首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Matrix metalloproteinases (MMPs) are involved in tissue repair, cell death and morphogenesis. We investigated the role of the gelatinases MMP-2 and MMP-9 in the pathogenesis of neuronal death induced by prolonged seizures in the developing brain. Seven-day-old rats, MMP-9 knockout mice and transgenic rats overexpressing MMP-9 received intraperitoneal injections of pilocarpine, 250 mg/kg, to induce seizures. After 6-72 h pups were sacrificed, tissue from different brain regions was isolated and expression of MMP-9 mRNA and protein was analyzed by real-time PCR or Western blot. Additionally, brains were fixed and processed for TUNEL-staining, immunohistochemistry and in situ zymography. We found increased numbers of TUNEL-positive cells 24 h after pilocarpine-induced seizures, most pronounced in cortical areas and the dentate gyrus, and less pronounced in thalamus. At 6-24 h, MMP-9 mRNA levels showed significant elevation compared to sham-treated controls; this effect resolved by 48 h, whereas MMP-2 mRNA levels remained stable. Cortical gelatinolytic activity, monitored by in situ zymography, was enhanced following pilocarpine-induced seizures. The MMP inhibitor GM 6001 ameliorated cell death following pilocarpine-induced seizures in infant rats. MMP-9 knockout mice were less susceptible to seizure-induced brain injury. Transgenic rats overexpressing MMP-9 were equally susceptible to seizure-induced brain injury as wild type rats. Our results suggest a significant contribution of MMP-9 to cell death after pilocarpine-induced seizures in the developing brain. As indicated by Western blot analysis, MMP-9 activation may be linked to activation of the Erk/CREB-pathway. The findings implicate involvement of MMP-9 in the pathophysiology of brain injury following seizures in the developing brain.  相似文献   

2.
In this study, we examine the effects of reperfusion on the activation of matrix metalloproteinase (MMP) and assess the relationship between MMP activation during reperfusion and neurovascular injury. Ischemia was produced using suture-induced middle cerebral artery occlusion in rats. The MMP activation was examined with in situ and gel zymography. Injury to cerebral endothelial cells and basal lamina was assessed using endothelial barrier antigen (EBA) and collagen IV immunohistochemistry. Injury to neurons and glial cells was assessed using Cresyl violet staining. These were examined at 3 h after reperfusion (8 h after initiation of ischemia) and compared with permanent ischemia at the same time points to assess the effects of reperfusion. A broad-spectrum MMP inhibitor, AHA (p-aminobenzoyl-Gly-Pro-D-Leu-D-Ala-hydroxamate, 50 mg/kg intravenously) was administered 30 min before reperfusion to assess the roles of MMPs in activating gelatinolytic enzymes and in reperfusion-induced injury. We found that reperfusion accelerated and potentiated MMP-9 and MMP-2 activation and injury to EBA and collagen IV immunopositive microvasculature and to neurons and glial cells in ischemic cortex and striatum relative to permanent ischemia. Administering AHA 30 min before reperfusion decreased MMP-9 activation and neurovascular injury in ischemic cerebral cortex.  相似文献   

3.
Blood–brain barrier (BBB) disruption, resulting from loss of tight junctions (TJ) and activation of matrix metalloproteinases (MMPs), is associated with edema formation in ischemic stroke. Cerebral edema develops in a phasic manner and consists of both vasogenic and cytotoxic components. Although it is contingent on several independent mechanisms, involving hypoxic and inflammatory responses, the single effect of prolonged hypoxia on BBB integrity in vivo was not addressed so far. Exposing mice to normobaric hypoxia (8% oxygen for 48 h) led to a significant increase in vascular permeability associated with diminished expression of the TJ protein occludin. Immunofluorescence studies revealed that hypoxia resulted in disrupted continuity of occludin and zonula occludens-1 (Zo-1) staining with significant gap formation. Hypoxia increased gelatinolytic activity specifically in vascular structures and gel zymography identified MMP-9 as enzymatic source. Treatment with an MMP inhibitor reduced vascular leakage and attenuated disorganization of TJ. Inhibition of vascular endothelial growth factor (VEGF) attenuated vascular leakage and MMP-9 activation induced by hypoxia. In conclusion, our data suggest that hypoxia-induced edema formation is mediated by MMP-9-dependent TJ rearrangement by a mechanism involving VEGF. Therefore, inhibition of MMP-9 might provide the basis for therapeutic strategies to treat brain edema.  相似文献   

4.
To determine the activity of matrix metalloproteinases (MMP), especially MMP-2 and MMP-9, which play an important role in ischemic stroke and intracerebral hemorrhage, we adapted a simple and rapid method for localizing gelatinase activity to a gelatin film in situ-overlay technique previously used in cancer research. Ten micrometer cryosections of rat brain from controls and animals subjected to 3 h of ischemia and 48 h of reperfusion (suture model for transient cerebral ischemia) were used. After thawing, a gelatin film with a polyester base was put on the slide, incubated for 24 h at 37 degrees C, stained with Ponceau S, and then discolored in bi-distilled water. Non-staining areas on the film corresponded to lysis zones, caused by activated MMPs. This was proven by MMP incubation at various concentrations on the plain gelatin film and pretreatment with EDTA (an MMP inhibitor), which prevents lysis zones in normal and ischemic brains. As confirmatory tests, SDS-PAGE zymography was used to define MMP activity, and also MMP-2 immunohistochemistry to detect the possibly cellular origin of MMPs. Normal rat brain exhibited a low background activity, which was visible as a light halo-like lysis zone over and around the brain. Areas in normal brain with medium MMP activity were within the white matter (corpus callosum, anterior commissure, and cerebellum). Ischemic brain exhibited high activity lysis zones within the infarcted area (detected by microtubuli associated protein-2 staining). These zones consisted of microscopically small lysis holes with a diameter of about 10-20 microm. Immunohistochemistry showed that especially microvessels expressed MMP antigen. SDS-PAGE zymography differentiated between a high level of activated MMPs in the ischemic area and a low level in the non-ischemic basal ganglia. The gelatin film in situ-overlay technique is able to localize MMP activity in ischemic rat brain tissue on a microscopic level.  相似文献   

5.
Matrix Metalloproteinases (MMPs) are a family of endopeptidases known to process extracellular proteins. In the last decade, studies carried out mainly on the Schaffer collateral-CA1 hippocampal projection have provided solid evidence that MMPs regulate synaptic plasticity and learning. Recently, our group has shown that MMP blockade disrupts LTP maintenance also in the mossy fiber-CA3 (mf-CA3) projection (Wojtowicz and Mozrzymas, 2010), where LTP mechanisms are profoundly different (NMDAR-independent and presynaptic expression site). However, how plasticity of this pathway correlates with activity and expression of MMPs remains unknown. Interestingly, several potential MMP substrates (especially of gelatinases) are localized intracellularly but little is known about MMP activity in this compartment. In the present study we have asked whether LTP is associated with the expression and activity of gelatinases in apparent intra- and extracellular compartments along mf-CA3 projection. In situ zymography showed that LTP induction was associated with increased gelatinases activity in the cytoplasm of the hilar and CA3 neurons. Using gelatin zymography, immunohistochemistry and immunofluorescent staining we found that this effect was due to de novo synthesis and activation of MMP-9 which, 2-3h after LTP induction was particularly evident in the cytoplasm. In contrast, MMP-2 was localized preferentially in the nuclei and was not affected by LTP induction. In conclusion, we demonstrate that LTP induction in the mf-CA3 pathway correlates with increased expression and activity of MMP-9 and provide the first evidence that this increase is particularly evident in the neuronal cytoplasm and nucleus.  相似文献   

6.
Blood brain barrier (BBB) damage that occurs within the thrombolytic time window is increasingly appreciated to negatively impact the safety and efficacy profiles of thrombolytic therapy for ischemic stroke. However, the spatiotemporal evolution of BBB damage in this early stroke stage and the underlying mechanisms remain unclear. Here, we investigated the topographical distribution of BBB damage and its association with tissue injury within the first 3h after ischemia onset and the roles of matrix metalloproteinase (MMP)-2/9 in this process. Rats were subjected to 1, 2, or 3h of middle cerebral artery occlusion (MCAO) followed by 10min reperfusion with fluorescence-labeled dextran as BBB permeability marker. Acute tissue infarction was evidenced by staining defect with triphenyltetrazolium chloride (TTC). Cerebral blood flow (CBF) was measured by magnetic resonance imaging. MMP-2/9 were assessed by gel and in situ zymography. After 2-h MCAO, dextran leakage was seen in the ischemic ventromedial striatum and the preoptic area which showed ~70% CBF reduction, and expanded to other MCA regions including the cortex after 3-h MCAO. Interestingly, high (2000kDa) and low (70kDa) molecular weight dextrans displayed almost identical leakage patterns. Different from BBB damage, tissue infarction was first seen in the ischemic dorsal striatum and the parietal/insular cortex which experienced ~90% CBF reduction. Increased gelatinolytic activity colocalized with dextran leakage, and MMP-2 was found to be the major enzymatic source on gelatin zymograms. Pretreatment with MMP inhibitor GM6001 significantly reduced dextran leakage induced by 2-h and 3-h MCAO. Taken together, our findings reveal substantial differences in the topographic distribution of BBB damage and tissue infarction within the first 3h after MCAO onset. Unlike ischemic neuronal damage, BBB damage appears to develop faster in brain regions with moderately severe ischemia, and MMP-2 contributes to this early ischemic BBB damage.  相似文献   

7.
In a nerve crush model of denervation, we examined muscle matrix metalloproteinase (MMP) expression, localization and activity. In normal muscle, MMP mRNA levels were low, and immunohistochemically MMPs were distributed around the muscle fibre with MMPs-3, -7 and -9 also staining at the neuromuscular junction. Seven days after nerve crush, muscle MMP immunoreactivity, especially MMP-12 and MMP-14, became irregularly distributed. At 20 days reinnervation of the muscle was observed, and some restitution of the normal pattern of immunoreactivity was noted concomitant with a higher level of MMP mRNA expression. In situ zymography showed that MMP activity was very weak in normal muscle whereas it was increased up to 40 days following denervation. Our results suggest that MMPs in muscle are involved in the tissue changes following denervation. Further experiments are required to test the hypothesis that MMP inhibition may be beneficial in protecting muscle from excessive remodelling following denervation and therefore improve reinnervation.  相似文献   

8.
Matrix metalloproteinases (MMPs) disrupt the blood-brain barrier (BBB) during reperfusion. Occludin and claudins are recently described tight junction proteins (TJPs) that form the BBB. We hypothesized that the opening of the BBB was because of the degradation of TJPs by the MMPs. Spontaneously hypertensive rats had a 90 mins middle cerebral artery occlusion with reperfusion for 2, 3, or 24 h. Matrix metalloproteinases were measured by immunohistochemistry and in situ and gel zymography. Real-time polymerase chain reaction (PCR) measured mRNAs of MMP-2 and -9, furin, membrane-type MMP (MT1-MMP), occludin, and claudin-5. There was opening of the BBB in the piriform cortex after 3 h of reperfusion, and an MMP inhibitor, BB-1101 (30 mg/kg), prevented the opening. At 3 h, in situ zymograms showed gelatinase activity. Zymography and PCR showed greater increases in MMP-2 than in MMP-9. There were increased mRNA and immunohistochemistry for MT1-MMP and furin, which activate MMP-2. Claudin-5 and occludin mRNA expression decreased at 2 h in both hemispheres with fragments of both proteins seen on Western blot by 3 h on the ischemic side; treatment with BB-1101 reversed the degradation of the TJPs. Immunohistochemistry at 3 h showed fragmented TJPs within the endothelial cell clefts. By 24 h, in situ zymography showed gelatinase activity and gel zymography showed elevated levels of MMP-9. Disrupted TJPs previously seen in endothelial cells appeared in the surrounding astrocytes. Our results provide direct evidence that MMPs open the BBB by degrading TJPs and that an MMP inhibitor prevents degradation of the TJPs by MMPs.  相似文献   

9.
Adverse outcome in bacterial meningitis is associated with the breakdown of the blood-brain barrier (BBB). Matrix-metalloproteinases (MMPs) facilitate this process by degradation of components of the BBB. This in turn results in acute complications of bacterial meningitis including edema formation, increased intracranial pressure and subsequent ischemia. We determined the parenchymal balance of MMP-9 and TIMP-1 (tissue inhibitor of MMP) and the structural integrity of the BBB in relation to cortical damage in an infant rat model of pneumococcal meningitis. The data demonstrate that the extent of cortical damage is significantly associated with parenchymal gelatinolytic activity and collagen type IV degradation. The increased gelatinolysis was found to be associated with a brain parenchymal imbalance of MMP-9/TIMP-1. These findings provide support to the concept that MMPs mediated disruption of the BBB contributes to the pathogenesis of bacterial meningitis and that protection of the vascular unit may have neuroprotective potential.  相似文献   

10.
Although matrix metalloproteinases (MMPs) are increasingly being implicated in several pathologies of the nervous system, it is not yet clear what role they play in normal neurobiological processes. We review the expression of extracellular matrix (ECM) components as well as MMPs and tissue inhibitors of metalloproteinases (TIMPs) in the peripheral nervous system. We explore the expression of certain MMPs and the four TIMPs at the mRNA level in the postnatal mouse sciatic nerve. In addition, we have used substrate gel and in situ zymography to determine levels of MMP-2 and -9 and TIMP activity in rat sciatic nerve after crush and during regeneration. A rapid and transient increase in MMP-9 localised at and immediately distal to the site of injury was observed, whereas an increase in MMP-2 activity was delayed, prolonged, and extended proximal and distal to the injury site. This activity coincides with periods of axonal elongation, suggesting that it could act to facilitate axonal extension along the nerve matrix. We also detected multiple species of gelatinolytic inhibitory activity, including TIMP-1 and -3 in control and injured nerve. These activities probably act to prevent uncontrolled gelatinolytic activity, maintaining nerve integrity at the level essential for axonal regrowth.  相似文献   

11.
MMP-2 and MMP-9 levels in peripheral blood after subarachnoid hemorrhage   总被引:1,自引:0,他引:1  
MMPs play an important role in ischemic and hemorrhagic stroke. We analyzed replicate serum samples from 20 normal healthy individuals to assess reproducibility of MMP determinations, and found that MMP-2 and MMP-9 determinations were quite consistent. We then studied the serum levels of MMP-2 and MMP-9 in patients suffering from subarachnoid hemorrhage (SAH), another stroke subtype. Serum MMP-2 and MMP-9 levels from SAH patients were measured sequentially using gelatine zymography in 11 patients after acute SAH. The occurrence of intracerebral aneurysms and vasospasms and the initial Hunt and Hess score were analysed in relation to MMP-levels. MMP-2 levels are significantly decreased while MMP-9 levels are increased in SAH patients relative to controls. MMP-2 levels remain depressed out to day 12 post SAH, but MMP-9 levels may recover by day 12.  相似文献   

12.
Nerve crush or axotomy results in a transient or long-term denervation accompanied by remodelling in nerve, muscle and neuromuscular junctions. These changes include an increased turnover of several extracellular matrix molecules and proliferation of Schwann cells in injured nerves. Given the role of matrix degrading metalloproteinases MMP-2 and MMP-9 (gelatinases-type IV collagenases) in extracellular matrix remodelling, we investigated their regulation and activation in denervated muscles and injured nerves in mice. For this, immunofluorescence using MMP-2 and MMP-9 antibodies was carried concomitantly with gelatin zymography and quantification of gelatinase activity using [3H]-gelatin substrate. Results show that in normal mouse muscles MMP-2 and MMP-9 are localized at the neuromuscular junctions, in Schwann cells and the perineurium of the intramuscular nerves. In denervated mouse muscles, MMP-2 immunolabelling persists at the neuromuscular junctions but decreases in the nerves whereas MMP-9 immunolabelling persists at the neuromuscular junctions but is enhanced in degenerated intramuscular nerves. Denervated muscles did not show any significant change of gelatinolytic activity or expression pattern, while injured nerves exhibited a transient increase of MMP-9 and activation of MMP-2. In conclusion, this study demonstrates that MMP-2 and MMP-9 are expressed at mouse neuromuscular junctions and that their localization and expression pattern appear not to be modified by denervation. Their modulation in injured nerves suggests they are involved in axonal degeneration and regeneration.  相似文献   

13.
Matrix metalloproteinases (MMPs) belong to a large family of endopeptidases that regulate the pericellular environment through the cleavage of protein components of the extracellular matrix, membrane receptors and cytokines. MMP activity is controlled by the multifunctional tissue inhibitors of metalloproteinases (TIMPs). Proteases and their inhibitors are critically involved in developmental and pathological processes in numerous organs, including the brain. Global transient cerebral ischemia induces selective delayed neuronal death and neuroinflammation. We compared, in discrete vulnerable and resistant areas of the ischemic rat hippocampus, the kinetics and cellular distribution of gelatinase B and its principal inhibitor TIMP-1 and we assessed by in situ zymography, the net gelatinolytic activity at the cellular level. We show that gelatinases are expressed and active in neurons, suggesting that MMPs play a role in maintaining neural homeostasis. In the ischemic rat brain, expression and activity of gelatinase B, and expression of TIMP-1 are altered in a time-, region- and cell-dependent manner. Gelatinase B is induced first in reactive microglia and subsequently in reactive astrocytes. In situ, increases in gelatinase activity accompanied the progression of neuronal death and glial reactivity. Our results suggest that MMPs and TIMPs are involved in cell viability and tissue remodelling in the ischemic brain, and reinforces the idea that the MMP/TIMP system contributes both to neuronal demise and tissue repair in the context of glial reactivity.  相似文献   

14.
Microvascular integrity is lost during focal cerebral ischemia. The degradation of the basal lamina and extracellular matrix are, in part, responsible for the loss of vascular integrity. Matrix metalloproteinases (MMPs) may play a primary role in basal lamina degradation. By using a sensitive modification of gelatin zymography, the authors investigated the activity of MMP-2 and MMP-9 in frozen 10-microm sections of ischemic and nonischemic basal ganglia and plasma samples of 27 non-human primates after middle cerebral artery occlusion/reperfusion (MCAO/R) for various periods. The gelatinolytic activities were compared with parallel cell dUTP incorporation in the ischemic zones of adjacent sections. In the brain, the integrated density of MMP-2 increased significantly by 1 hour after MCAO and was persistently elevated thereafter. Matrix metalloproteinase-2 expression was highly correlated with the extent of neuron injury and the number of injured neurons (r = 0.9763, SE = 0.004, 2P < 0.0008). Matrix metalloproteinase-9 expression only was significantly increased in subjects with hemorrhagic transformation. In plasma, only MMP-9 increased transiently at 2 hours of MCAO. These findings highlight the early potential role of MMP-2 in the degradation of basal lamina leading to neuronal injury, and an association of MMP-9 with hemorrhagic transformation after focal cerebral ischemia.  相似文献   

15.
Previous studies have demonstrated that pioglitazone, a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, inhibits ischemia-induced injury in various tissues including neural tissue. Pioglitazone has also been shown to reduce matrix metalloproteinase (MMP) activity. Because MMP is known to play a major role in the pathophysiology of brain ischemia, the present study was undertaken to test whether pioglitazone attenuates ischemic neuronal damage through MMP inhibition. C57BL/6 mice were subjected to global brain ischemia for 20 min. Animals were killed 72 h after ischemia. Oral pioglitazone (40 mg/kg/day, as a suspension in 0.5% carboxymethylcellulose) was administered to mice twice daily for 3 days before ischemia and twice daily after ischemia until the animals were killed. We investigated gelatinase activity by zymography and laminin immunohistochemistry. Histological analysis was also performed to test the protective effect of pioglitazone on neuronal damage. Mice treated with pioglitazone had attenuated gelatinase activity. Gelatin gel and in situ zymography showed up-regulation of gelatinase activity after ischemia. Pioglitazone significantly inhibited ischemia-induced elevation of the active form of MMP-9. Pioglitazone also reduced up-regulation of in situ gelatinase activity and laminin breakdown induced by ischemia in the hippocampus. There was marked neuronal damage in the CA1 and CA2 areas after ischemia. Neuronal damage in mice was significantly decreased by pioglitazone treatment, compared with vehicle-treated mice. Pioglitazone also inhibited TdT-mediated dUTP nick end labeling staining in CA1 and CA2 areas. Pioglitazone, a PPARγ agonist, reduces delayed neuronal damage induced by global ischemia through inhibition of MMP-9 activity.  相似文献   

16.
17.
Hemorrhage and edema accompany evolving brain tissue injury after ischemic stroke. In patients, these events have been associated with metalloproteinase (MMP)-9 in plasma. Both the causes and cellular sources of MMP-9 generation in this setting have not been defined. MMP-2 and MMP-9 in nonhuman primate tissue in regions of plasma leakage, and primary murine microglia and astrocytes, were assayed by immunocytochemistry, zymography, and real-time RT-PCR. Ischemia-related hemorrhage was associated with microglial activation in vivo, and with the leakage of plasma fibronectin and vitronectin into the surrounding tissue. In strict serum-depleted primary cultures, by zymography, pro-MMP-9 was generated by primary murine microglia when exposed to vitronectin and fibronectin. Protease secretion was enhanced by experimental ischemia (oxygen-glucose deprivation, OGD). Primary astrocytes, on each matrix, generated only pro-MMP-2, which decreased during OGD. Microglia-astrocyte contact enhanced pro-MMP-9 generation in a cell density-dependent manner under normoxia and OGD. Compatible with observations in a high quality model of focal cerebral ischemia, microglia, but not astrocytes, respond to vitronectin and fibronectin, found when plasma extravasates into the injured region. Astrocytes alone do not generate pro-MMP-9. These events explain the appearance of MMP-9 antigen in association with ischemia-induced cerebral hemorrhage and edema.  相似文献   

18.
We examined the potential role of the extra-cellular matrix-degrading enzyme, matrix metalloproteinase-9 (MMP-9), in the pathogenesis of cerebral amyloid angiopathy (CAA)-induced spontaneous hemorrhage. The amyloid-beta peptide (Abeta) induced the synthesis, release and activation of MMP-9 in murine cerebral endothelial cells, resulting in increased extracellular matrix degradation. Furthermore, extensive MMP-9 immunoreactivity was observed in CAA-vessels with evidence of microhemorrhage in aged APPsw transgenic mice, but not detected in aged wild type or young APPsw mice. These results suggest that increased vascular MMP-9 expression, stimulated by Abeta, may play a role in the pathogenesis of spontaneous intracerebral hemorrhage in patients with CAA.  相似文献   

19.
Previous studies have demonstrated that (-)-epigallocatechin gallate (EGCG), a green tea polyphenol, protects against ischemia and reperfusion-induced injury in many organ systems. Here, we test the hypothesis that part of EGCG's neuroprotective effects may involve a modulation of matrix metalloproteinases (MMPs) after cerebral ischemia. C57BL/6 mice were subjected to 20 min of transient global cerebral ischemia. EGCG (50 mg/kg) or vehicle (saline) was administered i.p. immediately after ischemia. Brains were examined 3 days after ischemia. The effects of EGCG on MMP (gelatinase) activity and neuronal damage in the hippocampus were assessed. Gelatin gel zymography showed induction of active forms of MMP-9 protein after transient global cerebral ischemia. In situ zymography showed that ischemic gelatinase activity occurred primarily in pyramidal neuronal areas after brain ischemia. Mice treated with EGCG showed significantly reduced gelatinase levels. Neuronal damage was evident in CA1 and CA2 pyramidal sectors, corresponding to TUNEL-positive signals. In EGCG-treated mice, delayed neuronal damage was significantly reduced compared with vehicle-treated mice. These results demonstrate that the green tea polyphenol EGCG suppresses MMP-9 activation and reduces the development of delayed neuronal death after transient global cerebral ischemia in mouse brain.  相似文献   

20.
Ischemic stroke is a major, urgent neurologic disorder in which reactive oxygen species (ROS) are deeply involved in the detrimental effects. Platinum nanoparticle (nPt) species are a novel and strong scavenger of such ROS, so we examined the clinical and neuroprotective effects of nPts in mouse ischemic brain. Mice were subjected to transient middle cerebral artery occlusion (tMCAO) for 60 min. Upon reperfusion, nPt or vehicle was administered intravenously. At 48 hr after the tMCAO, motor function, infarct volume, immunohistochemistry of neurovascular components (endothelial NAGO, tight junctional occludin, and basal laminal collagen IV), and zymography for MMP-9 activity were examined. Superoxide anion generation at 2 hr after tMCAO was determined with oxidized hydroethidine. Compared with vehicle, treatment with nPts significantly improved the motor function and greatly reduced the infarct volume, especially in the cerebral cortex. Immunohistochemical analyses revealed that tMCAO resulted in a minimal decrease of NAGO and occludin but a great decrease of collagen IV and a remarkable increase of MMP-9. Treatment with nPts greatly reduced this decrease of collagen IV and activation of MMP-9 and, with large reductions of MMP-9 activation on zymography and superoxide production. The present study demonstrates that treatment with nPts ameliorates the neurological scores with a large reduction in infarct size as well as the preservation of outer components of the neurovascular unit (collagen IV) and inactivation of MMP-9. A strong reduction of superoxide anion production by nPts could account for such remarkable neurobehavioral and neuroprotective effects on ischemic stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号