首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prenatal stress has been associated with a variety of alterations in the offspring. The presented observations suggest that rather than causing changes in the offspring per se, prenatal stress may increase the organism's vulnerability to aversive life events. Offspring of rat dams stressed gestationally by chronic mild stress (CMS, a variable schedule of different stressors) or dexamethasone (DEX, a synthetic glucocorticoid, i.e., a pharmacological stressor) was tested for reactivity by testing their acoustic startle response (ASR). Two subsets of offspring were tested. One was experimentally na?ve at the time of ASR testing, whereas the other had been through blood sampling for assessment of the hormonal stress response to restraint, 3 months previously. Both prenatal CMS and dexamethasone increased ASR in the offspring compared to controls, but only in prenatally stressed offspring that had been blood sampled 3 months previously. In conclusion, similarity of the effects of maternal gestational exposure to a regular stress schedule and of exposure to a synthetic glucocorticoid suggests that maternal glucocorticoids may be a determining factor for changes in the regulatory mechanisms of the acoustic startle response. Further, a single aversive life event showed capable of changing the reactivity of prenatally stressed offspring, whereas offspring of dams going through a less stressful gestation was largely unaffected by this event. This suggests that circumstances dating back to the very beginning of life affect the individual's sensitivity towards experiences in life after birth. The prenatal environment may thus form part of the explanation of the considerable individual variation in the development of psychopathology.  相似文献   

2.
Maternal smoking during pregnancy is associated with auditory processing deficits in children; these effects have been confirmed with animal models of continuous high-dose prenatal nicotine exposure. The present experiments utilized a novel, low-dose, intermittent, intravenous (IV) gestational nicotine exposure model to investigate potential deficits on the preattentive process of sensorimotor gating, as indexed by prepulse inhibition (PPI), in preweanling and adult rat offspring. Pregnant dams received bolus IV injections of nicotine (0.05 mg/kg/injection) 3×/day on gestational days 8-21. Auditory and tactile stimulus modalities were probed with tone and air puff prepulse stimuli, respectively. These prepulse stimuli preceded a 100 dB(A) startle tone by six different interstimulus intervals (ISIs; 0, 8, 40, 80, 120, 4000 ms) to define a curve of response inhibition. The magnitude of PPI increased with age, from 59 to 81% inhibition. Preweanlings (PNDs 14 and 18) and adults (PND 75) gestationally exposed to nicotine exhibited altered startle responding relative to controls, but the nature of the deficit became more localized at later ages. The entire curve of response inhibition in preweanlings exposed to prenatal nicotine (PND 14) was shifted up relative to controls, and notably, did not interact with prepulse stimulus modality, suggesting a generalized increased sensorimotor responsiveness as a function of prenatal nicotine. At PND 18, a shift in the response curve across all ISIs was again noted, but varied as a function of prepulse stimulus modality; the increased sensorimotor responsiveness was specific to the auditory, but not tactile, sensory modality. In adulthood, male and female animals prenatally exposed to nicotine were differentially sensitive to modulation by the ISIs, relative to control male and female animals. Specifically, despite robust PPI, adult females exposed to gestational nicotine were relatively insensitive to changes in ISI from 8 to 120 ms; in contrast, the robust PPI of nicotine-exposed males demonstrated a clear focal point of inhibition at 40 ms. These findings indicate that a low, daily dosing of IV prenatal nicotine produces long-lasting alterations in auditory PPI. An important implication of this research is that “chipping” with smoked-tobacco products during pregnancy may produce enduring changes in sensorimotor processing.  相似文献   

3.
Exposure to stress during gestation induces marked changes in the behavior of the affected offspring. Examining the consequences of prenatal stress may prove useful in understanding more about the origins of schizophrenia because a number of clinical investigations have suggested that developmental insults are associated with an increased incidence of schizophrenia. The purpose of these studies is to investigate the effects of stress during gestation on the behaviors of the adult male rat offspring with an emphasis on developing a heuristic animal model of schizophrenia. Pregnant female Sprague-Dawley rats were exposed to a novel variable stress paradigm during either the second or third week of gestation. Behavioral and neuroendocrinological consequences of prenatal stress exposure were evaluated in the male offspring on postnatal day 35 or 56. Prenatal stress exposure during the third week of pregnancy caused adult male rats to exhibit prolonged elevation in plasma glucocorticoid levels following acute exposure to restraint stress indicative of diminished glucocorticoid negative feedback. Similarly, exposure to stress during the third week of pregnancy elicited an enhanced locomotor response to the psychomotor stimulant amphetamine on postnatal day 56 but not on postnatal day 35. In addition, prepulse inhibition of the acoustic startle response was diminished across a range of prepulse stimulus intensities in prenatally stressed adult male rats. Similarly, prenatally stressed rats showed evidence of a disruption in auditory sensory gating as measured by the N40 response. Taken together, these findings suggest that prenatal stress exposure significantly changed many facets of adult rat behavior. Interestingly, the behaviors that are altered have been used to validate animal models of schizophrenia and therefore, suggest that this preparation may be useful to learn more about some aspects of the pathophysiology of schizophrenia.  相似文献   

4.
A variety of early life stressors have consistently been implicated in the development of psychopathology in adulthood. The current study investigates a rarely considered form of early life stress, bacterial infection, for its ability to induce psychopathology-like symptoms in adult rat. Specifically, neonatal rats were exposed to a simulated bacterial infection. In adulthood the acoustic startle response of these animals was evaluated both prior to and following exposure to restraint stress. Our results indicate that animals neonatally exposed to infection exhibit a significantly exaggerated acoustic startle response but only following exposure to stress. Additionally, we observed that adult animals neonatally exposed to infection, exhibited increased production of circulating corticosterone following stress, indicating potentiated hypothalamic pituitary adrenal axis activity as well as altered novelty seeking behaviour and locomotor activity. These results extend upon existing pre-clinical findings that indicate certain stressful early life events can predispose the adult animal to exhibit abnormal behaviour in adulthood.  相似文献   

5.
An increased incidence of schizophrenia has been associated with several perinatal insults, most notably maternal infection during pregnancy and perinatal hypoxia. This study used a rat model to directly test if maternal exposure to bacterial endotoxin (lipopolysaccharide, LPS) during pregnancy alters behaviors relevant to schizophrenia, in offspring at adulthood. The study also tested if postnatal anoxia interacted with gestational LPS exposure to affect behavior. At adulthood, offspring from dams administered LPS on days 18 and 19 of pregnancy showed significantly increased amphetamine-induced locomotion, compared to offspring from saline-treated dams. A period of anoxia on postnatal day 7 had no effect on amphetamine-induced locomotion and there was no interaction between effects of gestational LPS and postnatal anoxia on this behavior. Offspring from LPS-treated dams also showed enhanced acoustic startle responses as adults, compared to offspring from saline-treated dams. In offspring tested for pre-pulse inhibition (PPI) of acoustic startle and for apomorphine modulation of PPI, no effects of either gestational LPS or of postnatal anoxia and no interactions between LPS and anoxia were observed. It is concluded that maternal LPS exposure during pregnancy in the rat may be a useful model to study mechanisms responsible for effects of maternal infection on behaviors relevant to schizophrenia, in offspring.  相似文献   

6.
Several studies suggest that prenatal stress is a possible risk factor in the development of autism spectrum disorders. However, many children exposed to stress prenatally are born healthy and develop typically, suggesting that other factors must contribute to autism. Genes that contribute to stress reactivity may, therefore, exacerbate prenatal stress-mediated behavioral changes in the adult offspring. One candidate gene linked to increased stress reactivity encodes the serotonin transporter. Specifically, an insertion/deletion (long/short allele) polymorphism upstream of the serotonin transporter gene correlates with differential expression and function of the serotonin transporter and a heightened response to stressors. Heterozygous serotonin transporter knockout mice show reductions in serotonin transporter expression similar to the human short polymorphism. In this study, the role of prenatal stress and maternal serotonin transporter genotype were assessed in mice to determine whether their combined effect produces reductions in social behavior in the adult offspring. Pregnant serotonin transporter heterozygous knockout and wild-type dams were placed in either a control condition or subjected to chronic variable stress. The adult offspring were subsequently assessed for social interaction and anxiety using a three-chamber social approach task, ultrasonic vocalization detection, elevated-plus maze and an open field task. Results indicated that prenatal stress and reduced serotonin transporter expression of the dam may have the combined effect of producing changes in social interaction and social interest in the offspring consistent with those observed in autism spectrum disorder. This data indicates a possible combined effect of maternal serotonin transporter genotype and prenatal stress contributing to the production of autistic-like behaviors in offspring.  相似文献   

7.
Elevated lead (Pb) exposures preferentially impact low socioeconomic status (SES) populations, the same groups thought to sustain the highest levels of environmental stress. As co-occurring risk factors, therefore, Pb and stress could interact, a possibility further supported by the fact that both act on mesocorticolimbic dopamine systems of the brain. We recently demonstrated in rats that maternal Pb exposure could permanently increase basal corticosterone levels of offspring consistent with altered hypothalamic pituitary adrenal (HPA) axis function. The current study was thus designed to test the hypothesis that stress responsivity of offspring should likewise be altered, with the outcome differing in response to Pb, stress or Pb+stress. The impact of intermittent variable stress challenges (restraint, novelty, cold) on behavior sensitive to Pb exposure (fixed interval (FI) schedule-controlled responding) and on stress-induced corticosterone changes were evaluated in adult female offspring of dams that had been exposed to Pb (150 ppm) in drinking water from 2 months prior to breeding through lactation with or without maternal restraint stress on days 16 and 17 of gestation. This design yielded four treatment groups: (NS/0, no maternal Pb, no maternal stress; S/0, no maternal Pb, maternal stress; NS/150, maternal Pb, no maternal stress; and S/150, maternal Pb exposure and maternal stress). While maternal Pb alone and stress alone each altered components of stress responsivity, the greatest number of effects was seen in response to Pb + stress. This included alterations in FI performance following both restraint and cold stress and in the corticosterone response to cold stress. Collectively, these studies reveal that maternal Pb exposure alone can permanently alter stress responsivity and that the profile of effects produced by maternal Pb differ from those produced by maternal Pb in conjunction with stress, findings which have both mechanistic and risk assessment significance.  相似文献   

8.
Maternal immune activation (MIA) is a newly developed animal model of schizophrenia. It has recently been reported that when MIA is induced with the cytokine inducer polyinosinic-polycytidilic acid (poly I:C) rats do not show deficits in prepulse inhibition (PPI), a test that is often considered a validity benchmark. The aim of the current experiment was to determine whether doses of poly I:C that have previously been shown to induce the behavioural features of schizophrenia can disrupt PPI in rats. Pregnant rat dams were given a single injection of poly I:C (4.0 mg/kg) or a saline injection equivalent on gestational day 15. Acoustic startle reactivity, habituation of the startle response and PPI were assessed in juvenile (34-35 day) and adult (>56 day) offspring. Prenatal immune activation did not alter startle reactivity on startle-only or prepulse-only trials. Furthermore, there was no effect of MIA on habituation of the startle response. MIA does however disrupt PPI, as PPI was reduced significantly in adult MIA offspring, and a trend was observed in the juvenile animals. Our finding that prenatal poly I:C can disrupt PPI in MIA rats further validates this procedure as an animal model.  相似文献   

9.
The neuroendocrine consequences of repeated exposure of the pregnant mother to relevant stressors have been studied in the offspring, but not in the mothers. As these stress effects might depend on the genetically determined stress susceptibility of the dams, here, we investigated the effects of daily exposure to psycho-social stressors (maternal defeat by an aggressive lactating resident and restraint) between pregnancy days 4 and 18 in female rats selectively and bidirectionally bred for high (HAB) or low (LAB) anxiety-related behaviour. ACTH and corticosterone secretory responses to a mild stressor were found to be low in unstressed lactating HAB and LAB dams (day 8 of lactation) indicating an intact physiological attenuation of the HPA axis at this time. Pregnancy stress significantly increased the reactivity of the hypothalamo-pituitary-adrenal (HPA) axis in lactating HAB, but not LAB rats, reflecting impaired attenuation of the HPA axis selectively in pregnancy-stressed HAB dams. The high and low anxiety phenotypes were consistent in lactation and not significantly altered by pregnancy stress, despite an elevated level of arousal in pregnancy-stressed HAB dams. In general, HAB dams showed signs of a more protective maternal behaviour compared to LAB dams: (i) in the home cage, HAB dams spent more time in direct pup contact (day 1 of lactation), (ii) during two forms of the pup retrieval test, differing in the level of challenging the dam, HAB dams retrieved the pups faster, and (iii) during the maternal defence test, they were more aggressive towards a virgin intruder compared to LAB and NAB dams. Pregnancy stress did not alter any of these behavioural measures, except an increase in the speed of pup collection in a novel environment in HAB dams and increased maternal aggression in LAB dams. The results indicate a robust behavioural phenotype of HAB and LAB dams with respect to anxiety and maternal behaviour which was found to be almost unchanged by exposure to pregnancy stress. However, the finding of differential effects of pregnancy stress on the attenuation of the reactivity of the HPA axis in lactation makes HAB and LAB rats a potential animal model for studying genetically determined differences in stress vulnerability and stress-induced maladaptation of the HPA axis post-partum.  相似文献   

10.
We investigated the possibility that hearing thresholds are altered in prenatally stressed rats raised in a normal auditory environment. Pregnant dams were assigned randomly to prenatally stressed and control groups. Half of the dams were subjected to the mild stressors of handling, exposure to a novel cage and saline injection at random times during lights-on daily. The hearing thresholds of young adult male offspring were assessed by recording auditory-evoked brainstem responses to 0.5, 1, 2, 4, 8, 16, 32 and 64 kHz pure tones. The resultant audiograms showed that prenatally stressed offspring had significantly higher hearing thresholds than control animals at 1, 2 and 4 kHz (t-tests, P<0.05). The threshold shifts caused by prenatal stress averaged 7.7 dB across frequencies. We conclude that prenatal stress causes low-frequency hearing loss, possibly due to increased vulnerability to noise-induced hearing loss, accelerated cochlear degeneration and/or disrupted cochlear development.  相似文献   

11.
Both maternal exposure to stressors and exposure of offspring to stressors during early life can have lifelong effects on the physiology and behavior of offspring. Stress exposure can permanently shape an individual’s phenotype by influencing the development of the hypothalamic–pituitary–adrenal (HPA) axis, which is responsible for the production and regulation of glucocorticoids such as corticosterone (CORT). In this study we used captive zebra finches (Taeniopygia guttata) to examine the effects of matching and mismatching maternal and early post-natal exposure to one of two types of antigens or a control on HPA axis reactivity in adult offspring. Prior to breeding, adult females were injected with lipopolysaccharide (LPS), keyhole limpet hemocyanin (KLH) or a control. Offspring of females in each of the three treatments were themselves exposed to LPS, KLH or a control injection at 5 and 28 days post-hatch. When offspring were at least 18 months of age, standardized capture and restraint stress tests were conducted to determine the impact of the treatments on adult stress responsiveness. We found significant interaction effects between maternal and offspring treatments on stress-induced CORT levels, and evidence in support of the environment matching hypothesis for KLH-treated birds, not LPS-treated birds. KLH-treated offspring of KLH-treated mothers exhibited reduced stress-induced CORT levels, whereas LPS-treated or control offspring of KLH-treated mothers exhibited elevated stress-induced CORT levels. Although the treatment effects on baseline CORT were non-significant, the overall pattern was similar to the effects observed on stress-induced CORT levels. Our results highlight the complex nature of HPA axis programming, and to our knowledge, provide the first evidence that a match or mismatch between pre and post-natal antigen exposure can have life-long consequences for HPA axis function.  相似文献   

12.
Neonatal maternal separation (MS) has been used to model long-term changes in neurochemistry and behaviour associated with exposure to early-life stress. This study characterises changes in behavioural and neuroendocrine parameters following MS. On postnatal days (PND) 3-15, male and female Long-Evans rats underwent 3 h daily MS. Non-handled (NH) control offspring remained with the dams. Starting at PND 90, behaviour was assessed at weekly intervals in the elevated plus-maze, elevated T-maze, and locomotor activity boxes, and body weight monitored throughout. At the end of the study, adrenals were weighed and blood collected for analysis of plasma corticosterone and adrenocorticotropic hormone (ACTH) under basal conditions and following restraint stress. As adults, MS weighed more than NH animals. Activity on the open arms of the plus-maze was similar between MS and NH animals. In the T-maze, MS males had shorter emergence latencies than their NH counterparts. Spontaneous ambulation in a novel environment was significantly higher in MS than in NH animals, and males exhibited overall lower activity than females. Basal plasma corticosterone was lower in MS than in NH females, but no rearing condition difference was observed following restraint stress. Females had higher corticosterone and ACTH levels than males, whereas adrenal glands of MS animals weighed less than those of NH controls. The MS paradigm caused long-term gender dependent effects on behaviour and HPA axis status. The consistent gender differences confirm and expand existing results showing altered anxiety and stress reactivity in male and female rats.  相似文献   

13.
Exposure to hostile conditions results in a series of coordinated responses aimed at enhancing the probability of survival. The activation of the hypothalamo-pituitary-adrenocortical (HPA) axis plays a pivotal role in the stress response. While the short-term activation of the HPA axis allows adaptive responses to the challenge, in the long run this can be devastating for the organism. In particular, life events occurring during the perinatal period have strong long-term effects on the behavioral and neuroendocrine response to stressors. In male and female rats exposed to prenatal restraint stress (PRS), these effects include a long-lasting hyperactivation of the HPA response associated with an altered circadian rhythm of corticosterone secretion. Furthermore, male animals exhibit sleep disturbances. In males, these HPA dysfunctions have been reported in infant, young, adult and aged animals, thus suggesting a permanent effect of early stress. Interestingly, after exposure to an intense inescapable footshock, female PRS rats durably exhibit a blunted corticosterone secretion response to stress. In male PRS rats exposed to an alcohol challenge, the HPA axis is similarly hyporesponsive. Rats exposed to PRS also show behavioral disturbances. Both male and female PRS rats show high anxiety levels and depression-like behavior during adulthood, although some studies suggest that female PRS rats present low anxiety levels. With ageing, male and female PRS rats exhibit memory impairments in hippocampus-dependent tasks, while female PRS rats improve their memory performance during adulthood. The gender effect on behavior seems to be related to a reduction in hippocampal plasticity in male PRS rats, and an increase in female PRS rats. Despite the permanent imprinting induced by early stress, the dysfunctions observed after PRS can be reversed by environmental or pharmacological strategies such as environmental enrichment or antidepressive and neurotrophic treatments. Mechanisms underlying the effects of PRS on the offspring remain largely unknown. However, previous studies have demonstrated that maternal glucocorticoids during pregnancy play an important role in the HPA disturbances reported in male offspring. Finally, gestational stress has long-lasting effects on the HPA axis and on behavior in the dams. Alterations in maternal behavior could thus also make a strong contribution to the long-term effects of PRS, through epigenetic mechanisms.  相似文献   

14.
It has been recently shown that Catechol O-methyltransferase (COMT) Val(158)Met polymorphism strongly influences prepulse inhibition (PPI) of the acoustic startle response (ASR) in healthy human volunteers. Given that schizophrenia patients exhibit impairment in PPI and that COMT is a putative susceptibility gene for schizophrenia, we investigated the impact of the COMT Val(158)Met polymorphisms on PPI in schizophrenic inpatients. We analyzed COMT Val(158)Met polymorphisms and assessed startle reactivity, habituation, and PPI of ASR in 68 Caucasian schizophrenia inpatients. Clinical symptoms were measured with the Positive and Negative Syndrome Scale (PANSS). Patients carrying the Val(158)Met Met/Met allele showed elevated PPI levels whereas startle reactivity and habituation did not differ from the other two genotypes. These preliminary results imply that PPI is influenced by COMT Val(158)Met genotype in schizophrenia as well. In concert with other findings, our data suggest that PPI is a polygenic trait.  相似文献   

15.
Lead (Pb) exposure and elevated stress are co-occurring risk factors. Both impact brain mesolimbic dopamine/glutamate systems involved in cognitive functions. We previously found that maternal stress can potentiate Pb-related adverse effects in offspring at blood Pb levels averaging approximately 40 microg/dl. The current study of combined Pb exposure and stress sought to extend those results to lower levels of Pb exposure, and to examine relationships among consequences in offspring for fixed interval (FI) schedule-controlled behavior, neurochemistry and corticosterone levels. Dams were exposed to maternal Pb beginning 2 months prior to breeding (0, 50 or 150 ppm in drinking water), maternal restraint stress on gestational days 16 and 17 (MS), or the combination. In addition, a subset of offspring from each resultant treatment group was also exposed intermittently to variable stressors as adults (MS+OS). Marked "Pb-stress"-related increases in response rates on a fixed interval schedule, a behavioral performance with demonstrated sensitivity to Pb, occurred preferentially in female offspring even at mean blood Pb levels of 11 microg/dl when 50 ppm Pb was combined with maternal and offspring stress. Greater sensitivity of females to frontal cortex catecholamine changes may contribute to the elevated FI response rates as mesocorticolimbic systems are critical to the mediation of this behavior. Basal and final corticosterone levels of offspring used to evaluate FI performance differed significantly from those of non-behaviorally tested (NFI) littermates, demonstrating that purported mechanisms of Pb, stress or Pb/stress effects determined in non-behaviorally trained animals cannot necessarily be generalized to animals with behavioral histories. Finally, the persistent and permanent consequences of Pb, stress and Pb+stress in offspring of both genders suggest that Pb screening programs should include pregnant women at risk for elevated Pb exposure, and that stress should be considered as an additional risk factor. Pb+stress effects observed in the absence of either risk factor alone (i.e., potentiated effects) raise questions about the capacity of current hazard identification approaches to adequately identify human health risks posed by neurotoxicants.  相似文献   

16.
The present study tested if lesions of the nucleus basalis magnocellularis (NBM) affect prepulse inhibition (PPI) of the acoustic startle response and latent inhibition (LI) of fear-potentiated startle. The NBM is known to play an important role in learning and memory. Recently, the interest of research focused on its role in attentional and response selection processes. We here tested the effect of excitotoxic NBM-lesions on PPI, a phenomenon of sensorimotor gating that occurs at early stages of information processing. We also assessed the lesion effects on LI, a phenomenon of reduced conditioning after stimulus preexposure that can be used to measure selective attention. Bilateral infusions into the NBM of 80 nmol of quinolinic acid markedly reduced the number of choline acetyltransferase immunopositive neurons in the NBM and lead to a pronounced reduction of acetylcholine esterase in the cortex and the amygdala. However, no effects on PPI, fear-conditioning, or LI of fear-potentiated startle were found. Therefore, we conclude that there is no NBM-driven attentional or response selection process involved in PPI. Furthermore, the simple association learning in the classical conditioning paradigm used for fear-potentiated startle or LI is unaffected by NBM-lesions.  相似文献   

17.
BACKGROUND: Prepulse inhibition (PPI) is the normal suppression of the startle reflex when an intense startling stimulus is preceded by a barely detectable prepulse. Habituation of the acoustic startle reflex is decrement in response when the same stimulus is presented repeatedly. These factors have been proposed as neurophysiologic measures of sensorimotor gating or filtering and discussed as trait-linked markers for information-processing deficits in schizophrenia-spectrum disorders. The aim of this study was to examine whether first-episode schizophrenia patients also exhibit deficits in PPI and habituation. METHODS: Never-medicated male schizophrenic and schizophreniform patients in their first psychotic episode (n=24) were compared with age-matched healthy men (n=21) in an acoustic startle paradigm assessing PPI (30-, 60-, 120-, 240-, and 2000-msec interstimulus intervals) and habituation. RESULTS: Compared with control subjects, first-episode patients exhibited significant deficits in both PPI in the 60-msec prepulse condition and startle habituation. Patients also exhibited less facilitation in the 2000-msec prepulse condition. CONCLUSIONS: In combination with other studies, these findings indicate that PPI and habituation may be sensitive intermediate phenotypic markers for information-processing deficits in schizophrenic patients.  相似文献   

18.
Maternal infection during pregnancy is a risk factor for some psychiatric illnesses of neurodevelopmental origin such as schizophrenia and autism. In experimental animals, behavioral and neuropathological outcomes relevant to schizophrenia have been observed in offspring of infected dams. However, the type of infectious agent used and gestational age at time of administration have varied. The objective of the present study was to compare the effects of prenatal challenge with different immune agents given at different time windows during gestation on behavioral outcomes in offspring. For this, pregnant rats were administered bacterial endotoxin (lipopolysaccharide, LPS), the viral mimic polyinosinic: polycytidylic acid (poly I:C), or turpentine, an inducer of local inflammation, at doses known to produce fever, at three different stages in pregnancy: embryonic day (E)10-11, E15-16 and E18-19. Prepulse inhibition of acoustic startle (PPI) was later measured in male adult offspring. PPI was significantly decreased in offspring after prenatal LPS treatment at E15-16 and E18-19. Intramuscular injection of pregnant dams with turpentine at E15-16 also decreased PPI in adult offspring. Maternal poly I:C administration had no significant effect on PPI in offspring. In contrast to prenatal LPS exposure, acute LPS administration to naive adult males had no effect on PPI. Thus, prenatal exposure both to a systemic immunogen and to local inflammation at brief periods during later pregnancy produced lasting deficits in PPI in rat offspring. These findings support the idea that maternal infection during critical windows of pregnancy could contribute to sensorimotor gating deficits in schizophrenia.  相似文献   

19.
The fear-potentiated startle (FPS) and the light-enhanced startle (LES) paradigms are rodent tests of fear and anxiety, which combine face validity with predictive validity for clinically effective anxiolytic drugs. However, systematic strain comparisons aimed at identifying a rat strain that shows robust and reliable fear and anxiety responses in both models are missing. Here, we investigated four commonly used laboratory rat strains: Wistar, Sprague Dawley, Long-Evans and F344. Following strong cued fear conditioning training [60 conditioned stimulus-unconditioned stimulus (CS-US) pairings], all strains except Wistar exhibited significant FPS responses. F344 rats showed the strongest FPS response. Following milder cued fear conditioning protocols, designed to reduce the underlying component of contextual fear conditioning (by context pre-exposure or less CS-US pairings), also Wistar rats were able to show significant FPS, albeit still to a lesser extent than F344 rats tested under identical conditions. When tested in the LES protocol (light intensity ∼1500 lx), all strains except Long-Evans displayed significant light-enhanced startle responses. F344 and Wistar showed the strongest LES responses, which were of similar magnitude. The most sensitive strain in both paradigms, F344, was chosen for further pharmacological validation. The clinically active anxiolytic alprazolam (0.3, 1, 3 mg/kg p.o.) dose-dependently reduced both fear-like responses in the FPS paradigm and anxiety-like responses in the LES paradigm at non-myorelaxant dosages. We propose that the F344 rat strain is particularly suited for the predictability assessment of novel anxiolytic drugs in both startle paradigms.  相似文献   

20.
It has been hypothesized that the maternal immune response to infection may influence fetal brain development and lead to schizophrenia. Animal experimentation has supported this notion by demonstrating altered sensorimotor gating (prepulse inhibition, PPI) in adult rats prenatally exposed to an immune challenge. In the present study, pregnant rats were exposed to the bacterial endotoxin lipopolysaccharide (LPS) throughout gestation and the offspring were examined by evaluating the PPI, dopaminergic function, brain protein expression and cytokine serum levels from weaning to late adulthood. Prenatal LPS exposure induced a deficit in PPI that emerged at 'puberty' and that persisted throughout adult life. This prenatal insult caused age-specific changes in accumbal dopamine levels and in synaptophysin expression in the frontal cortex. Moreover, serum cytokine levels were altered in an age- and cytokine-dependent manner. Here we show that prenatal LPS administration throughout pregnancy causes maturation-dependent PPI deficits and age-dependent alterations in dopamine activity, as well as in synaptophysin expression and cytokine levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号