首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 231 毫秒
1.
BACKGROUND: This study was designed to identify neuroanatomical locations of propofol's effects on episodic memory by producing minimal and maximal memory impairment during conscious sedation. Drug-related changes in regional cerebral blood flow (rCBF) were located in comparison with rCBF increases during a simple word memory task. METHODS: Regional cerebral blood flow changes were assessed in 11 healthy volunteers using H215O positron emission tomography (PET) and statistical parametric mapping (SPM99) at 600 and 1,000 ng/ml propofol target concentrations. Study groups were based on final recognition scores of auditory words memorized during PET scanning. rCBF changes during propofol administration were compared with those during the word memory task at baseline. RESULTS: Nonoverlapping memory effects were evident: low (n = 4; propofol concentration 523 +/- 138 ng/ml; 44 +/- 13% decrement from baseline memory) and high (n = 7; 829 +/- 246 ng/ml; 87 +/- 6% decrement from baseline) groups differed in rCBF reductions primarily in right-sided prefrontal and parietal regions, close to areas activated in the baseline memory task, particularly R dorsolateral prefrontal cortex (Brodmann area 46; x, y, z = 51, 38, 22). The medial temporal lobe region exhibited relative rCBF increases. CONCLUSIONS: As amnesia becomes maximal, rCBF reductions induced by propofol occur in brain regions identified with working memory processes. In contrast, medial temporal lobe structures were resistant to the global CBF decrease associated with propofol sedation. The authors postulate that the episodic memory effect of propofol is produced by interference with distributed cortical processes necessary for normal memory function rather than specific effects on medial temporal lobe structures.  相似文献   

2.
Background: Anesthetics may affect the regional cerebral blood flow (rCBF) response associated with increased brain activity in humans. rCBF was measured as auditory stimulus rate was increased during propofol and thiopental administration.

Methods: After informed consent, 10 right-handed male volunteer participants (aged 33.5 +/- 10.4 yr, weighing 74.5 +/- 8.4 kg) received thiopental (n = 4) or propofol (n = 6) intravenously at stepwise target concentrations of propofol 1.2 and 2.5-3, or thiopental 4 and 7-9 [mu]g/ml, representing sedative and hypnotic drug concentrations. The latter made volunteers unresponsive to voice or mild stimulation. Quantitative positron emission tomographic brain images were obtained at 0, 20, and 40 auditory words per minute at each drug concentration. Using SPM99 analysis, 10-mm spherical regions of interest were identified by peak covariation of word rate with rCBF across all conditions and drug concentrations. Individual mean rCBF responses in these and primary auditory cortex (Heschl's gyri) were obtained.

Results: Significant increases in rCBF with auditory word rate occurred in temporal lobes bilaterally at baseline (significance, T = 4.95). There was no change in this response during sedation (T = 5.60). During unresponsiveness seven of 10 participants had a diminished response in the left temporal lobe (T = 3.18). Global CBF, corrected for changes in Pco2 (3% [middle dot]mmHg Pco2-1), was reduced 15% by sedation and 27% during unresponsiveness.  相似文献   


3.
BACKGROUND: Anesthetics may affect the regional cerebral blood flow (rCBF) response associated with increased brain activity in humans. rCBF was measured as auditory stimulus rate was increased during propofol and thiopental administration. METHODS: After informed consent, 10 right-handed male volunteer participants (aged 33.5 +/- 10.4 yr, weighing 74.5 +/- 8.4 kg) received thiopental (n = 4) or propofol (n = 6) intravenously at stepwise target concentrations of propofol 1.2 and 2.5-3, or thiopental 4 and 7-9 microg/ml, representing sedative and hypnotic drug concentrations. The latter made volunteers unresponsive to voice or mild stimulation. Quantitative positron emission tomographic brain images were obtained at 0, 20, and 40 auditory words per minute at each drug concentration. Using SPM99 analysis, 10-mm spherical regions of interest were identified by peak covariation of word rate with rCBF across all conditions and drug concentrations. Individual mean rCBF responses in these and primary auditory cortex (Heschl's gyri) were obtained. RESULTS: Significant increases in rCBF with auditory word rate occurred in temporal lobes bilaterally at baseline (significance, T = 4.95). There was no change in this response during sedation (T = 5.60). During unresponsiveness seven of 10 participants had a diminished response in the left temporal lobe (T = 3.18). Global CBF, corrected for changes in PCO2 (3% .mmHg PCO2), was reduced 15% by sedation and 27% during unresponsiveness. CONCLUSION: The presence of propofol or thiopental does not affect the rCBF response to increasing stimulus rate during consciousness. Thus, changes in rCBF activation patterns with sedative concentrations of these drugs represent effects on brain activity itself. The neuroanatomical targets of drug effect on memory and attention may be revealed by changes in rCBF patterns associated with these cognitive activities.  相似文献   

4.
Background: Anesthetic agents, especially volatile anesthetics and nitrous oxide (N2O), are suspected to perturb cerebral homeostasis and vascular reactivity. The authors quantified the effects of sevoflurane and propofol as sole anesthetics and in combination with N2O on regional cerebral blood flow (rCBF), metabolic rate of oxygen (rCMRO2), and blood volume (rCBV) in the living human brain using positron emission tomography.

Methods: 15O-labeled water, oxygen, and carbon monoxide were used as positron emission tomography tracers to determine rCBF, rCMRO2 and rCBV, respectively, in eight healthy male subjects during the awake state (baseline) and at four different anesthetic regimens: (1) sevoflurane alone, (2) sevoflurane plus 70% N2O (S+N), (3) propofol alone, and (4) propofol plus 70% N2O (P+N). Sevoflurane and propofol were titrated to keep a constant hypnotic depth (Bispectral Index 40) throughout anesthesia. End-tidal carbon dioxide was strictly kept at preinduction level.

Results: The mean +/- SD end-tidal concentration of sevoflurane was 1.5 +/- 0.3% during sevoflurane alone and 1.2 +/- 0.3% during S+N (P < 0.001). The measured propofol concentration was 3.7 +/- 0.7 [mu]g/ml during propofol alone and 3.5 +/- 0.7 [mu]g/ml during P+N (not significant). Sevoflurane alone decreased rCBF in some (to 73-80% of baseline, P < 0.01), and propofol in all brain structures (to 53-70%, P < 0.001). Only propofol reduced also rCBV (in the cortex and cerebellum to 83-86% of baseline, P < 0.05). Both sevoflurane and propofol similarly reduced rCMRO2 in all brain areas to 56-70% and 50-68% of baseline, respectively (P < 0.05). The adjunct N2O counteracted some of the rCMRO2 and rCBF reductions caused by drugs alone, and especially during S+N, a widespread reduction (P < 0.05 for all cortex and cerebellum vs. awake) in the oxygen extraction fraction was seen. Adding of N2O did not alter the rCBV effects of sevoflurane and propofol alone.  相似文献   


5.
Background: Changes in regional cerebral blood flow (rCBF) determined with H215 O positron emission tomographic imaging can identify neural circuits affected by centrally acting drugs.

Methods: Fourteen volunteers received one of two midazolam infusions adjusted according to electroencephalographic response. Low or high midazolam effects were identified using post-hoc spectral analysis of the electroencephalographic response obtained during positron emission tomographic imaging based on the absence or presence of 14-Hz spindle activity. The absolute change in global CBF was calculated, and relative changes in rCBF were determined using statistical parametric mapping with localization to standard stereotactic coordinates.

Results: The low-effect group received 7.5 +/- 1.7 mg midazolam (serum concentrations, 74 +/- 24 ng/ml), and the high-effect group received 9.7 +/- 1.3 mg midazolam (serum concentrations, 129 +/- 48 ng/ml). Midazolam decreased global CBF by 12% from 39.2 +/- 4.1 to 34.4 +/- 6.1 ml [center dot] 100 g sup -1 [center dot] min sup -1 (P < 0.02 at a partial pressure of carbon dioxide of 40 mmHg). The rCBF changes in the low-effect group were a subset of the high-effect group. Decreased rCBF (P < 0.001) occurred in the insula, the cingulate gyrus, multiple areas in the prefrontal cortex, the thalamus, and parietal and temporal association areas. Asymmetric changes occurred, particularly in the low-effect group, and were more significant in the left frontal cortex and thalamus and the right insula. Relative rCBF was increased in the occipital areas.  相似文献   


6.
Background: Animal experiments have demonstrated neuroprotection by ketamine. However, because of its propensity to increase cerebral blood flow, metabolism, and intracranial pressure, its use in neurosurgery or trauma patients has been questioned.

Methods: 15O-labeled water, oxygen, and carbon monoxide were used as positron emission tomography tracers to determine quantitative regional cerebral blood flow (rCBF), metabolic rate of oxygen (rCMRO2), and blood volume (rCBV), respectively, on selected regions of interest of nine healthy male volunteers at baseline and during three escalating concentrations of ketamine (targeted to 30, 100, and 300 ng/ml). In addition, voxel-based analysis for relative changes in rCBF and rCMRO2 was performed using statistical parametric mapping.

Results: The mean +/- SD measured ketamine serum concentrations were 37 +/- 8, 132 +/- 19, and 411 +/- 71 ng/ml. Mean arterial pressure was slightly elevated (maximally by 15.3%, P < 0.001) during ketamine infusion. Ketamine increased rCBF in a concentration-dependent manner. In the region-of-interest analysis, the greatest absolute changes were detected at the highest ketamine concentration level in the anterior cingulate (38.2% increase from baseline, P < 0.001), thalamus (28.5%, P < 0.001), putamen (26.8%, P < 0.001), and frontal cortex (25.4%, P < 0.001). Voxel-based analysis revealed marked relative rCBF increases in the anterior cingulate, frontal cortex, and insula. Although absolute rCMRO2 was not changed in the region-of-interest analysis, subtle relative increases in the frontal, parietal, and occipital cortices and decreases predominantly in the cerebellum were detected in the voxel-based analysis. rCBV increased only in the frontal cortex (4%, P = 0.022).  相似文献   


7.
Background: The authors evaluated the effects of midazolam, propofol, thiopental, and fentanyl on volunteer participants' memory for words and pictures at equisedative concentrations.

Methods: Sixty-seven healthy volunteers were randomized to receive intravenous infusions of midazolam (n = 11), propofol (n = 11), thiopental (n = 10), fentanyl with ondansetron pretreatment (n = 11), ondansetron alone (n = 8), or placebo (n = 16) in a double-blind design. Three increasing and then two decreasing sedative concentrations were achieved by computer-controlled infusion in each volunteer. Measures of sedation, memory, and drug concentration were obtained at each target concentration. Drug concentrations were normalized to equisedative effects using both Emax and logistic regression methods of pharmacodynamic modeling. The serum concentrations at 50% memory effect (Cp50s) were determined using four different memory end points. The relative potencies compared with midazolam for memory impairment were determined.

Results: Equisedative concentrations were midazolam, 64.5 +/- 9.4 ng/ml; propofol, 0.7 +/- 0.2 micro gram/ml; thiopental, 2.9 +/- 1.0 micro gram/ml; and fentanyl, 0.9 +/- 0.2 ng/ml. The Cp50s for 50% loss of memory for words were midazolam, 56 +/- 4 ng/ml; propofol, 0.62 +/- 0.04 micro gram/ml; thiopental, 4.5 +/- 0.3 micro gram/ml; and fentanyl, 3.2 +/- 0.4 ng/ml. Compared with midazolam, relative potencies (with 95% confidence intervals) were propofol, 0.96 (0.44-1.78); thiopental, 0.76 (0.52-0.94); and fentanyl, 0.34 (0.05-0.76). Large effects on memory were only produced by propofol and midazolam.  相似文献   


8.
《Anesthesiology》2008,109(2):213-224
Background: Propofol may produce amnesia by affecting encoding. The hypothesis that propofol weakens encoding was tested by measuring regional cerebral blood flow during verbal encoding.

Methods: Seventeen volunteer participants (12 men; aged 30.4 +/- 6.5 yr) had regional cerebral blood flow measured using H2O15 positron emission tomography during complex and simple encoding tasks (deep vs. shallow level of processing) to identify a region of interest in the left inferior prefrontal cortex (LIPFC). The effect of either propofol (n = 6, 0.9 [mu]g/ml target concentration), placebo with a divided attention task (n = 5), or thiopental at sedative doses (n = 6, 3 [mu]g/ml) on regional cerebral blood flow activation in the LIPFC was tested. The divided attention task was expected to decrease activation in the LIPFC.

Results: Propofol did not impair encoding performance or reaction times, but impaired recognition memory of deeply encoded words 4 h later (median recognition of 35% [interquartile range, 17-54%] of words presented during propofol vs. 65% [38-91%] before drug; P < 0.05). Statistical parametric mapping analysis identified a region of interest of 6.6 cm2 in the LIPFC (T = 7.44, P = 0.014). Regional cerebral blood flow response to deep encoding was present in this region of interest in each group before drug (T > 4.41, P < 0.04). During drug infusion, only the propofol group continued to have borderline significant activation in this region (T = 4.00, P = 0.063).  相似文献   


9.
BACKGROUND: Anesthetic agents, especially volatile anesthetics and nitrous oxide (N2O), are suspected to perturb cerebral homeostasis and vascular reactivity. The authors quantified the effects of sevoflurane and propofol as sole anesthetics and in combination with N2O on regional cerebral blood flow (rCBF), metabolic rate of oxygen (rCMRO2), and blood volume (rCBV) in the living human brain using positron emission tomography. METHODS: 15O-labeled water, oxygen, and carbon monoxide were used as positron emission tomography tracers to determine rCBF, rCMRO2 and rCBV, respectively, in eight healthy male subjects during the awake state (baseline) and at four different anesthetic regimens: (1) sevoflurane alone, (2) sevoflurane plus 70% N2O (S+N), (3) propofol alone, and (4) propofol plus 70% N2O (P+N). Sevoflurane and propofol were titrated to keep a constant hypnotic depth (Bispectral Index 40) throughout anesthesia. End-tidal carbon dioxide was strictly kept at preinduction level. RESULTS: The mean +/- SD end-tidal concentration of sevoflurane was 1.5 +/- 0.3% during sevoflurane alone and 1.2 +/- 0.3% during S+N (P < 0.001). The measured propofol concentration was 3.7 +/- 0.7 microg/ml during propofol alone and 3.5 +/- 0.7 microg/ml during P+N (not significant). Sevoflurane alone decreased rCBF in some (to 73-80% of baseline, P < 0.01), and propofol in all brain structures (to 53-70%, P < 0.001). Only propofol reduced also rCBV (in the cortex and cerebellum to 83-86% of baseline, P < 0.05). Both sevoflurane and propofol similarly reduced rCMRO2 in all brain areas to 56-70% and 50-68% of baseline, respectively (P < 0.05). The adjunct N2O counteracted some of the rCMRO2 and rCBF reductions caused by drugs alone, and especially during S+N, a widespread reduction (P < 0.05 for all cortex and cerebellum vs. awake) in the oxygen extraction fraction was seen. Adding of N2O did not alter the rCBV effects of sevoflurane and propofol alone. CONCLUSIONS: Propofol reduced rCBF and rCMRO2 comparably. Sevoflurane reduced rCBF less than propofol but rCMRO2 to an extent similar to propofol. These reductions in flow and metabolism were partly attenuated by adjunct N2O. S+N especially reduced the oxygen extraction fraction, suggesting disturbed flow-activity coupling in humans at a moderate depth of anesthesia.  相似文献   

10.
Background: Animal studies have demonstrated a strong neuroprotective property of xenon. Its usefulness in patients with cerebral pathology could be compromised by deleterious effects on regional cerebral blood flow (rCBF).

Methods: 15O-labeled water was used to determine rCBF in nine healthy male subjects at baseline and during 1 minimum alveolar concentration (MAC) of xenon (63%). Anesthesia was based solely on xenon. Absolute changes in rCBF were quantified using region-of-interest analysis and voxel-based analysis.

Results: Mean arterial blood pressure and arterial partial pressure for carbon dioxide remained unchanged. The mean (+/- SD) xenon concentration during anesthesia was 65.2 +/- 2.3%. Xenon anesthesia decreased absolute rCBF by 34.7 +/- 9.8% in the cerebellum (P < 0.001), by 22.8 +/- 10.4% in the thalamus (P = 0.001), and by 16.2 +/- 6.2% in the parietal cortex (P < 0.001). On average, xenon anesthesia decreased absolute rCBF by 11.2 +/- 8.6% in the gray matter (P = 0.008). A 22.1 +/- 13.6% increase in rCBF was detected in the white matter (P = 0.001). Whole-brain voxel-based analysis revealed widespread cortical reductions and increases in rCBF in the precentral and postcentral gyri.  相似文献   


11.
Background: The precise neural mechanisms of propofol anesthesia in humans are still unknown. The authors examined the acute effects of propofol on regional cerebral blood flow (rCBF) using positron emission tomography in patients with severe depression.

Methods: In six severely depressed patients (mean age, 55.0 yr) scheduled for electroconvulsive therapy, anesthetic levels were monitored by electroencephalography, and rCBF was serially quantified in the awake, sedated, and anesthetized states. The authors used high-resolution positron emission tomography with 15O-labeled water and statistical parametric mapping 99 for imaging and analysis of the data.

Results: Global cerebral blood flow showed sharp decreases from the awake level during the administration of propofol, decreasing 26.8% in the sedated state and 54.4% in the anesthetized state. Moreover, a dose effect was seen in both parietal cortices and the left lateral prefrontal region with larger regions of relative decrease in rCBF at higher propofol doses. At the higher dose, the values of rCBF in the pulvinar nucleus of the thalamus, the pontine tegmentum, and the cerebellar cortex were also affected. Meanwhile, there were few changes of relative rCBF in the basal frontal lobes during both sedated and anesthetized states.  相似文献   


12.
BACKGROUND: Animal experiments have demonstrated neuroprotection by ketamine. However, because of its propensity to increase cerebral blood flow, metabolism, and intracranial pressure, its use in neurosurgery or trauma patients has been questioned. METHODS: 15O-labeled water, oxygen, and carbon monoxide were used as positron emission tomography tracers to determine quantitative regional cerebral blood flow (rCBF), metabolic rate of oxygen (rCMRO2), and blood volume (rCBV), respectively, on selected regions of interest of nine healthy male volunteers at baseline and during three escalating concentrations of ketamine (targeted to 30, 100, and 300 ng/ml). In addition, voxel-based analysis for relative changes in rCBF and rCMRO2 was performed using statistical parametric mapping. RESULTS: The mean +/- SD measured ketamine serum concentrations were 37 +/- 8, 132 +/- 19, and 411 +/- 71 ng/ml. Mean arterial pressure was slightly elevated (maximally by 15.3%, P < 0.001) during ketamine infusion. Ketamine increased rCBF in a concentration-dependent manner. In the region-of-interest analysis, the greatest absolute changes were detected at the highest ketamine concentration level in the anterior cingulate (38.2% increase from baseline, P < 0.001), thalamus (28.5%, P < 0.001), putamen (26.8%, P < 0.001), and frontal cortex (25.4%, P < 0.001). Voxel-based analysis revealed marked relative rCBF increases in the anterior cingulate, frontal cortex, and insula. Although absolute rCMRO2 was not changed in the region-of-interest analysis, subtle relative increases in the frontal, parietal, and occipital cortices and decreases predominantly in the cerebellum were detected in the voxel-based analysis. rCBV increased only in the frontal cortex (4%, P = 0.022). CONCLUSIONS: Subanesthetic doses of ketamine induced a global increase in rCBF but no changes in rCMRO2. Consequently, the regional oxygen extraction fraction was decreased. Disturbed coupling of cerebral blood flow and metabolism is, however, considered unlikely because ketamine has been previously shown to increase cerebral glucose metabolism. Only a minor increase in rCBV was detected. Interestingly, the most profound changes in rCBF were observed in structures related to pain processing.  相似文献   

13.
Background: Due to a few reports of cerebral dysfunction in connection with isoflurane-induced hypotension and concomitant hypocapnia, positron emission tomography (PET) was used to measure cerebral oxygenation and blood flow during similar conditions with isoflurane or propofol.
Methods: The short-lived radionuclide 15O was used for measurement of cerebralmetabolic rate of oxygen (CMRO2), cerebral blood flow (CBF) and oxygen extraction ratio (OER) regionally in rhesus monkeys during normotensive/normocapnic and hypotensive/hypocapnic conditions, mean arterial pressure 100–110 and 50–65 mmHg and PaCO2 4.4–5.4 and 3.4-4.4 kPa, respectively. Isoflurane or propofol anaesthesia was given (n=4 in both groups), supported with 70% nitrous oxide and preceded by ketamine anaesthesia (baseline).
Results: PET revealed wide variations in CBF between regions during isoflurane anaesthesia, particularly in comparison with propofol anaesthesia, while rCMRO2 decreased globally in a dose-dependent manner during both isoflurane and propofol anaesthesia. The metabolism-flow coupling was intact during propofol but not during isoflurane anaesthesia. Hypotension reduced rCBF, and rOER increased globally with both study drugs when changing from normo- to hypotension. However, this rOER increase was not significant when using PaCO2 as a co-variate, and rOER was never above an arbitrary limit for hypoxia of 70%. Thus, hypocapnia, rather than hypotension, was responsible for the somewhat higher rOER measured.
Conclusion: PET indicated adequate cerebral oxygenation during isoflurane and propofol anaesthesia, despite disparate blood-flow patterns. Hypotension and concomitant moderate hyperventilation reduced rCBF, but did not result in hypoxia.  相似文献   

14.
Background: This prospective study evaluated memory function during general anesthesia for elective surgery and its relation to depth of hypnotic state. The authors also compared memory function in anesthetized and nonanesthetized subjects.

Methods: Words were played for 70 min via headphones to 48 patients (aged 18-70 yr) after induction of general anesthesia for elective surgery. Patients were unpremedicated, and the anesthetic regimen was free. The Bispectral Index (BIS) was recorded throughout the study. Within 36 h after the word presentation, memory was assessed using an auditory word stem completion test with inclusion and exclusion instructions. Memory performance and the contribution of explicit and implicit memory were calculated using the process dissociation procedure. The authors applied the same memory task to a control group of nonanesthetized subjects.

Results: Forty-seven patients received isoflurane, and one patient received propofol for anesthesia. The mean (+/- SD) BIS was 49 +/- 9. There was evidence of memory for words presented during light (BIS 61-80) and adequate anesthesia (BIS 41-60) but not during deep anesthesia (BIS 21-40). The process dissociation procedure showed a significant implicit memory contribution but not reliable explicit memory contribution (mean explicit memory scores 0.05 +/- 0.14, 0.04 +/- 0.09, and 0.05 +/- 0.14; mean automatic influence scores 0.14 +/- 0.12, 0.17 +/- 0.17, and 0.18 +/- 0.21 at BIS 21-40, 41-60, and 61-80, respectively). Compared with anesthetized patients, the memory performance of nonanesthetized subjects was better, with a higher contribution by explicit memory and a comparable contribution by implicit memory.  相似文献   


15.
Background: The authors report a positron emission tomography (PET) study on humans with parallel exploration of the dose-dependent effects of an intravenous (propofol) and a volatile (sevoflurane) anesthetic agent on regional cerebral blood flow (rCBF) using quantitative and relative (Statistical Parametric Mapping [SPM]) analysis.

Methods: Using H215O, rCBF was assessed in 16 healthy (American Society of Anesthesiologists [ASA] physical status I) volunteers awake and at three escalating drug concentrations: 1, 1.5, and 2 MAC/EC50, or specifically, at either 2, 3, and 4% end-tidal sevoflurane (n = 8), or 6, 9, and 12 [mu]g/ml plasma concentration of propofol (n = 8). Rocuronium was used for muscle relaxation.

Results: Both drugs decreased the bispectral index and blood pressure dose-dependently. Comparison between adjacent levels showed that sevoflurane initially (0 vs. 1 MAC) reduced absolute rCBF by 36-53% in all areas, then (1 vs. 1.5 MAC) increased rCBF in the frontal cortex, thalamus, and cerebellum (7-16%), and finally (1.5 vs. 2 MAC) caused a dual effect with a 23% frontal reduction and a 38% cerebellar increase. In the propofol group, flow was also initially reduced by 62-70%, with minor further effects. In the SPM analysis of the "awake to 1 MAC/EC50" step, both anesthetic agents reduced relative rCBF in the cuneus, precuneus, posterior limbic system, and the thalamus or midbrain; additionally, propofol reduced relative rCBF in the parietal and frontal cortices.  相似文献   


16.
Propofol has a greater amnesic effect than thiopental. In this study we tested whether different brain regions were affected by propofol and thiopental at similar drug effects. Changes in regional cerebral blood flow (rCBF) were identified by using SPM99 analysis of images obtained with positron emission tomography with (15)O water. Ten right-handed male volunteers (age, 35 +/- 10 yr; weight, 74.1 +/- 7.5 kg; mean +/- sd) were randomized to receive thiopental (n = 4) or propofol (n = 6) to target sedative and hypnotic concentrations with bispectral index (BIS) monitoring. Four positron emission tomography images were obtained during various tasks at baseline and with sedative and hypnotic effects. Two participants receiving propofol were unresponsive at sedative concentrations and were not included in the final analyses. Median serum concentrations were 1.2 and 2.7 microg/mL for sedative and hypnotic propofol effects, respectively. Similarly, thiopental concentrations were 4.8 and 10.6 microg/mL. BIS decreased similarly in both groups. The pattern of rCBF change was markedly different for propofol and thiopental. Propofol decreased rCBF in the anterior (right-sided during sedation) brain regions, whereas thiopental decreased rCBF primarily in the cerebellar and posterior brain regions. At similar levels of drug effect, propofol and thiopental affect different regions of the brain. These differences may help to identify the loci of action for the nonsedative effects of propofol, such as amnesia.  相似文献   

17.
Background: The authors hypothesized that cerebral blood flow (CBF) changes will affect the dose of intracarotid propofol required to produce electrocerebral silence.

Methods: The authors tested their hypothesis on New Zealand White rabbits. The first group of 9 animals received intracarotid propofol during (1) normoventilation, (2) hyperventilation, and (3) hypoventilation. The second group of 14 animals received intracarotid propofol with or without concurrent intraarterial verapamil, a potent cerebral vasodilator. The third group of 8 animals received bolus injection of propofol during normotension, during severe cerebral hypoperfusion, and after hemodynamic recovery.

Results: In the first group, there was a linear correlation between the dose of intracarotid propofol and percent change (%[DELTA]) in CBF from the baseline due to changes in the minute ventilation, Total Dose (y) = 0.17 + 0.012 * %[DELTA] CBF (x), n = 27, r = 0.76. In the second group, the dose of propofol was also a function of CBF change after verapamil, Total Dose (y) = 0.98 + 0.1 * %[DELTA] CBF (x), n = 14, r = 0.75. In the third group, the duration of electrocerebral silence after intracarotid propofol (3 mg) was significantly increased with concurrent cerebral hypoperfusion compared with prehypoperfusion and posthypoperfusion values (141 +/- 38 vs. 19 +/- 24 and 16 +/- 12 s, respectively, P < 0.0001).  相似文献   


18.
BACKGROUND: Animal studies have demonstrated a strong neuroprotective property of xenon. Its usefulness in patients with cerebral pathology could be compromised by deleterious effects on regional cerebral blood flow (rCBF). METHODS: 15O-labeled water was used to determine rCBF in nine healthy male subjects at baseline and during 1 minimum alveolar concentration (MAC) of xenon (63%). Anesthesia was based solely on xenon. Absolute changes in rCBF were quantified using region-of-interest analysis and voxel-based analysis. RESULTS: Mean arterial blood pressure and arterial partial pressure for carbon dioxide remained unchanged. The mean (+/-SD) xenon concentration during anesthesia was 65.2+/-2.3%. Xenon anesthesia decreased absolute rCBF by 34.7+/-9.8% in the cerebellum (P<0.001), by 22.8+/-10.4% in the thalamus (P=0.001), and by 16.2+/-6.2% in the parietal cortex (P<0.001). On average, xenon anesthesia decreased absolute rCBF by 11.2+/-8.6% in the gray matter (P=0.008). A 22.1+/-13.6% increase in rCBF was detected in the white matter (P=0.001). Whole-brain voxel-based analysis revealed widespread cortical reductions and increases in rCBF in the precentral and postcentral gyri. CONCLUSIONS: One MAC of xenon decreased rCBF in several areas studied. The greatest decreases were detected in the cerebellum, the thalamus and the cortical areas. Increases in rCBF were observed in the white matter and in the pre- and postcentral gyri. These results are in clear contradiction with ketamine, another N-methyl-D-aspartate antagonist and neuroprotectant, which induces a general increase in cerebral blood flow at anesthetic concentrations.  相似文献   

19.
The authors determined the effect of propofol on cerebral blood flow, intracranial pressure, and cerebral arteriovenous oxygen content difference in severely brain-injured patients during orthopedic treatment of fractures of the extremities. The Glasgow Coma Scale score was 6 or 7 at the time of the study. Data were collected in the operating room before and during (5 and 15 min) administration of propofol (2 mg/kg iv bolus immediately followed by a 150 micrograms.kg-1.min-1 infusion) before surgical stimulation. Propofol was infused during 41.4 +/- 7.3 min. After operation, the last set of measurements was made 15 min after propofol was stopped. The study was performed on 10 adults (age range, 15-40 yr) whose lungs were mechanically ventilated (air/O2) and who were sedated (phenoperidine, 1 mg/h), and was conducted using a radial artery cannula; a 7.5-Fr, thermodilution, flow-directed, pulmonary artery catheter; an intraventricular catheter; and a catheter in the jugular venous bulb. The 133xenon intra-internal carotid artery injection technique was used to determine regional cerebral blood flow (rCBF). Anesthetic blood concentration of propofol (3-5 micrograms/ml) was associated with decreases in cerebral perfusion pressure (CPP; from 82 +/- 14 to 59 +/- 7 mmHg; P less than 0.001), rCBF (from 35 +/- 6 to 26 +/- 5 ml.100 g-1.min-1; P less than 0.001), and intracranial pressure (ICP; from 11.3 +/- 2.6 to 9.2 +/- 2.5 mmHg; P less than 0.001). Cerebrovascular resistance and cerebral arteriovenous oxygen content difference were unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
BACKGROUND: The bispectral (BIS) index is a pharmacodynamic measure of the effect of anesthesia on the central nervous system. The aim of this study was to investigate the relationship between BIS index and predicted plasma concentration of propofol delivered by target controlled infusion (TCI) during emergence in children. METHODS: With approval of IRB, 30 patients (2-7 years) were included in this study. Anesthesia was with TCI propofol 3-5 microg.ml(-1) and remifentanil 7.5 ng.ml(-1) to maintain BIS 40-60 and the propofol concentration was fixed at 3 microg.ml(-1) Remifentanil infusion was stopped 10 min before the end of surgery. BIS values were recorded after reducing propofol in decrement of 0.2 microg.ml(-1). BIS values were checked when spontaneous respiration occurred and children were able to obey a command (eye opening or hand grasping). RESULTS: Spearman's correlation analysis showed negative correlation between BIS and propofol plasma concentration (r = -0.559, P < 0.001). When respiration returned, mean BIS was 77.2 +/- 5.3 and propofol plasma concentration 1.6 +/- 0.3 microg.ml(-1) and when a verbal command was obeyed, BIS was 82.4 +/- 5.6 and propofol plasma concentration 1.5 +/- 0.3 microg.ml(-1). CONCLUSIONS: In preschool children, BIS moderately correlated with the predicted plasma concentration of propofol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号