首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Interactions between neurons and astrocytes play a critical role in the central nervous system homeostasis. Cyperus rotundus (family: Cyperaceae), a traditional Indian medicinal herb, used as nervine tonic and nootropic in the Ayurvedic system of medicine. The present study was undertaken to investigate the neuroprotective effect of total oligomeric flavonoids (TOFs), prepared from C. rotundus, in rat model of cerebral ischemia and reperfusion. Male Sprague Dawley rats (290-340 g) were subjected to middle cerebral artery occlusion (MCAO) for 2 h and reperfusion for 70 h. Experimental animals were divided into four groups: Group I - sham operated (n = 7); Group II - vehicle treated ischemic-reperfusion (IR) (n = 9), and Group III and IV - TOFs treated (100 and 200 mg/kg body weight, p.o., respectively; n = 7 in each group). Vehicle or TOFs were pretreated for four days before the induction of ischemia and continued for next three days after the ischemia i.e. treatment was scheduled totally for a period of 7 days. MCAO surgery was performed on day 4, 1 h after TOFs administration. Neuroprotective effect of TOFs was substantiated in terms of neurological deficits, excitotoxicity (glutamate, glutamine synthetase and Na+K+ATPase levels), oxidative stress (malondialdehyde, super oxide dismutase, and glutathione) and neurobehavioral functions in the experimental animals. TOFs decreased glutamate, glutamine synthetase (GS) and increased Na+K+ATPase activity in a dose dependent manner when compared to the IR rats. Treatment with TOFs significantly reduced the neurological deficits and reversed the anxiogenic behavior in rats. Further, it also significantly decreased MDA and increased superoxide dismutase (SOD) and glutathione content in brains of experimental rats. Histopathological examination using cresyl violet staining revealed the attenuation of neuronal loss by TOFs in stroke rats. The present study demonstrates the unswerving involvement of TOFs on ischemia-reperfusion triggered biochemical alterations in MCAO/R rats. Hence, TOFs might be an attractive candidate for further studies in the development of new drugs for cerebral stroke treatment.  相似文献   

2.
Nicotinamide adenine dinucleotide (NAD+) is a central signaling molecule and enzyme cofactor that is involved in a variety of fundamental biological processes. NAD+ levels decline with age, neurodegenerative conditions, acute brain injury, and in obesity or diabetes. Loss of NAD+ results in impaired mitochondrial and cellular functions. Administration of NAD+ precursor, nicotinamide mononucleotide (NMN), has shown to improve mitochondrial bioenergetics, reverse age-associated physiological decline, and inhibit postischemic NAD+ degradation and cellular death. In this study, we identified a novel link between NAD+ metabolism and mitochondrial dynamics. A single dose (62.5 mg/kg) of NMN, administered to male mice, increases hippocampal mitochondria NAD+ pools for up to 24 hr posttreatment and drives a sirtuin 3 (SIRT3)-mediated global decrease in mitochondrial protein acetylation. This results in a reduction of hippocampal reactive oxygen species levels via SIRT3-driven deacetylation of mitochondrial manganese superoxide dismutase. Consequently, mitochondria in neurons become less fragmented due to lower interaction of phosphorylated fission protein, dynamin-related protein 1 (pDrp1 [S616]), with mitochondria. In conclusion, manipulation of mitochondrial NAD+ levels by NMN results in metabolic changes that protect mitochondria against reactive oxygen species and excessive fragmentation, offering therapeutic approaches for pathophysiologic stress conditions.  相似文献   

3.
N Lu  M Zhan  C Gao  G Wu  H Zhang 《Thrombosis research》2012,130(4):e209-e215

Introduction

1-[4-[2-(4-Bromobenzene-sulfonamino)ethyl]phenylsulfonyl]-3-(trans-4-methylcy-clohexyl)urea(I4, CAS865483-06-3); a totally synthetic new sulfonylurea compound, combining the hypoglycemic active structure of Glimepiride (CAS 93479-97-1) and anti-TXA2 receptor (TP) active structure of BM-531(CAS 284464-46-6), was designed and synthesized. Its effects on TXA2 synthesis and TP have not been reported yet.

Aim

To study the inhibitory effects of I4 and its mechanisms of action on TXA2 and TP.

Methods

Platelet aggregation studies were performed on human platelet, rat whole blood platelet and rabbit platelet, platelets aggregation was induced by TP agonist U-46619(stable analog of TXA2, CAS 56985-40-1). Plasma TXB2 and 6-keto-prostaglandin F (6-keto-PGF) were used as markers to determine the effect of I4 on thromboxane synthesis. Fluo-3-AM was used to measure the cytosolic Ca2 + concentrations ([Ca2 +]i) in rabbit platelet. Aorta rings with and without endothelium were prepared and aorta contraction was induced by U-46619. A model of type 2 diabetes mellitus was established by intraperitoneal injection of low dose of streptozocin to rats fed a high-calorie diet. Both normal rats and type 2 diabetic rats were used to assay the inhibitory effect of I4 on platelet aggregation induced by U-46619.

Results

I4 exhibited a higher inhibitory potency than Glimepiride on U-46619 induced platelet aggregation in vitro and in vivo. I4 increased the ratio of plasma PGI2/TXA2 and decreased [Ca2 +]i release from platelet internal stores. In addition, I4 presented a vasorelaxant activity on isolated rat aorta contraction induced by U-46619.Oral administration of I4 (1 ~ 10 mg/kg) markedly and dose-dependently inhibited platelet aggregation in both normal rats and type 2 diabetic rats.

Conclusion

I4 significantly inhibited platelet aggregation induced by U-46619 in vitro and in vivo, and rat aorta contraction. It probably acts by partly blocking TXA2 action, decreasing the platelet intracellular Ca2 +, and increasing the PGI2/TXA2 ratio.  相似文献   

4.

Introduction

Downregulation of calsequestrin (CSQ), a major Ca2 + storage protein, may contribute significantly to the hyperactivity of internal Ca2 + ([Ca2 +]i) in diabetic platelets. Here, we investigated changes in CSQ-1 abundance, Ca2 + signaling and aggregation responses to stimulation with the progression of diabetes, especially the mechanism(s) underlying the exaggerated Ca2 + influx in diabetic platelets.

Materials and methods

Type 1 diabetes was induced by streptozotocin in rats. Platelet [Ca2 +]i and aggregation responses upon ADP stimulation were assessed by fluorescence spectrophotometry and aggregometry, respectively. CSQ-1 expression was evaluated using western blotting.

Results

During the 12-week course of diabetes, the abundance of CSQ-1, basal [Ca2 +]i and ADP-induced Ca2 + release were progressively altered in diabetic platelets, while the elevated Ca2 + influx and platelet aggregation were not correlated with diabetes development. 2-Aminoethoxydiphenyl borate, the store-operated Ca2 + channel blocker, almost completely abolished ADP-induced Ca2 + influx in normal and diabetic platelets, whereas nifedipine, an inhibitor of the nicotinic acid adenine dinucleotide phosphate receptor, showed no effect. Additionally, inhibition of Na+/Ca2 + exchange induced much slower Ca2 + extrusion and more Ca2 + influx in normal platelets than in diabetic platelets. Furthermore, under the condition of Ca2 +-ATPase inhibition, ionomycin caused greater Ca2 + mobilization and Ca2 + influx in diabetic platelets than in normal platelets.

Conclusions

These data demonstrate that platelet hyperactivity in diabetes is caused by several integrated factors. Besides the downregulation of CSQ-1 that mainly disrupts basal Ca2 + homeostasis, insufficient Na+/Ca2 + exchange also contributes, at least in part, to the hyperactive Ca2 + response to stimulation in diabetic platelets.  相似文献   

5.
Surface electrical stimulation was used to provoke direct cortical responses, spreading cortical depression, and concomitant increases in oxidative metabolic activity in cat neocortex in situ during and after short periods of incomplete and complete ischemia. These metabolic changes were recorded continuously in the intact tissue by monitoring the fluorescence of NADH (as NAD+ does not fluoresce under these optical conditions). Ischemic effects were unidirectional and progressive with the degree of perfusion decrease. Incomplete ischemia was accompanied by decreased excitability and amplitude of metabolic responses to stimulation. During incomplete ischemia when the NADH:NAD+ ratio was increased, the brain continued to respond to spreading cortical depression with oxidation of NADH indicating that the capability for increased respiration still resided within the tissue. In cats that survived complete ischemia, these reaction rates became unchanged from control. In other cats, the rate of NAD+ re-reduction after spreading depression continued to decrease and death inevitably followed. These findings confirm that short ischemic periods produce alterations in oxidative metabolic capabilities indicative of respiratory uncoupling, resulting in decreased excitability and decreased capacity to respond to increased metabolic demand.  相似文献   

6.
Inhibitors of poly(ADP-ribose) polymerase (PARP), including benzamide, protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopamine neurotoxicity in vivo [Cosi et al., Brain Res. 729 (1996) 264–269]. In vitro, the activation of PARP by free radical damaged DNA has been shown to be correlated with rapid decreases in the cellular levels of its substrate nicotinamide adenine dinucleotide (NAD+), and ATP. Here, we investigated in vivo whether MPTP acutely caused region- and time-dependent changes in brain levels of NAD+, ATP, ADP and AMP in C57BL/6N mice killed by head-focused microwave irradiation, and whether such effects were modified by treatments with neuroprotective doses of benzamide. At 1 h after MPTP injections (4×20 mg/kg i.p.), NAD+ was reduced by 11–13% in the striatum and ventral midbrain, but not in the frontal cortex. The ATP/ADP ratio was reduced by 10% and 32% in the striatum and cortex, respectively, but was unchanged in the midbrain. All of these regional changes were prevented by co-treatment with benzamide (2×160 mg/kg i.p.), which by itself did not alter regional levels of NAD+, ATP, ADP or AMP in control mice. In a time-course study, a single dose of MPTP (30 mg/kg i.p.) resulted in maximal and transient increases in striatal levels of MPP+ and 3-methoxytyramine (+540%) at 0.5–2 h, followed by maximal and coincidental decreases in NAD+ (−10%), ATP (−11%) and dopamine content (−39%) at 3 h. Benzamide (1×640 mg/kg i.p., 30 min before MPTP) partially reduced MPP+ levels by 30% with little or no effect on MPTP or MPDP+ levels, did not affect or even slightly potentiated the increase in 3-methoxytyramine, and completely prevented the losses in striatal NAD+, ATP and dopamine content, without by itself causing any changes in these latter parameters in control mice. These results (1) confirm that MPTP reduces striatal ATP levels [Chan et al., J. Neurochem. 57 (1991) 348–351.]; (2) show that MPTP causes a regionally-dependent (striatal and midbrain) loss of NAD+; (3) indicate that the PARP inhibitor benzamide can prevent these losses without interfering with MPTP-induced striatal dopamine release; and (4) provide further evidence to suggest an involvement of PARP in MPTP-induced neurotoxicity in vivo.  相似文献   

7.
Neurons require large amounts of energy to support their survival and function, and are therefore susceptible to excitotoxicity, a form of cell death involving bioenergetic stress that may occur in several neurological disorders including stroke and Alzheimer’s disease. Here we studied the roles of NAD+ bioenergetic state, and the NAD+-dependent enzymes SIRT1 and PARP-1, in excitotoxic neuronal death in cultured neurons and in a mouse model of focal ischemic stroke. Excitotoxic activation of NMDA receptors induced a rapid decrease of cellular NAD(P)H levels and mitochondrial membrane potential. Decreased NAD+ levels and poly (ADP-ribose) polymer (PAR) accumulation in nuclei were relatively early events (<4 h) that preceded the appearance of propidium iodide- and TUNEL-positive cells (markers of necrotic cell death and DNA strand breakage, respectively) which became evident by 6 h. Nicotinamide, an NAD+ precursor and an inhibitor of SIRT1 and PARP1, inhibited SIRT1 deacetylase activity without affecting SIRT1 protein levels. NAD+ levels were preserved and PAR accumulation and neuronal death induced by excitotoxic insults were attenuated in nicotinamide-treated cells. Treatment of neurons with the SIRT1 activator resveratrol did not protect them from glutamate/NMDA-induced NAD+ depletion and death. In a mouse model of focal cerebral ischemic stroke, NAD+ levels were decreased in both the contralateral and ipsilateral cortex 6 h after the onset of ischemia. Stroke resulted in dynamic changes of SIRT1 protein and activity levels which varied among brain regions. Administration of nicotinamide (200 mg/kg, i.p.) up to 1 h after the onset of ischemia elevated brain NAD+ levels and reduced ischemic infarct size. Our findings demonstrate that the NAD+ bioenergetic state is critical in determining whether neurons live or die in excitotoxic and ischemic conditions, and suggest a potential therapeutic benefit in stroke of agents that preserve cellular NAD+ levels. Our data further suggest that, SIRT1 is linked to bioenergetic state and stress responses in neurons, and that under conditions of reduced cellular energy levels SIRT1 enzyme activity may consume sufficient NAD+ to nullify any cell survival-promoting effects of its deacetylase action on protein substrates.  相似文献   

8.

Introduction

Diabetes mellitus is complicated by accelerated atherosclerosis, resulting in an increased risk of coronary artery disease (CAD) and thrombosis. Despite the proven benefits of aspirin, previous studies indicate a reduced cardiovascular protection from aspirin in diabetic patients. We aimed to investigate whether diabetes mellitus influenced the platelet response to aspirin in patients with CAD.

Materials and Methods

Platelet aggregation and activation were evaluated during aspirin treatment in 85 diabetic and 92 non-diabetic patients with CAD. Adherence to aspirin was carefully controlled. All patients had CAD verified by coronary angiography and were taking 75 mg non-enteric coated aspirin daily.

Results

Diabetic patients showed significantly higher levels of platelet aggregation compared to non-diabetic patients evaluated by VerifyNow® Aspirin (p = 0.03) and Multiplate® aggregometry using arachidonic acid (AA) 0.5 mM (p = 0.005) and 1.0 mM (p = 0.009). In addition, platelet activation determined by soluble P-selectin was significantly higher in diabetics compared to non-diabetics (p = 0.005). The higher AA-induced aggregation was associated with higher levels of HbA1c. Compliance was confirmed by low levels of serum thromboxane B2 (below 7.2 ng/mL). Diabetics had significantly higher levels of serum thromboxane B2 (p < 0.0001).

Conclusions

Diabetic patients with CAD had significantly higher levels of both platelet aggregation and activation compared to non-diabetic patients with CAD despite treatment with the same dosage of aspirin. These findings may partly explain the reduced cardiovascular protection from aspirin in diabetic patients.  相似文献   

9.
Status epilepticus occurring in early postnatal development protects CA1 hippocampal neurons, the region most sensitive to seizure-induced injury in the developing brain. Here, we developed a “two hit” model in dissociated cultures of the rat hippocampus to test whether pre-exposure of immature neurons to high concentrations of glutamate, N-methyl-d-aspartic acid (NMDA) or α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) during a relatively resistant period prevents neurons from dying following a second exposure to the same chemicals after neurons mature and become highly vulnerable to excitatory amino acids (EAAs). Cultures were exposed to varied doses of glutamate, NMDA, or AMPA for 48 h at 5 DIV and again at 14 DIV for 5, 15, or 30 min. NeuN immunohistochemistry showed early exposure to glutamate (500 μM) killed approximately half of the neurons (52 ± 8.6%) compared to the marked depletion that occurs after one exposure at 14 DIV (98 ± 0.79%). When cultures were first challenged with moderate doses of glutamate (200 μM) followed by the high dose 7 days later, a significant population of neurons was spared (35.3 ± 1.2%). Similarly, pre-exposure to maximal doses of NMDA (100 μM) increased the proportion of surviving cells following the second challenge. In contrast, AMPA (100 μM) was equally toxic after early or late applications and did not protect from the second exposure. GluR1 subunit expression was markedly decreased at 48 h after one or two exposures to 200 μM glutamate (by 44.57 ± 3.6%, 45.07 ± 3.69%) whereas GluR2 subunit expression was reduced by a lesser amount (25.7 57 ± 3.8%). Confocal microscopy showed that one or two exposures to NMDA caused GluR2 protein to downregulate even further whereas parvalbumin (PV) was dramatically increased in the same neurons by over four-fold. On the other hand, calbindin (CB) immunoreactivity was nearly absent after the first exposure to 500 μM glutamate. These data indicate that early, transient exposure to certain EAAs at high doses can induce long-lasting neuroprotection. Alterations in the GluR1/GluR2 ratio as well as differential expression of specific calcium binding proteins may contribute to this neuroprotection.  相似文献   

10.
MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes) is commonly associated with the A3243G mitochondrial DNA (mtDNA) mutation encoding the transfer RNA of leucine (UUR) (tRNA Leu(UUR)). The pathogenetic mechanisms of this mutation are not completely understood. Neuronal functions are particularly vulnerable to alterations in oxidative phosphorylation, which may affect the function of the neurotransmitter glutamate, leading to excitotoxicity. In order to investigate the possible effects of A3243G upon glutamate homeostasis, we assessed glutamate uptake in osteosarcoma-derived cytoplasmic hybrids (cybrids) expressing high levels of this mutation. High-affinity Na+-dependent glutamate uptake was assessed as radioactive [3H]-glutamate influx mediated by specific excitatory amino acid transporters (EAATs). The maximal rate (Vmax) of Na+-dependent glutamate uptake was significantly reduced in all the mutant clones. Although the defect did not relate to either the mutant load or magnitude of oxidative phosphorylation defect, we found an inverse relationship between A3243G mutation load and mitochondrial ATP synthesis, without any evidence of increased cellular or mitochondrial free radical production in these A3243G clones. These data suggest that a defect of glutamate transport in MELAS neurons may be due to decreased energy production and might be involved in mediating the pathogenic effects of the A3243G mtDNA mutation.  相似文献   

11.

Introduction

Thromboxane A2 (TXA2) induces platelet aggregation and vasoconstriction, and agents that inhibit TXA2 production or interaction with receptors may exert potential application in stroke therapy.

Aim

To illustrate the platelet aggregation antagonistic and endothelial protective effect of (E) - 3 - (3 - methoxy - 4 - ((3, 5, 6 - trimethylpyrazin - 2 - yl) methoxy) phenyl) sodium acrylate (MC-002) through TXA2 inhibition and underline mechanisms.

Materials and methods

Platelets aggregation and thoracic aorta ring contraction of rabbits were induced by U46619. Human umbilical vein endothelial cells (HUVECs) were further applied to explore the protective effect of MC-002 on endothelium when exposed to tumor necrosis factor - α (TNF-α). MTT method was used to assess cell damage, and ELISA analysis was exerted to estimate nitrogen monoxide (NO), endothelin-1 (ET-1), thromboxane B2 (TXB2) and 6-keto-prostaglandin F1α (6-keto-PGF1α) releasing. Fluorescence spectrophotometry was conducted to determine intracellular calcium concentration ([Ca2 +]i), and western blotting method was applied to evaluate the protein expressions of intracellular adhesion molecule-1 (ICAM-1), P-selectin and nuclear factor-kappa B (NF-κB).

Results and conclusions

TXA2 analog U46619 mediated obvious platelet aggregation and vasoconstriction. MC-002 inhibited platelet aggregation through administration in vivo and incubation with platelet in vitro, and relaxed aorta ring in endothelium dependent manner. MC-002 alleviated cell damage, [Ca2 +]i overload, ET-1 overexcretion and TXB2 activation, but improved NO availability reduction in HUVECs treated with TNF-α. Furthermore, MC-002 downregulated ICAM-1, P-selectin and NF-κB overexpression induced by TNF-α. In conclusion, MC-002 exerted antiplatelet aggregation effect through TXA2 inhibition and relieved inflammatory injury of endothelial cells through NF-κB signal pathway.  相似文献   

12.
Background The purinergic component of enteric inhibitory neurotransmission is important for normal motility in the gastrointestinal (GI) tract. Controversies exist about the purine(s) responsible for inhibitory responses in GI muscles: ATP has been assumed to be the purinergic neurotransmitter released from enteric inhibitory motor neurons; however, recent studies demonstrate that β‐nicotinamide adenine dinucleotide (β‐NAD+) and ADP‐ribose mimic the inhibitory neurotransmitter better than ATP in primate and murine colons. The study was designed to clarify the sources of purines in colons of Cynomolgus monkeys and C57BL/6 mice. Methods High‐performance liquid chromatography with fluorescence detection was used to analyze purines released by stimulation of nicotinic acetylcholine receptors (nAChR) and serotonergic 5‐HT3 receptors (5‐HT3R), known to be present on cell bodies and dendrites of neurons within the myenteric plexus. Key Results Nicotinic acetylcholine receptor or 5‐HT3R agonists increased overflow of ATP and β‐NAD+ from tunica muscularis of monkey and murine colon. The agonists did not release purines from circular muscles of monkey colon lacking myenteric ganglia. Agonist‐evoked overflow of β‐NAD+, but not ATP, was inhibited by tetrodotoxin (0.5 μmol L?1) or ω‐conotoxin GVIA (50 nmol L?1), suggesting that β‐NAD+ release requires nerve action potentials and junctional mechanisms known to be critical for neurotransmission. ATP was likely released from nerve cell bodies in myenteric ganglia and not from nerve terminals of motor neurons. Conclusions & Inferences These results support the conclusion that ATP is not a motor neurotransmitter in the colon and are consistent with the hypothesis that β‐NAD+, or its metabolites, serve as the purinergic inhibitory neurotransmitter.  相似文献   

13.
In this study the effects of nitric oxide (NO) donors on intracellular free calcium ([Ca2+]i) in human platelets was examined. Inhibition of guanylyl cyclase (GC) with either methylene blue or ODQ slightly inhibited the ability of submaximal concentrations of thrombin to increase [Ca2+]i which suggests that a small portion of the thrombin mediated increase in [Ca2+]i was due to an increase in NO and subsequent increase in cGMP and activation of cGMP dependent protein kinase (cGPK). Thrombin predominantly increases [Ca2+]i by stimulating store-operated Ca2+ entry (SOCE). The NO donor GEA3162 was previously shown to stimulate SOCE in some cells. In platelets GEA3162 had no effect to increase [Ca2+]i however it inhibited the ability of thrombin to increase [Ca2+]i and this effect was reversed by ODQ. The addition of low concentrations (2.0 - 20 nM) of the NO donor sodium nitroprusside (SNP) slightly potentiated the ability of thrombin to increase [Ca2+]i whereas higher concentrations (> 200 nM) of SNP inhibited thrombin induced increases in [Ca2+]i. Both of these effects of SNP were reversed by ODQ which implies that they were both mediated by cGPK. Ba2+ influx was stimulated by low concentrations (2.0 nM) of SNP and inhibited by high concentrations (> 200 nM) of SNP and both effects were inhibited by ODQ. Previous studies showed that Ba2+ influx was blocked by the SOCE inhibitors 2-aminoethoxydipheny borate and diethylstilbestrol. It was concluded that low levels of SNP can stimulate SOCE in platelets and this effect may account for the increased aggregation and secretion previously observed with low concentrations of NO donors. Of the proteins known to be involved in SOCE (e.g. stromal interaction molecule 1 (Stim1), Stim2 and Orai1) only Stim2 has cGPK phosphorylation sites. The possibility that Stim2 phosphorylation regulates SOCE in platelets is discussed.  相似文献   

14.
15.

Introduction

Several dietary intervention studies examining the health effect of soy isoflavones allude to the importance of equol in establishing the cardiovascular response to soy protein. Although, the specific mechanism by which this action occurs has not been established. The aim of this study was to investigate the inhibitory effect of soy-isoflavones and the metabolite of daidzein, equol, on agonist-induced platelet responses dependent on thromboxane A2 (TxA2) receptor.

Material and methods

Competitive radioligand binding assay was used to screen for affinity of these compounds to the TxA2 receptor. The effect of equol on platelet activation, evaluate through of release of the ATP, by analogs of TxA2 was analyzed. The effect of equol on platelet aggregation was investigated with ADP, U46619 (a TxA2 mimic) and the calcium ionophore A23187.

Results

The data showed that aglycone isoflavones and equol bind to TxA2 receptor in the µmol/L range, whereas their glucoside derivates had very low binding activity for this receptor. Under equilibrium conditions, the following order of the relative affinity in inhibiting [3H]-SQ29585 binding was: equol > genistein > daidzein > glycitein ? genistin, daidzin, glycitin. Equol interaction was reversible and competitive for labeled-SQ29548 with not apparent decrease in the number of TxA2 binding sites. In addition, from platelet activation studies, equol effectively inhibited ATP secretion elicited by the TxA2 analog U46619. On the other hand, equol inhibited the platelet aggregation induced by U46619 and A23187, while it failed to inhibit that induced by ADP.

Conclusions

The aglycone isoflavones from soy, and particularly equol, have been found to have biological effects attributable to thromboxane A2 receptor antagonism. These findings may help elucidate how dietary isoflavone modulate platelet function and explain why soy-rich foods are claimed to have beneficial effects in the prevention of thrombotic events.  相似文献   

16.
Glutamate is the major excitatory transmitter in CNS although it causes severe brain damage by pathologic excitotoxicity. Efficient neurotransmission is controlled by powerful protection and support afforded by specific high-affinity glutamate transporters in neurons and glia, clearing synaptic glutamate. While the role of glial cells in glutamate uptake is well defined, the role of neuronal transporters remains poorly understood. The evaluation of impact of neuronal transporters on spontaneous and evoked EPSC in hippocampal CA1 neurons within a model ‘single bouton preparation’ by pre- and postsynaptic uptake was addressed.In whole-cell patch clamp experiments the influence of blocking, pre- or both pre- and postsynaptic glutamate transporters (GluT) on spontaneous and evoked postsynaptic currents (sEPSC and eEPSC), was examined by manipulating the content of intracellular solution. Suppressing GluT by non-transportable inhibitor TBOA (10 μM) led to remarkable alteration of glutamate uptake process and was reflected in measurable changes of general properties of synaptic currents.Elimination of intracellular K+ concentration required for glutamate transporter operation by using Cs+-based internal solution (postsynaptic GluTs are non-functional apriori), causes the deficient of presynaptic glutamate transporters. Applied in such conditions glutamate transporter inhibitor TBOA (10 μM) affected the occurrence of synaptic event and thus unregulated the transmitter release. eEPSCs were generally suppressed both in amplitude (to 48.73 ± 7.03% vs. control) and in success rate (Rsuc) by TBOA (from 91.1 ± 7.5% in control to 79.57 ± 13.2%). In contrast, with K+-based solution in patch pipette (pre- and postsynaptic GluT are intact), amplitude of eEPSC was substantially potentiated by pre-treatment with TBOA (152.1 ± 11%), whereas (Rsuc) was reduced to 79.8 ± 8.3% in average. The identical reduction of event success rate as well as increased pair-pulse ratios (PPF ratio) for eEPSC in both cases indicates the effect of TBOA on presynaptic uptake. sEPSCs simultaneously recorded from neurons, showed the same pattern of regulation but with less potency, indicating the similar processes in most of excitatory synapses.In conclusion, presynaptic transporters are suggested to act mainly as negative feedback signal on presynaptic release and/or referred to vesicle refilling processes.  相似文献   

17.
Cytosolic calcium concentrations ([Ca2+]i) in cultured hippocampal neurons from rat embryos were measured using fura-2. Neurons with higher resting [Ca2+]i showed greater [Ca2+]i responses toN-methyl-d-aspartate (NMDA) and K+ depolarization. There was a strong relationship between resting [Ca2+]i and the maximal changes in [Ca2+]i (Δ[Ca2+]i), which fit the our proposed equation to describe this relationship.  相似文献   

18.
We have previously demonstrated that congenitally hypothyroid rat pups exhibit altered behavioral response to formalin pain induction during postnatal period. In the present study, using NADPH-diaphorase histochemistry and NOS immunostaining, we investigated the effect of congenital hypothyroidism on the NOS expression in spinal cord of intact neonates at postnatal days of 15 and 21. We also examined the effect of thyroid dysfunction on the NADPH-d/NOS expression in response to formalin nociception. Congenital hypothyroidism induced by propylthiouracil (PTU) treatment started from gestational day 16 and continued to postnatal day 15 or 21. Congenitally hypothyroid pups exhibited marked reduction in NADPH-d reactive cells (84% and 66% in P15 and P21, respectively; P < 0.001) and NOS-ir cells (52% and 91% in P15 and P21, respectively; P < 0.001) in superficial lumbar dorsal horn laminae (I–II) as compared to that of normal pups. Moreover, in congenitally hypothyroid pups the NADPH-d/NOS expression following hindpaw formalin injection did not change significantly. Our results demonstrate that congenital hypothyroidism affect developmental expression of NOS in spinal dorsal horn, which may in part explain the altered behavioral pain response as we previously reported in hypothyroid pups.  相似文献   

19.
Apolipoprotein D (ApoD) has many actions critical to maintaining mammalian CNS function. It is therefore significant that levels of ApoD have been shown to be altered in the CNS of subjects with schizophrenia, suggesting a role for ApoD in the pathophysiology of the disorder. There is also a large body of evidence that cortical and hippocampal glutamatergic, serotonergic and cholinergic systems are affected by the pathophysiology of schizophrenia. Thus, we decided to use in vitro radioligand binding and autoradiography to measure levels of ionotropic glutamate, some muscarinic and serotonin 2A receptors in the CNS of ApoD-/- and isogenic wild-type mice. These studies revealed a 20% decrease (mean ± SEM: 104 ± 10.2 vs. 130 ± 10.4 fmol/mg ETE) in the density of kainate receptors in the CA 2–3 of the ApoD-/- mice. In addition there was a global decrease in AMPA receptors (F1,214 = 4.67, p < 0.05) and a global increase in muscarinic M2/M4 receptors (F1,208 = 22.77, p < 0.0001) in the ApoD-/- mice that did not reach significance in any single cytoarchitectural region. We conclude that glutamatergic pathways seem to be particularly affected in ApoD-/- mice and this may contribute to the changes in learning and memory, motor tasks and orientation-based tasks observed in these animals, all of which involve glutamatergic neurotransmission.  相似文献   

20.
The primary objective of the present study was to examine whether a combination of parent-child DRD4 genotypes results in more informative biomarkers of oppositional, separation anxiety, and repetitive behaviors in children with autism spectrum disorder (ASD). Based on prior research indicating the 7-repeat allele as a potential risk variant, participants were sorted into one of four combinations of parent–child genotypes. Owing to the possibility of parent-of-origin effects, analyses were conducted separately for mother–child (MC) and father–child (FC) dyads. Mothers completed a validated DSM-IV-referenced rating scale. Partial eta-squared (ηp2) was used to determine the magnitude of group differences: 0.01–0.06 = small, 0.06–0.14 = moderate, and > 0.14 = large. Analyses indicated that children in MC dyads with matched genotypes had the least (7−/7−) and most (7+/7+) severe mother-rated oppositional-defiant (ηp2 = 0.11) and separation anxiety (ηp2 = 0.19) symptoms. Conversely, youths in FC dyads with matched genotypes had the least (7−/7−) and most (7+/7+) severe obsessive-compulsive behaviors (ηp2 = 0.19) and tics (ηp2 = 0.18). Youths whose parents were both noncarriers had less severe tics than peers with at least one parental carrier, and the effect size was large (ηp2 = 0.16). There was little evidence that noncarrier children were rated more severely by mothers who were carriers versus noncarriers. Transmission Disequilibrium Test analyses provided preliminary evidence for undertransmission of the 2-repeat allele in youths with more severe tics (p = 0.02). Parent genotype may be helpful in constructing prognostic biomarkers for behavioral disturbances in ASD; however, findings are tentative pending replication with larger, independent samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号