首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
PURPOSE: To evaluate partially parallel three-dimensional (3D) magnetic resonance (MR) imaging for assessment of regional lung perfusion in healthy volunteers and patients suspected of having lung cancer or metastasis. MATERIALS AND METHODS: Seven healthy volunteers and 20 patients suspected of having lung cancer or metastasis were examined with 3D gradient-echo MR imaging with partially parallel image acquisitions (fast low-angle shot 3D imaging; repetition time msec/echo time msec, 1.9/0.8; flip angle, 40 degrees; acceleration factor, two; number of reference k-space lines for calibration, 24; field of view, 500 x 440 mm; matrix, 256 x 123; slab thickness, 160 mm; number of partitions, 32; voxel size, 3.6 x 2.0 x 5.0 mm(3); acquisition time, 1.5 seconds) after administration of 0.1 mmol/kg of gadobenate dimeglumine. In volunteers, 3D MR perfusion data sets were assessed for topographic and temporal distribution of regional lung perfusion. Sensitivity, specificity, accuracy, and positive and negative predictive values for perfusion MR imaging for detecting perfusion abnormalities in patients were calculated, with conventional radionuclide perfusion scintigraphy as the standard of reference. Interobserver and intermodality agreement was determined by using kappa statistics. RESULTS: Topographic analysis of lung perfusion in volunteers revealed a significantly higher signal-to-noise ratio (SNR) of up to 327% in gravity-dependent lung areas. Temporal analysis similarly revealed much shorter lag time to peak enhancement in gravity-dependent lung areas. In patients, perfusion MR imaging achieved high sensitivity (88%-94%), specificity (100%), and accuracy (90%-95%) for detection of perfusion abnormalities. Interobserver agreement (kappa = 0.86) was very good and intermodality agreement (kappa = 0.69-0.83) was good to very good for detection of perfusion defects. A significant difference (P <.0001) in SNR was observed between normally perfused lung (14 +/- 7 [SD]) and perfusion defects (7 +/- 4) in patients. CONCLUSION: Partially parallel MR imaging with high spatial and temporal resolution allows assessment of regional lung perfusion and has high diagnostic accuracy for detecting perfusion abnormalities.  相似文献   

2.
OBJECTIVES: We sought to assess the agreement between lung perfusion ratios calculated from pulmonary perfusion magnetic resonance imaging (MRI) and those calculated from radionuclide (RN) perfusion scintigraphy. MATERIALS AND METHODS: A retrospective analysis of MR and RN perfusion scans was conducted in 23 patients (mean age, 60 +/- 14 years) with different lung diseases (lung cancer = 15, chronic obstructive pulmonary disease = 4, cystic fibrosis = 2, and mesothelioma = 2). Pulmonary perfusion was assessed by a time-resolved contrast-enhanced 3D gradient-echo pulse sequence using parallel imaging and view sharing (TR = 1.9 milliseconds; TE = 0.8 milliseconds; parallel imaging acceleration factor = 2; partition thickness = 4 mm; matrix = 256 x 96; in-plane spatial resolution = 1.87 x 3.75 mm; scan time for each 3D dataset = 1.5 seconds), using gadolinium-based contrast agents (injection flow rate = 5 mL/s, dose = 0.1 mmol/kg of body weight). The peak concentration (PC) of the contrast agent bolus, the pulmonary blood flow (PBF), and blood volume (PBV) were computed from the signal-time curves of the lung. Left-to-right ratios of pulmonary perfusion were calculated from the MR parameters and RN counts. The agreement between these ratios was assessed for side prevalence (sign test) and quantitatively (Deming-regression). RESULTS: MR and RN ratios agreed on side prevalence in 21 patients (91%) with PC, in 20 (87%) with PBF, and in 17 (74%) with PBV. The MR estimations of left-to-right perfusion ratios correlated significantly with those of RN perfusion scans (P < 0.01). The correlation was higher using PC (r = 0.67) and PBF (r = 0.66) than using PBV (r = 0.50). The MR ratios computed from PBF showed the highest accuracy, followed by those from PC and PBV. Independently from the MR parameter used, in some patients the quantitative difference between the MR and RN ratios was not negligible. CONCLUSIONS: Pulmonary perfusion MRI can be used to assess the differential blood flow of the lung. Further studies in a larger group of patients are required to fully confirm the clinical suitability of this imaging method.  相似文献   

3.
RATIONALE AND OBJECTIVES: To compare 1.0 M gadobutrol and 0.5 M Gd-DTPA for contrast-enhanced three-dimensional pulmonary perfusion magnetic resonance imaging (3D MRI). MATERIALS AND METHODS: Ten healthy volunteers (3 females; 7 males; median age, 27 years; age range, 18-31 years) were examined with contrast-enhanced dynamic 3D MRI with parallel acquisition technique (FLASH 3D; reconstruction algorithm: generalized autocalibrating partially parallel acquisitions; acceleration factor: 2; TE/TR/alpha: 0.8/1.9 milliseconds/40 degrees; FOV: 500 x 375 mm; matrix: 256 x 86; slab thickness: 180 mm; 36 partitions; voxel size: 4.4 x 2 x 5 mm; TA: 1.48 seconds). Twenty-five consecutive data sets were acquired after intravenous injection of 0.025, 0.05, and 0.1 mmol/kg body weight of gadobutrol and Gd-DTPA. Quantitative measurements of peak signal-to-noise ratios (SNR) of both lungs were performed independently by 3 readers. Bolus transit times through the lungs were assessed from signal intensity time curves. RESULTS: The peak SNR in the lungs was comparable between gadobutrol and Gd-DTPA at all dose levels (15.7 vs. 15.5 at 0.1 mmol/kg bw; 12.9 vs. 12.5 at 0.05 mmol/kg bw; 7.6 vs. 8.9 at 0.025 mmol/kg bw). A dose of 0.1 mmol/kg achieved the highest peak SNR compared with all other dose levels (P < 0.05). A higher peak SNR was observed in gravity dependent lung (P < 0.05). Despite different injection volumes, transit times of the contrast bolus did not differ between both agents. CONCLUSION: Higher concentrated gadolinium chelates offer no advantage over standard 0.5 M Gd-DTPA for contrast-enhanced 3D MRI of lung perfusion.  相似文献   

4.
PURPOSE: To evaluate a dual-bolus approach to pulmonary perfusion MRI. MATERIALS AND METHODS: The dual-bolus approach uses a separate low-dose measurement for the arterial input function (AIF) to ensure linearity. The measured AIF is constructed according to a subsequent higher dose used for the tissue concentration curves in the lung. In this study a prebolus of 0.01 mmol/kg followed by doses of 0.04 mmol/kg and 0.08 mmol/kg was used. Measurements were performed using time-resolved two-dimensional fast low-angle shot (2D FLASH) MRI (TE/TR = 0.73 msec/1.73 msec; flip angle = 40 degrees ; generalized autocalibrating partially parallel acquisitions (GRAPPA) factor = 3; temporal resolution = 400 msec) in end-inspiratory breath-hold. RESULTS: The combination of prebolus/0.04 mmol/kg resulted in a pulmonary blood flow (PBF) of 211 +/- 77 mL/min/100 mL, and a pulmonary blood volume (PBV) of 20 +/- 3 mL/100 mL. The combination of prebolus/0.08 mmol/kg resulted in approximately 50% lower perfusion values, most likely due to saturation effects in the lung tissue. CONCLUSION: A dual-bolus approach to pulmonary perfusion MRI is feasible and may reduce the problem of lacking linear relationship between the contrast-agent concentration and signal intensity.  相似文献   

5.
Magnetic resonance temperature imaging can be used to monitor the progress of thermal ablation therapies, increasing treatment efficacy and improving patient safety. High temporal resolution is important when therapies rapidly heat tissue, but many approaches to faster image acquisition compromise image resolution, slice coverage, or phase sensitivity. Partially parallel imaging techniques offer the potential for improved temporal resolution without forcing such concessions. Although these techniques perturb image phase, relative phase changes between dynamically acquired phase-sensitive images, such as those acquired for MR temperature imaging, can be reliably measured through partially parallel imaging techniques using reconstruction filters that remain constant across the series. Partially parallel and non-accelerated phase-difference-sensitive data can be obtained through arrays of surface coils using this method. Average phase differences measured through partially parallel and fully Fourier encoded images are virtually identical, while phase noise increases with g(sqrt)L as in standard partially parallel image acquisitions..  相似文献   

6.
This paper is a feasibility study of magnetic resonance imaging (MRI) of lung perfusion in children with cystic fibrosis (CF) using contrast-enhanced 3D MRI. Correlation assessment of perfusion changes with structural abnormalities. Eleven CF patients (9 f, 2 m; median age 16 years) were examined at 1.5 T. Morphology: HASTE coronal, transversal (TR/TE/α/ST: 600 ms/28 ms/180°/6 mm), breath-hold 18 s. Perfusion: Time-resolved 3D GRE pulse sequence (FLASH, TE/TR/α: 0.8/1.9 ms/40°), parallel imaging (GRAPPA, PAT 2). Twenty-five data sets were acquired after intravenous injection of 0.1 mmol/kg body weight of gadodiamide, 3–5 ml/s. A total of 198 lung segments were analyzed by two radiologists in consensus and scored for morphological and perfusion changes. Statistical analysis was performed by Mantel-Haenszel chi-square test. Results showed that perfusion defects were observed in all patients and present in 80% of upper, and 39% of lower lobes. Normal lung parenchyma showed homogeneous perfusion (86%, P<0.0001). Severe morphological changes led to perfusion defects (97%, P<0.0001). Segments with moderate morphological changes showed normal (53%) or impaired perfusion (47%). In conclusion, pulmonary perfusion is easy to judge in segments with normal parenchyma or severe changes. In moderately damaged segments, MRI of lung perfusion may help to better assess actual functional impairment. Contrast-enhanced 3D MRI of lung perfusion has the potential for early vascular functional assessment and therapy control in CF patients.Monika Eichinger and Michael Puderbach contributed equally to this work.  相似文献   

7.
Introduction: For three-dimensional (3D) imaging with magnetic resonance angiography (MRA) of the cerebral and cervical circulation, both a high temporal and a high spatial resolution with isovolumetric datasets are of interest. In an initial evaluation, we analyzed the potential of contrast-enhanced (CE) time-resolved 3D-MRA as an adjunct for neurovascular MR imaging. Methods: In ten patients with various cerebrovascular disorders and vascularized tumors in the cervical circulation, high-speed MR acquisition using parallel imaging with the GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) algorithm on a 1.5-T system with a temporal resolution of 1.5 s per dataset and a nearly isovolumetric spatial resolution was applied. The results were assessed and compared with those from conventional MRA and digital subtraction angiography (DSA). Results: CE time-resolved 3D-MRA enabled the visualization and characterization of high-flow arteriovenous shunts in cases of vascular malformations or hypervascularized tumors. In steno-occlusive disease, the method provided valuable additional information about altered vessel perfusion compared to standard MRA techniques such as time-of-flight (TOF) MRA. The use of a nearly isovolumetric voxel size allowed a free-form interrogation of 3D datasets. Its comparatively low spatial resolution was found to be the major limitation. Conclusion: In this preliminary analysis, CE time-resolved 3D-MRA was revealed to be a promising complementary MRA sequence that enabled the visualization of contrast flow dynamics in various types of neurovascular disorders and vascularized cervical tumors.  相似文献   

8.
With the development of various models of pulmonary disease, there is tremendous interest in quantitative regional assessment of pulmonary function. While ventilation imaging has been addressed to a certain extent, perfusion imaging for small animals has not kept pace. In humans and large animals perfusion can be assessed using dynamic contrast-enhanced (DCE) MRI with a single bolus injection of a gadolinium (Gd)-based contrast agent. But the method developed for the clinic cannot be translated directly to image the rodent due to the combined requirements of higher spatial and temporal resolution. This work describes a novel image acquisition technique staggered over multiple, repeatable bolus injections of contrast agent using an automated microinjector, synchronized with image acquisition to achieve dynamic first-pass contrast enhancement in the rat lung. This allows dynamic first-pass imaging that can be used to quantify pulmonary perfusion. Further improvements are made in the spatial and temporal resolution by combining the multiple injection acquisition method with Interleaved Radial Imaging and "Sliding window-keyhole" reconstruction (IRIS). The results demonstrate a simultaneous increase in spatial resolution (<200 mum) and temporal resolution (<200 ms) over previous methods, with a limited loss in signal-to-noise-ratio.  相似文献   

9.
With technical improvements in gradient hardware and the implementation of innovative k-space sampling techniques, such as parallel imaging, the feasibility of pulmonary perfusion MRI could be demonstrated in several studies. Dynamic contrast-enhanced 3D gradient echo sequences as used for time-resolved MR angiography have been established as the preferred pulse sequences for lung perfusion MRI. With these techniques perfusion of the entire lung can be visualized with a sufficiently high temporal and spatial resolution. In several trials in patients with acute pulmonary embolism, pulmonary hypertension and airway diseases, the clinical benefit and good correlation with perfusion scintigraphy have been demonstrated. The following review article describes the technical prerequisites, current post-processing techniques and the clinical indications for MR pulmonary perfusion imaging using MRI.  相似文献   

10.
A fast MR pulse sequence with spiral in-plane readout and conventional 3D partition encoding was developed for multiphase contrast-enhanced magnetic resonance angiography (CE-MRA) of the renal vasculature. Compared to a standard multiphase 3D CE-MRA with FLASH readout, an isotropic in-plane spatial resolution of 1.4 x 1.4 mm(2) over 2.0 x 1.4 mm(2) could be achieved with a temporal resolution of 6 sec. The theoretical gain of spatial resolution by using the spiral pulse sequence and the performance in the presence of turbulent flow was evaluated in phantom measurements. Multiphase 3D CE-MRA of the renal arteries was performed in five healthy volunteers using both techniques. A deblurring technique was used to correct the spiral raw data. Thereby, the off-resonance frequencies were determined by minimizing the imaginary part of the data in image space. The chosen correction algorithm was able to reduce image blurring substantially in all MRA phases. The image quality of the spiral CE-MRA pulse sequence was comparable to that of the FLASH CE-MRA with increased spatial resolution and a 25% reduced contrast-to-noise ratio. Additionally, artifacts specific to spiral MRI could be observed which had no impact on the assessment of the renal arteries.  相似文献   

11.
First‐pass cardiac perfusion MRI is a natural candidate for compressed sensing acceleration since its representation in the combined temporal Fourier and spatial domain is sparse and the required incoherence can be effectively accomplished by k‐t random undersampling. However, the required number of samples in practice (three to five times the number of sparse coefficients) limits the acceleration for compressed sensing alone. Parallel imaging may also be used to accelerate cardiac perfusion MRI, with acceleration factors ultimately limited by noise amplification. In this work, compressed sensing and parallel imaging are combined by merging the k‐t SPARSE technique with sensitivity encoding (SENSE) reconstruction to substantially increase the acceleration rate for perfusion imaging. We also present a new theoretical framework for understanding the combination of k‐t SPARSE with SENSE based on distributed compressed sensing theory. This framework, which identifies parallel imaging as a distributed multisensor implementation of compressed sensing, enables an estimate of feasible acceleration for the combined approach. We demonstrate feasibility of 8‐fold acceleration in vivo with whole‐heart coverage and high spatial and temporal resolution using standard coil arrays. The method is relatively insensitive to respiratory motion artifacts and presents similar temporal fidelity and image quality when compared to Generalized autocalibrating partially parallel acquisitions (GRAPPA) with 2‐fold acceleration. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
To compare the image quality of dynamic lung MRI with variations of steady-state free-precession (SSFP) and gradient echo (GRE) cine techniques at 1.5 T and 3 T. Ventilated porcine lungs with simulated lesions inside a chest phantom and four healthy human subjects were assessed with SSFP (TR/TE = 2.9/1.22 ms; 3 ima/s) and GRE sequences (TR/TE = 2.34/0.96 ms; 8 ima/s) as baseline at 1.5 and 3 T. Modified SSFPs were performed with nine to ten images/s (parallel imaging factors 2 and 3). Image quality for representative structures and artifacts was ranked by three observers independently. At 1.5 T, standard SSFP achieved the best image quality with superior spatial resolution and signal, but equal temporal resolution to GRE. SSFP with improved temporal resolution was ranked second best. Further acceleration (PI factor 3) was of no benefit, but increased artifacts. At 3 T, GRE outranged SSFP imaging with high lesion signal intensity, while artifacts on SSFP images increased visibly. At 1.5 T, a modified SSFP with moderate parallel imaging (PI factor 2) was considered the best compromise of temporal and spatial resolution. At 3 T, GRE sequences remain the best choice for dynamic lung MRI.  相似文献   

13.
The purpose of this work was to assess the feasibility and efficacy of using an array coil and parallel imaging in continuous arterial spin labeling (CASL) perfusion MRI. An 8-channel receive-only array head coil was used in conjunction with a surrounding detunable volume transmit coil. The signal to noise ratio (SNR), temporal stability, cerebral blood flow (CBF), and perfusion image coverage were measured from steady state CASL scans using: a standard volume coil, array coil, and array coil with 2- and 3-fold accelerated parallel imaging. Compared to the standard volume coil, the array coil provided 3 times the average SNR increase and higher temporal stability for the perfusion weighted images, even with threefold acceleration. Although perfusion images of the array coil were affected by the inhomogeneous coil sensitivities, this effect was invisible in the quantitative CBF images, which showed highly reproducible perfusion values compared to the standard volume coil. The unfolding distortions of parallel imaging were suppressed in the perfusion images by pairwise subtraction, though they sharply degraded the raw EPI images. Moreover, parallel imaging provided the potential of acquiring more slices due to the shortened acquisition time and improved coverage in brain regions with high static field inhomogeneity. Such results highlight the potential utility of array coils and parallel imaging in ASL perfusion MRI.  相似文献   

14.
Measurement of brain perfusion using arterial spin labeling (ASL) or dynamic susceptibility contrast (DSC) based MRI has many potential important clinical applications. However, the clinical application of perfusion MRI has been limited by a number of factors, including a relatively poor spatial resolution, limited volume coverage, and low signal-to-noise ratio (SNR). It is difficult to improve any of these aspects because both ASL and DSC methods require rapid image acquisition. In this report, recent methodological developments are discussed that alleviate some of these limitations and make perfusion MRI more suitable for clinical application. In particular, the availability of high magnetic field strength systems, increased gradient performance, the use of RF coil arrays and parallel imaging, and increasing pulse sequence efficiency allow for increased image acquisition speed and improved SNR. The use of parallel imaging facilitates the trade-off of SNR for increases in spatial resolution. As a demonstration, we obtained DSC and ASL perfusion images at 3.0 T and 7.0 T with multichannel RF coils and parallel imaging, which allowed us to obtain high-quality images with in-plane voxel sizes of 1.5 x 1.5 mm(2).  相似文献   

15.
MRI was not used often for lung imaging due to technical and physical limitations. Recent developments have considerably improved anatomical MR imaging, and at the same time new perspectives for functional imaging emerged. They consist of functional investigations of pulmonary perfusion (contrast agents, MR angiography) and ventilation (inhaled contrast aerosols, oxygen, hyperpolarized noble gases [He-3, Xe-129] and fluorinated gases [SF6]). New parameters can be measured: homogeneity of ventilation, lung volumes, airspace size, intrapulmonary oxygen partial pressure, dynamic ventilation distribution and ventilation/perfusion ratios. MRI-inherent advantages are: lack of radiation, high spatial and temporal resolution, and a broad range of functional information. MRI of lung ventilation seems to be more sensitive in the detection of ventilation defects than scintigraphy, CT or pulmonary function tests. By combining the new strategies the radiologist will be capable to improve specificity of the investigations and to characterize lung function impairments. The joint assessment of ventilation and perfusion will play a major role in this development.  相似文献   

16.
RATIONALE AND OBJECTIVES: The potential of a noncontrast, electrocardiography (ECG)-gated fast-spin-echo (FSE) MR imaging (MRI) to monitor dynamically altered regional lung perfusion was assessed in acute and temporal pulmonary embolic and airway obstruction dog models. MATERIALS AND METHODS: After acquisition of ECG-gated multiphase FSE MR images during one cardiac cycle, the two phase images of the minimal lung signal intensity (SI) during systole and the maximal SI during diastole were acquired in the lower lung levels in six normal dogs, in 13 dogs before and for 35 minutes after temporal microvascular embolization in regional lungs with gradually degradable starch microspheres of spherex, and in 12 dogs before and for 45 minutes after bronchial occlusion with a balloon catheter. In three of the 13 embolic models, the opposite lung areas, however, were permanently embolized with enbucrilate. Subtraction between the diastolic and systolic images yielded a perfusion-weighted image. The results were compared with a gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA)-enhanced dynamic perfusion MRI, which was subsequently performed after the ECG-gated MRI in each animal. RESULTS: The multiphase FSE images provided cardiac-dependent pulsatile lung SI changes, and the subtracted perfusion-weighted images provided a uniform perfusion map in normal lungs. In all the embolic models, the subtracted perfusion-weighted images showed gradual disappearance of the spherex-induced perfusion deficits, while the enbucrilate-induced perfusion deficits persistently remained in the three animals. In all airway obstruction models, these images showed gradually decreased perfusion in the hypoventilated areas. These results were consistent with the matched Gd-DTPA-enhanced pulmonary arterial perfusion phase images in each animal. CONCLUSION: This noncontrast perfusion MRI may have excellent potential for continuously monitoring dynamically changed regional lung perfusion within a short time on its high spatial resolution cross-sectional images.  相似文献   

17.

Purpose:

To evaluate the performance of lung perfusion imaging using two‐dimensional (2D) first pass perfusion MRI and a quantitation program based on model‐independent deconvolution algorithm.

Materials and Methods:

In eight healthy volunteers 2D first pass lung perfusion was imaged in coronal planes using a partial Fourier saturation recovery stead state free precession (SSFP) technique with a temporal resolution of 160 ms per slice acquisition. The dynamic signal in the lung was measured over time and absolute perfusion calculated based on a model‐independent deconvolution program.

Results:

In the supine position mean pulmonary perfusion was 287 ± 106 mL/min/100 mL during held expiration. It was significantly reduced to 129 ± 68 mL/min/100 mL during held inspiration. Similar differences due to respiration were observed in prone position with lung perfusion much greater during expiration than during inspiration (271 ± 101 versus 99 ± 38 mL/min/100 mL (P < 0.01)). There was a linear increase in pulmonary perfusion from anterior to posterior lung fields in supine position. The perfusion gradient reversed in the prone position with the highest perfusion in anterior lung and the lowest in posterior lung fields.

Conclusion:

Lung perfusion imaging using a 2D saturation recovery SSFP perfusion MRI coupled with a model‐independent deconvolution algorithm demonstrated physiologically consistent dynamic heterogeneity of lung perfusion distribution. J. Magn. Reson. Imaging 2011;. © 2011 Wiley‐Liss, Inc.  相似文献   

18.
Three-dimensional (3D) dynamic contrast-enhanced magnetic resonance imaging (3D DCE-MRI) has been proposed for the assessment of regional perfusion. The aim of this work was the implementation of an algorithm for a 3D parametric visualization of lung perfusion using different cutting planes and volume rendering. Our implementation was based on 3D DCE-MRI data of the lungs of five patients and five healthy volunteers. Using the indicator dilution theory, the regional perfusion parameters, tissue blood flow, blood volume and mean transit time were calculated. Due to the required temporal resolution, the volume elements of dynamic MR data sets show a reduced spatial resolution in the z-direction. Therefore, perfusion parameter volumes were interpolated. Linear interpolation and a combination of linear and nearest-neighbor interpolation were evaluated. Additionally, ray tracing was applied for 3D visualization. The linear interpolation algorithm caused interpolation errors at the lung borders. Using the combined interpolation, visualization of perfusion information in arbitrary cutting planes and in 3D using volume rendering was possible. This facilitated the localization of perfusion deficits compared with the coronal orientated source data. The 3D visualization of perfusion parameters using a combined interpolation algorithm is feasible. Further studies are required to evaluate the additional benefit from the 3D visualization.  相似文献   

19.

Purpose

To evaluate the effectiveness of three‐dimensional (3D) dynamic time‐resolved contrast‐enhanced MRA (TR‐CE‐MRA) using a combination of a parallel imaging technique (ASSET: array spatial sensitivity encoding technique) and a time‐resolved method (TRICKS: time‐resolved imaging of contrast kinetics) and to compare it with 3D dynamic TR‐CE‐MRA using ASSET alone in the assessment of intracranial arteriovenous malformations (AVMs).

Materials and Methods

Twenty consecutive patients with angiographically confirmed AVMs were investigated using both 3D dynamic TR‐CE‐MRA techniques. Examinations were compared with respect to image quality, spatial resolution, number and type of feeders and drainers, nidus size, presence of early venous filling and temporal resolution. Digital subtraction angiography was used as standard of reference.

Results

The higher temporal and spatial resolution of 3D dynamic TR‐CE‐MRA TRICKS ASSET allowed a better assessment of intracranial vascular malformations, namely better depiction of feeders, drainers and better detection of early venous drainage. There was no significant difference between them in terms of nidus size.

Conclusion

3D dynamic TR‐CE‐MRA combining parallel imaging and a time‐resolved method with subsecond and submillimeter resolution could become the first‐line investigation technique in both diagnosis and follow‐up of intracranial AVMs. J. Magn. Reson. Imaging 2009;29:7–12. © 2008 Wiley‐Liss, Inc.  相似文献   

20.
PURPOSE: To assess the impact of parallel imaging algorithms on image quality and volumetric accuracy of CINE magnetic resonance imaging (MRI) with high temporal and spatial resolution using a new 32-channel dedicated cardiac phased array coil. MATERIALS AND METHODS: Fourteen individuals underwent steady-state free precession (SSFP) CINE MRI using a 32-element phased-array coil and parallel imaging acceleration using spatiotemporal sensitivity encoding (TSENSE). Acquisition acceleration ranged from R = 2 to 7. In conjunction with data extracted from phantom measurements, contrast-to-noise ratio (CNR) performance was evaluated for each acceleration factor and subjective image quality was evaluated by two independent readers. In addition, volumetric assessment was performed for each acceleration factor based on a single breath-hold multi-slice data acquisition. Results were compared to nonTSENSE measurements. RESULTS: CNR for non-accelerated CINE (R = 1) was 45.7 +/- 12.8 and showed a constant decrease with increase in acceleration of 51% at R = 4 and 86% at R = 7. CNR losses accompanied reductions in subjective image quality. Volumetric evaluation was accurate for R 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号