首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The CB2 receptor is an attractive therapeutic target for analgesic and anti-inflammatory agents. Herein we describe the discovery of a novel class of oxadiazole derivatives from which potent and selective CB2 agonist leads were developed. Initial hit 7 was identified from a cannabinoid target-biased library generated by virtual screening of sample collections using a pharmacophore model in combination with a series of physicochemical filters. 7 was demonstrated to be a selective CB2 agonist (CB2 EC50 = 93 nM, Emax = 98%, CB1 EC50 > 10 microM). However, this compound exhibited poor solubility and relatively high clearance in rat, resulting in low oral bioavailability. In this paper, we report detailed SAR studies on 7 en route toward improving potency, physicochemical properties, and solubility. This effort resulted in identification of 63 that is a potent and selective agonist at CB2 (EC50 = 2 nM, Emax = 110%) with excellent pharmacokinetic properties.  相似文献   

2.
Inhibitors of transforming growth factor beta (TGF-beta) type I receptor (ALK5) offer a novel approach for the treatment of fibrotic diseases such as renal, hepatic, and pulmonary fibrosis. The optimization of a novel phenylpyridine pyrazole series (1a) led to the identification of potent, selective, and orally active ALK5 inhibitors. The cellular potency and pharmacokinetics profiles of these derivatives were improved and several compounds presented antifibrotic activity when orally administered to rats in an acute liver model of dimethylnitrosamine- (DMN-) induced expression of collagen IA1 mRNA, a major gene contributing to excessive extra cellular matrix deposit. One of the most potent ALK5 inhibitors identified in this chemical series, compound 13d (GW788388), reduced the expression of collagen IA1 by 80% at a dose of 1 mg/kg twice a day (b.i.d.). This compound significantly reduced the expression of collagen IA1 mRNA when administered orally at 10 mg/kg once a day (u.i.d.) in a model of puromycin aminonucleoside-induced renal fibrosis.  相似文献   

3.
5-(4-Dimethylaminobenzyl)imidazolidine-2,4-dione was prepared by catalytic hydrogenation of the corresponding benzylidene compound. Antidepressant testing in mice indicated that its ED50 values for antagonism of tetrabenazine-induced ptosis and potentiation of levodopa-induced behavioral changes were 42 and 17 mg/kg po, respectively. In vitro neurochemical studies demonstrated that this compound did not inhibit the uptake of selected biogenic amines into crude synaptosomes of mouse whole brain, and it did not have significant monoamine oxidase inhibitory activity in vivo and vitro. Thus, this compound possesses potential antidepressant activity with a mechanism different from that of the tricyclic antidepressants and monoamine oxidase inhibitors.  相似文献   

4.
N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716; 1) is a potent and selective antagonist for the CB1 cannabinoid receptor. Using the AM1 molecular orbital method, conformational analysis of 1 around the pyrazole C3 substituent identified four distinct conformations designated Tg, Ts, Cg, and Cs. The energetic stability of these conformers followed the order Tg > Cg > Ts > Cs for the neutral (unprotonated) form of 1 and Ts > Tg > Cs > Cg for its piperidine N-protonated form. Unified pharmacophore models for the CB1 receptor ligands were developed by incorporating the protonated form of 1 into the superimposition model for the cannabinoid agonists 4-[4-(1,1-dimethylheptyl)-2-hydroxyphenyl]perhydro-2alpha,6beta-dihydroxynaphthalene (CP55244; 2) and the protonated form of (R)-[2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl](1-naphthalenyl)methanone (WIN55212-2; 3) reported previously (Shim et al. In Rational Drug Design Symposium Series; Parrill, A. L., Reddy, M. R., Eds.; American Chemical Society: Washington, DC, 1999; pp 165-184). Values of K(i) for 1 and a series of 31 structural analogues were determined from radioligand binding analyses by competitive displacement of [3H]CP55940 from cannabinoid receptors in a rat brain membrane preparation. Comparative molecular field analysis (CoMFA) was employed to construct three-dimensional (3D)-quantitative structure-activity relationship (QSAR) models for this data set as unprotonated species assuming the Tg, Cg, and Ts conformers and for the protonated species assuming the Ts, Tg, and Cs conformers. Values of the conventional r2 and cross-validated r2 (r(cv)2) associated with these CoMFA models exceeded the threshold for statistical robustness (r2 > or = 0.90) and internal predictive ability (r(cv)2 > or = 0.50) in each of these six cases except for the protonated species assuming the Tg conformer (i.e., r2 = 0.97; r(cv)2 = 0.36). Results from conformational analyses, superimposition models, and 3D-QSAR models suggest that the N1 aromatic ring moiety of 1 dominates the steric binding interaction with the receptor in much the same way as does the C3 alkyl side chain of cannabinoid agonists and the C3 aroyl ring of the aminoalkylindole agonists. We also determined that several of the conformers considered in this study possess the proper spatial orientation and distinct electrostatic character to bind to the CB1 receptor. We propose that the unique region in space occupied by the C5 aromatic ring of 1 might contribute to conferring antagonist activity. We further propose that the pyrazole C3 substituent of 1 might contribute to conferring either neutral antagonist or inverse agonist activity, depending upon the interaction with the receptor.  相似文献   

5.
A series of novel 2-(4-(2,4-dimethoxybenzoyl)phenoxy)-1-(4-(3-(piperidin-4-yl)propyl) piperidin-1-yl)ethanone derivatives 9(a-e) and 10(a-g) were synthesized and characterized by (1) H NMR, IR, mass spectral, and elemental analysis. These novel compounds were evaluated for their antileukemic activity against two human leukemic cell lines (K562 and CEM) by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assay. Some of the tested compounds showed good antiproliferative activity with IC(50) values ranging from 1.6 to 8.0 μm. Compound 9c, 9e, and 10f with an electron-withdrawing halogen substituent at the para position on the phenyl ring showed excellent in vitro potency against tested human leukemia cells (K562 and CEM).  相似文献   

6.
We have previously developed quinolone-3-carboxamides with the aim of obtaining new ligands for both cannabinoid receptors, CB1 and CB2. Our preliminary screening led to the identification of cannabinoid receptor ligands characterized by high affinity and, in some cases, also selectivity for CB2 receptors. Specifically, three compounds, 1, 2 and 3 showed high affinity for CB2 as well as high selectivity over CB1 receptors. In addition, the activity shown by 1 against the formalin-induced nocifensive response in mice, reported in our previous paper, suggests that quinolone-3-carboxamides possess anti-nociceptive properties. In the present work, we have performed functional in vitro bioassays with the aim of investigating the functional activity in the [35S]GTPγS binding assay of the other two compounds that, like 1, behave as CB2 selective ligands, and their potential analgesic actions in vivo. We found that both 2 and 3 behave in vitro as CB2 inverse agonists and are able to decrease nociceptive behaviour in the late phase of the formalin test only at the highest dose tested, although, at lower doses, they prevent the anti-nociceptive effects of a selective CB2 partial agonist in the formalin test. These results identify in 2 and 3 two novel, potent and selective CB2 antagonists/inverse agonists and confirm previous reports in the literature that, in addition to agonists at cannabinoid CB2 receptors, also inverse agonists/antagonists at these receptors show promise as anti-inflammatory agents.  相似文献   

7.
Selective CB2 receptor agonists are promising potential therapeutic agents for the treatment of inflammatory and neuropathic pain. A focused screen identified a pyrimidine ester as a partial agonist at the CB2 receptor with micromolar potency. Subsequent lead optimization identified 35, GW842166X, as the optimal compound in the series. 35 has an oral ED50 of 0.1 mg/kg in the rat FCA model of inflammatory pain and was selected as a clinical candidate for this indication.  相似文献   

8.
Several 1-cyclohexylpiperazine derivatives related to sigma(2) receptor ligand 1-cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]piperazine (33, K(i) = 0.34 nM) were synthesized and tested in radioligand binding assays, to attempt a structure-affinity relationship study. Intermediate alkyl chain length and methoxyl group position on the tetralin nucleus were varied. A few naphthalene analogues were also prepared. High affinities were found in sigma(2) receptor binding for almost all compounds, some of which displayed K(i) values in subnanomolar range, but low sigma(2)/sigma(1) selectivities were found. The highest sigma(2) affinities were displayed by compounds with an intermediate alkyl chain of three (32 and 43) or five methylenes (39 and 46). Quite high sigma(1) receptor affinity was found for compounds with a four-methylene chain; 36 (K(i) = 0.036 nM) and 45 (K(i) = 0.22 nM) displaying good sigma(1)/sigma(2) selectivity (406- and 139-fold, respectively). Moreover, homologues of compound 33 displayed also satisfactory selectivities over dopamine D(2)-like, serotonin 5-HT(3), and adrenergic alpha(1) receptors. These compounds and a few others were tested in the inhibition of the electrically evoked contractions in guinea pig bladder and were demonstrated to be full sigma(2) agonists. The activity values correlated well to the affinity scale (EC(50) in microM range). 33 and related compounds are proposed as a class of potential antineoplastic and PET diagnosis agents.  相似文献   

9.
Cannabinoid receptor agonists have gained attention as potential therapeutic targets of inflammatory and neuropathic pain. Here, we report the identification and optimization of a series of 7-oxo-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxamide derivatives as a novel chemotype of selective cannabinoid CB(2) receptor agonists. Structural modifications led to the identification of several compounds as potent and selective cannabinoid receptor agonists (20, hCB(2)K(i) = 2.5 nM, SI = 166; 21, hCB(2)K(i) = 0.81 nM, SI = 383; 38, hCB(2)K(i) = 15.8 nM, SI > 633; 56, hCB(2)K(i) = 8.12 nM, SI > 1231; (R)-58, hCB(2)K(i) = 9.24 nM, SI > 1082). The effect of a chiral center on the biological activity was also investigated, and it was found that the (R)-enantiomers exhibited greater affinity at the CB(2) receptor than the (S)-enantiomers. In 3,5-cyclic adenosine monophosphate assays, the novel series behaved as agonists, exhibiting functional activity at the human CB(2) receptor.  相似文献   

10.
5-Arylsulfonylamido-3-(pyrrolidin-2-ylmethyl)-1H-indoles have been identified as high-affinity 5-HT(6) receptor ligands. Within this class, several of the (R)-enantiomers were potent agonists having EC(50) values of 1 nM or less and functioning as full agonists while the (S)-enantiomers displayed moderate antagonist activity.  相似文献   

11.
The identification of the CB2 cannabinoid receptor has provided a novel target for the development of therapeutically useful cannabinergic molecules. We have synthesized benzo[ c]chromen-6-one analogs possessing high affinity and selectivity for this receptor. These novel compounds are structurally related to cannabinol (6,6,9-trimethyl-3-pentyl-6 H-benzo[ c]chromen-1-ol), a natural constituent of cannabis with modest CB2 selectivity. Key pharmacophoric features of the new selective agonists include a 3-(1',1'-dimethylheptyl) side chain and a 6-oxo group on the cannabinoid tricyclic structure that characterizes this class of compounds as "cannabilactones." Our results suggest that the six-membered lactone pharmacophore is critical for CB2 receptor selectivity. Optimal receptor subtype selectivity of 490-fold and subnanomolar affinity for the CB2 receptor is exhibited by a 9-hydroxyl analog 5 (AM1714), while the 9-methoxy analog 4b (AM1710) had a 54-fold CB2 selectivity. X-ray crystallography and molecular modeling show the cannabilactones to have a planar ring conformation. In vitro testing revealed that the novel compounds are CB2 agonists, while in vivo testing of cannabilactones 4b and 5 found them to possess potent peripheral analgesic activity.  相似文献   

12.
In an attempt to counteract bacterial pathogenicity, a set of novel imidazolidine-2,4-dione and 2-thioxoimidazolidin-4-one derivatives was synthesized and evaluated as inhibitors of bacterial virulence. The new compounds were characterized and screened for their effects on the expression of virulence factors of Pseudomonas aeruginosa, including protease, hemolysin, and pyocyanin. Imidazolidine-2,4-diones 4c , 4j , and 12a showed complete inhibition of the protease enzyme, and they almost completely inhibited the production of hemolysin at 1/4 MIC (1/4 minimum inhibitory concentration; 1, 0.5, and 0.5 mg/ml, respectively). 2-Thioxoimidazolidin-4-one derivative 7a exhibited the best inhibitory activity (96.4%) against pyocyanin production at 1 mg/ml (1/4 MIC). A docking study was preformed to explore the potential binding interactions with quorum-sensing receptors (LasR and RhlR), which are responsible for the expression of virulence genes.  相似文献   

13.
4-[4-(吡啶-3-基)咪唑-1-基]丁胺的合成   总被引:3,自引:1,他引:3  
以3-乙酰基吡啶为起始原料,经肟化、磺酰化、氧化、环合、还原得到3-(咪唑-4-基)吡啶,再经与N-(4-溴丁基)邻苯二甲酰亚胺缩合及肼解等反应制得抗菌剂泰利霉素的特定侧链化合物4-[4-(吡啶-3-基)咪唑-1-基]丁胺,总收率24%.  相似文献   

14.
A series of variously substituted 2-(4,5-dihydro-1H-imidazol-2-yl)indazoles 3a-j and 2-(4,5-dihydro-1H-imidazol-2-yl)-4,5,6,7-tetrahydroindazole 6 were prepared by the regiospecific heteroalkylation of corresponding indazoles 1a-k with 2-chloro-4,5-dihydroimidazole (2). Their affinity to imidazoline I(2) receptors and alpha(2)-adrenergic receptors was determined by radioligand binding assay carried out on P(2) membrane preparations obtained from rat whole brains. 4-Chloro-2-(4,5-dihydro-1H-imidazol-2-yl)indazole (3f, 4-Cl-indazim) showed a 3076-fold difference in affinity for the [(3)H]2BFI-labeled imidazoline I(2) receptors relative to the [(3)H]RX821001-labeled alpha(2)-adrenergic receptors. This highly selective compound should prove to be useful tool in further understanding the functions of the imidazoline I(2) receptors.  相似文献   

15.
P2-receptors (P2-Rs) represent important targets for novel drug development. Most ATP analogues proposed as potential drug candidates have shortcomings such as limited receptor-selectivity and limited stability that justify the search for new P2-R agonists. Therefore, a novel series of nucleotides based on the adenosine 5'-O-(1-boranotriphosphate) (ATP-alpha-B) scaffold was developed and tested as P2Y(1)-R agonists. An efficient four-step one-pot synthesis of several ATP-alpha-B analogues from the corresponding nucleosides was developed, as well as a facile method for the separation of the diastereoisomers (A and B isomers) of the chiral products. The potency of the new analogues as P2Y(1)-R agonists was evaluated by the agonist-induced Ca2+ release of HEK 293 cells stably transfected with rat-brain P2Y(1)-R. ATP-alpha-B A isomer was equipotent with ATP (EC50 = 2 x 10(-7) M). However, 2-MeS- and 2-Cl- substitutions on ATP-alpha-B (A isomer) increased the potency of the agonist up to 100-fold, with EC50 values of 4.5 x 10(-9) and 3.6 x 10(-9) M, compared to that of the ATP-alpha-B (A isomer). Diastereoisomers A of all ATP-alpha-B analogues were more potent in inducing Ca2+ release than the corresponding B counterparts, with a 20-fold difference for 2-MeS-ATP-alpha-B analogues. The chemical stability of the new P2Y(1)-R agonists was evaluated by 31P NMR under physiological and gastric-juice pH values at 37 degrees C, with rates of hydrolysis of 2-MeS-ATP-alpha-B of 1.38 x 10(-7) s-1 (t1/2 of 1395 h) and 3.24 x 10(-5) s-1 (t1/2 = 5.9 h), respectively. The enzymatic stability of the new analogues toward spleen NTPDase was evaluated. Most of the new analogues were poor substrates for the NTPDase, with ATP-alpha-B (A isomer) hydrolysis being 5% of the hydrolysis rate of ATP. Diastereoisomers A and B exhibited different stability, with A isomers being significantly more stable, up to 9-fold. Furthermore, A isomers that are potent P2Y(1)-R agonists barely interact with NTPDase, thus exhibiting protein selectivity. Therefore, on the basis of our findings, the new, highly water-soluble, P2Y(1)-R agonists may be considered as potentially promising drug candidates.  相似文献   

16.
Archives of Pharmacal Research - Even though nicotinic acid (niacin) appears to have beneficial effects on human lipid profiles, niacin-induced cutaneous vasodilatation called flushing limits its...  相似文献   

17.
In our pursuit of developing a novel and potent potassium-competitive acid blocker (P-CAB), we synthesized pyrrole derivatives focusing on compounds with low log?D and high ligand-lipophilicity efficiency (LLE) values. Among the compounds synthesized, the compound 13e exhibited potent H(+),K(+)-ATPase inhibitory activity and potent gastric acid secretion inhibitory action in vivo. Its maximum efficacy was more potent and its duration of action was much longer than those of proton pump inhibitors (PPIs). Therefore, compound 13e (1-[5-(2-fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl]-N-methylmethanamine fumarate, TAK-438) was selected as a drug candidate for the treatment of gastroesophageal reflux disease (GERD), peptic ulcer, and other acid-related diseases.  相似文献   

18.
The myeloproliferative neoplasms, polycythemia vera, essential thrombocythemia, and idiopathic myelofibrosis are a heterogeneous but related group of hematological malignancies characterized by clonal expansion of one or more myeloid lineages. The discovery of the Jak2 V617F gain of function mutation highlighted Jak2 as a potential therapeutic target in the MPNs. Herein, we disclose the discovery of a series of pyrazol-3-yl pyrimidin-4-amines and the identification of 9e (AZD1480) as a potent Jak2 inhibitor. 9e inhibits signaling and proliferation of Jak2 V617F cell lines in vitro, demonstrates in vivo efficacy in a TEL-Jak2 model, has excellent physical properties and preclinical pharmacokinetics, and is currently being evaluated in Phase I clinical trials.  相似文献   

19.
1H,3H-Pyrido[2,1-f]purine-2,4-diones, which can be described as fused xanthine structures, have been synthesized by a novel synthetic procedure, and their affinities for the human adenosine A(1), A(2A), and A(3) receptors have been evaluated in radioligand binding studies. The synthetic procedure employed was developed in our laboratory and involved a two-step one-pot reaction that consists of the treatment of 6-aminouracil derivatives with N-bromosuccinimide to generate a 5,5-dibromo-6-imino intermediate that reacts "in situ" with pyridine, 4-methoxypyridine, 4-tert-butylpyridine, or 4-phenylpyridine to afford the corresponding 1H,3H-pyrido[2,1-f]purine-2,4-diones (2-5). Functionalization at the N(3) position in compounds 2-5 was performed by reaction with DBU and different alkyl, alkenyl, alkynyl, or benzyl halides. Binding studies at human adenosine A(1), A(2A), and A(3) receptors revealed significant antagonist effects in the low nanomolar range, in particular against the A(3) receptor. Thus, the 1-benzyl-3-propyl-1H,3H-pyrido[2,1-f]purine-2,4-dione derivative 6, which can be considered a lead compound in this series, exhibited a K(i) value of 4.0 +/- 0.3 nM against the hA(3) receptor. Because xanthine derivatives have traditionally been considered poor A(3) antagonists, the described pyrido[2,1-f]purine-2,4-dione derivatives represent a new family of adenosine receptor antagonists which deserves further exploration.  相似文献   

20.
With the aim of identifying structurally novel, centrally acting histamine H(3) antagonists, a series of 2-(4-alkylpiperazin-1-yl)quinolines was prepared. Systematic variation of the substituents led to highly potent histamine H(3) antagonists with low polar surface area and appropriate log P for blood-brain barrier penetration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号