidative stresses at high ROS levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号