首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
大孔吸附树脂分离纯化白花蛇舌草总黄酮的研究   总被引:4,自引:1,他引:3  
目的 优选大孔吸附树脂法分离纯化白花蛇舌草总黄酮的最佳工艺条件和参数.方法 以白花蛇舌草总黄酮含量及回收率为考察指标,采用单因素考察法对树脂种类、上样溶液浓度、pH值、上样量、洗脱剂浓度、用量和流速等进行考察.结果 最佳纯化工艺参数为:按0.4 g/mL(生药量/树脂量)的上样量配制浓度为0.2 g/mL的上样溶液,调其pH值为5.0,上AB-8型大孔吸附树脂柱,静置1 h,采用去离子水以3 BV/h的流速,洗脱8 BV,然后再用5 BV的70%乙醇洗脱,流速为2 BV/h,所得精制品中总黄酮含量为38.9%,转移率高达80%.结论 AB-8型大孔吸附树脂对白花蛇舌草总黄酮的纯化效果较好,适合工业化大生产.  相似文献   

2.
大孔吸附树脂法富集人参叶中人参总皂苷的工艺研究   总被引:4,自引:1,他引:4  
目的研究NKA型树脂富集人参叶中人参总皂苷的工艺条件及参数。方法以人参皂苷Rg1和Re含量之和为考察指标,优选NKA型树脂富集人参总皂苷的最佳条件。结果取20 mL树脂,树脂径高比为1∶8,上样液浓度为0.5 g/mL。最大上样量为36 mL,吸附和洗脱流速均为2倍柱体积/h,上样吸附后,用水洗4倍柱体积后,用50%乙醇洗脱,用量为6倍柱体积。结论此法可较好地富集人参叶中的人参总皂苷。  相似文献   

3.
AB-8大孔树脂对白芍提取液的最佳动态纯化条件   总被引:1,自引:0,他引:1  
目的优选出AB-8型大孔树脂对芍药苷的最佳动态吸附及解吸条件。方法采用正交试验法优选AB-8大孔树脂对白芍提取物的最佳动态吸附工艺,采用单因素实验优选解吸纯化的最佳工艺。结果通过对数据的直观分析和方差分析得出上柱药液浓度及径高比对吸附量有显著影响,最佳上样条件为A3B1C2,即上柱液浓度为0.5g/mL,径高比为1:8,流速为2mL/min为最佳上样条件,采用30%的乙醇洗脱杂质,采用80%的乙醇富集芍药苷。结论采用不同浓度的乙醇作洗脱剂、AB-8大孔树脂在筛选出的最佳条件下,芍药苷与杂质的分离较好,提取效率高。  相似文献   

4.
应用大孔吸附树脂吸附分离技术制备蒲黄总黄酮的研究   总被引:17,自引:0,他引:17  
考察13种大孔吸附树脂对蒲黄总黄酮的吸附分离性能,确定大孔吸附树脂吸附分离蒲黄总黄酮的工艺条件.以总黄酮吸附量、总黄酮含量和总黄酮回收率为考察指标,测定总黄酮含量采用紫外-可见分光光度法,考察泄露曲线采用薄层扫描法.结果表明AB-8型树脂对蒲黄总黄酮有良好吸附分离性能,其吸附分离蒲黄总黄酮的工艺条件为:蒲黄提取物上样浓度为20 mg/mL,蒲黄总黄酮最大吸附量为9.36 mg/mL,吸附流速为2 mL/min,洗脱剂为50%乙醇,洗脱剂用量为7倍量树脂体积,洗脱速度为2 mL/min,树脂可重复使用3次.AB-8型大孔吸附树脂在所确定的工艺条件下,可较好地吸附分离蒲黄总黄酮.其乙醇洗脱物中蒲黄总黄酮含量达45%以上,总黄酮回收率达85%以上.  相似文献   

5.
目的 筛选黄柏总生物碱大孔树脂纯化工艺。方法 对黄柏总生物碱提取液纯化所用大孔树脂型号、洗脱剂体积分数、大孔树脂吸附容量、上柱药液pH值、上柱速度、洗脱剂用量、洗脱剂流速、洗脱液浓缩质量浓度、洗脱液浓缩后pH值进行考察。结果 黄柏总生物碱大孔树脂纯化最佳工艺:大孔树脂载样量为AB-8大孔树脂∶黄柏药材=1∶1.2(g/g),上样速度为2 BV/h,50%乙醇洗脱,速度1.5 BV/h,收集6BV洗脱液,回收乙醇,浓缩至1.5 g生药/mL,其相对密度为1.015~1.017(70 ℃) ,放置室温,浓盐酸调节pH 0.2~0.4,冷藏放置12 h,离心,沉淀低温减压干燥,得黄柏总生物碱。提取物中盐酸小檗碱质量分数达到57.38%,黄柏总生物碱质量分数达到59.04%。结论 该工艺稳定,质量可控,可用于柏总生物碱纯化的产业化生产。  相似文献   

6.
三七提取液中三七总皂苷的分离纯化工艺研究   总被引:11,自引:0,他引:11  
目的研究影响分离纯化三七总皂苷的几个主要影响因素,确立三七总皂苷分离纯化工艺。方法在确立三七总皂苷测定方法的基础上,采用HPD-100型大孔吸附树脂,以每ml含0.4 g三七药材的提取液为上柱液,上柱量为1.5倍柱体积,并以1柱体积/h的速度通过树脂柱,采用大孔吸附树脂富集分离纯化三七总皂苷。结果用70%乙醇为洗脱剂,2-3倍柱体积/h的速度洗脱,用量为5-6倍柱体积时,三七总皂苷的洗脱率达98%以上,纯度为79.6%,精制度为241%。结论HPD-100大孔吸附树脂可用于富集、分离纯化三七总皂苷,效果较好。  相似文献   

7.
目的:研究大孔吸附树脂分离纯化脑得生丸中红花的工艺,确定最佳工艺条件和参数。方法:红花水提取液浓缩后过大孔吸附树脂柱,以羟基红花黄色素A的含量为考察指标,对影响羟基红花黄色素A分离纯化的工艺参数进行考察。结果:HPD-100型树脂为红花最佳分离纯化树脂,其分离纯化红花的最佳工艺条件:吸附流速1mL·min-1,最大上样量为5倍树脂柱体积,洗脱剂为30%乙醇,洗脱流速为3mL·min-1等。结论:HPD-100型树脂在所确定的工艺条件下能很好地分离纯化羟基红花黄色素A,为纯化红花的最佳工艺。  相似文献   

8.
目的考察11种大孔吸附树脂对肿节风总黄酮的吸附分离性能。方法采用静态吸附分离法确定适合的大孔吸附树脂;采用动态吸附分离法确定分离条件。以总黄酮吸附量、总黄酮质量分数和回收率为考察指标,采用紫外分光光度法测定总黄酮。结果HPD 400大孔吸附树脂对肿节风总黄酮有良好的吸附分离性能,其分离肿节风总黄酮的工艺条件为:肿节风总黄酮上样质量浓度为10 m g/mL,肿节风总黄酮最大吸附量为9.5 m g/mL,吸附体积流量为2.5 mL/m in,洗脱剂为70%乙醇,洗脱剂用量为3倍柱体积,树脂可重复使用3次。结论采用HPD 400大孔吸附树脂吸附分离肿节风总黄酮简便有效,总黄酮回收率为85%左右。  相似文献   

9.
目的:优选大孔吸附树脂纯化鹿衔草总黄酮的最佳工艺。方法:以总黄酮比吸附量、洗脱率为指标,采用静态吸附法对8种大孔吸附树脂进行筛选;以总黄酮吸附量和纯度为指标,进行吸附条件的优化;以总黄酮洗脱率和纯度为指标,对洗脱条件进行考察。结果:选用L S A‐40型大孔吸附树脂,其吸附条件为上样液浓缩至1∶10(g∶mL),上样流速2.5 BV/h ,树脂柱径高比1∶6,上样量按每毫升树脂处理1.0g鹿衔草的提取液,洗脱条件为上样后用5BV水洗脱除去水溶性杂质,2.5BV70%乙醇洗脱,洗脱流速2 B V/h ,纯化后总黄酮的纯度达到22%。结论:该纯化工艺稳定可行,可用于工业生产。  相似文献   

10.
目的 筛选出一种高效实用的分离纯化连翘酯苷A的大孔吸附树脂,并使分离纯化工艺达到最优化。 方法 以连翘酯苷A质量浓度为指标,考察多种型号大孔吸附树脂纯化连翘酯苷A的吸附及洗脱条件。 结果AB-8型大孔吸附树脂为分离纯化连翘酯苷A的最佳大孔吸附树脂,最佳工艺为:上样质量浓度为生药0.3 g/mL,最大上样量为树脂的2倍体积,洗脱剂为30%乙醇,洗脱剂的用量为6倍量树脂柱体积。 结论 AB-8型大孔吸附树脂能显著提高连翘酯苷A的质量分数,具有吸附量较大,洗脱率高,经济环保等优点,适合于规模化生产。  相似文献   

11.
大孔树脂分离纯化黄连总生物碱型号的筛选   总被引:1,自引:0,他引:1  
【目的】从众多的树脂型号中筛选出分离纯化黄连总生物碱效果较好的一种。【方法】选用AB-8、HP20、LD605、ADS-3、ADS-5、D151、DA-201、XAD7、NKA-9 9种树脂,以黄连总生物碱的吸附率和解吸率为指标进行初筛,并以盐酸小檗碱的解吸率为指标进行进一步的筛选。【结果】9种树脂中,ADS-3树脂的吸附和解吸能力均较强,总生物碱的吸附率达到97.26%,解吸率达到84.82%-盐酸小檗碱的解吸量达到9.311mg、【结论】ADS-3树脂对总生物碱及盐酸小檗碱的吸附和解吸性能都较好,可用于黄连总生物碱的分离纯化。  相似文献   

12.
大孔树脂对草乌生物碱的吸附性能及提纯工艺   总被引:19,自引:0,他引:19  
目的 研究大孔树脂对草乌生物碱的吸附性能及提纯工艺。方法 采用酸性染料比色法测定总生物碱含量。结果 正交试验优选的吸附条件为:SIP1300大孔树脂优于AB-8大孔树脂;原液浓度为0.2g生药/mL,pH=5,流速为4BV(柱床体积)/h。洗脱液采用80%乙醇时,解吸效果较好。结论 大孔树脂适用于草乌生物碱的提纯。  相似文献   

13.
AB-8大孔吸附树脂对甘草总黄酮的吸附   总被引:2,自引:0,他引:2  
目的 考查AB-8树脂对甘草黄酮的吸附和解吸性能及影响因素.方法 用紫外分光光度法测定甘草总黄酮含量,用树脂吸附量、上样溶液体积为指标考查AB-8树脂对甘草黄酮的吸附行为.结果 确定合适的上样条件为:pH=5,上样液中总黄酮的浓度为0.85 mg/ml,上样流速为3 BV/h;合适的洗脱条件为:60%的乙醇,流速为3 BV/h.结论 用AB-8大孔吸附树脂对甘草黄酮有较好的吸附和解吸性能.  相似文献   

14.
积雪草总苷大孔树脂纯化工艺研究   总被引:2,自引:0,他引:2  
目的:研究大孔树脂分离纯化积雪草总苷过程,优化相关工艺条件和参数。方法:考察HPD100、HPD200、HPD500、AB-8、D101五种大孔树脂对积雪草总苷的动态、静态吸附量和解吸率选定型号,以积雪草总苷为指标考察纯化工艺参数。结果:优选确定AB-8型大孔树脂,上样生药质量浓度为0.0625 g/ml,上样量中生药与树脂比为1:2(g:ml),洗脱剂为70%乙醇,洗脱体积为2BV,验证试验平均洗脱率为81.27%,洗脱后积雪草总苷纯度为55.27%。结论:AB-8型大孔树脂适合积雪草总苷的分离纯化  相似文献   

15.
目的对野葛提取液中总黄酮的纯化分离进行了研究,旨在促进野葛药用价值的进一步发展。方法通过对5种不同型号的大孔树脂:HPD-750、HPD-600、AB-8、NKA-Ⅱ、ADS-17进行静态吸附解吸试验,筛选出AB-8型树脂进行动态试验,确定最佳纯化工艺条件。结果所得最佳条件为:上样液浓度9.82 mg/mL,上样液体积2BV,洗脱剂乙醇体积分数70%,洗脱pH 5~6,在此条件下吸附率可达91.21%,解吸率可达93.61%。结论 AB-8型树脂有较好的综合性能,可用于野葛提取液总黄酮的纯化。  相似文献   

16.
目的研究大孔吸附树脂分离和纯化黄芩总黄酮的工艺条件。方法以总黄酮的吸附量和解吸率为考察指标,对8种不同类型的树脂进行评价。并对优选出的大孔树脂纯化黄芩总黄酮时的工艺条件及参数进行研究。结果AB-8大孔吸附树脂的动态吸附分离效果最好,上样药液浓度为80 mg药材/mL,径高比为1∶8,吸附流速为1 BV/h,除杂溶剂为水,除杂体积为4 BV,除杂流速为1 BV/h,洗脱溶剂为50%乙醇,洗脱体积为8 BV,洗脱流速为1 BV/h。通过大孔吸附树脂分离纯化后,终产品中总黄酮的纯度为88.48%。结论该工艺合理、可行,适合工业生产。  相似文献   

17.
大孔吸附树脂对葛根总黄酮的吸附研究   总被引:5,自引:0,他引:5  
目的:研究不同大孔树脂对葛根黄酮的吸附及解吸性能,为分离纯化葛根总黄酮提供选择树脂的依据。方法:以葛根总黄酮和葛根素为指标,考察不同大孔树脂对葛根总黄酮的比吸附量和解吸率。结果:对葛根总黄酮的比吸附量超过100mg/g的树脂有S-8、AB-8、HPDl00和HP-20,而解吸率超过95%的有AB-8、D101和HP-20。结论:不同树脂对葛根总黄酮的吸附及解吸有很大差异,综合比吸附量及解吸率结果,AB-8和HP-20为分离纯化葛根总黄酮的最佳吸附剂。  相似文献   

18.
大孔吸附树脂纯化黄连总生物碱工艺研究   总被引:1,自引:0,他引:1  
目的研究大孔吸附树脂分离和纯化黄连总生物碱的工艺条件。方法以总生物碱和小檗碱的吸附量和解吸率为考察指标,对9种不同类型的树脂进行评价。并对优选出的大孔树脂纯化黄连总黄生物碱时的工艺条件及参数进行研究。结果 D141大孔吸附树脂的动态吸附分离效果最好,上样药液浓度为30 mg药材/mL,径高比为1∶8,吸附流速为2 BV/h,除杂溶剂为水,除杂体积为2 BV,除杂流速为1 BV/h,洗脱溶剂为50%乙醇,洗脱体积为4 BV,洗脱流速为3 BV/h。通过大孔吸附树脂分离纯化后,终产品中总生物碱的纯度为67.71%。结论该工艺合理、可行,适合工业生产。  相似文献   

19.
大孔树脂对山葡萄籽多酚提取物的纯化工艺优选   总被引:1,自引:0,他引:1  
目的:探讨AB-8大孔树脂对山葡萄籽多酚提取物的纯化工艺参数,确定最佳纯化工艺条件,为山葡萄籽的进一步开发利用提供技术参考。方法:采用酿酒后的山葡萄籽提取物为原料,检测山葡萄籽多酚浓度并计算多酚的吸附率和解吸率;采用AB-8大孔树脂纯化山葡萄籽多酚提取物,通过吸附-解吸性能考察优选山葡萄籽粗提物的最佳纯化工艺。对比山葡萄籽提取物纯化前后的多酚浓度,验证纯化工艺效果。结果:AB-8大孔吸附树脂对山葡萄籽多酚粗提物的吸附率和解吸率分别为90.48%和71.42%,吸附性能和解吸性能良好。确定最佳吸附条件为,样品溶液浓度10g·L-1,上样流速3 mL·min-1;最佳解吸条件为,洗脱液浓度60%,洗脱流速2 mL·min-1,洗脱体积为2倍柱体积。在该工艺条件下,纯化后山葡萄籽多酚浓度从35.02%提高到88.80%。结论:AB-8大孔树脂纯化山葡萄籽多酚效果良好,值得推广应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号