首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Point-mutation studies in cytochrome P450s by site-directed mutagenesis have identified key residues that can confer the catalytic properties of one cytochrome P450 onto another. Most of these key residues cluster at sites that map to amino acids forming the substrate-binding site of P450cam, a distantly related enzyme. These sites are found on topological elements of P450cam, which by their surface location and lack of extensive secondary structure are likely to permit genetic variation without extensive disruption of the overall topology of the enzyme. If these topological features of P450cam are conserved in the mammalian enzymes, they are likely to accommodate the structural diversity seen for mammalian P450s in a manner that conserves a basic structure for P450 enzymes but that leads to the catalytic diversity seen for the mammalian enzymes.  相似文献   

2.
细胞色素氧化酶P450及其遗传多态性   总被引:18,自引:4,他引:14  
细胞色素氧化酶P45 0是药物代谢中的一个重要的酶系。近年来 ,对细胞色素P45 0氧化酶与药物氧化代谢多态性的关系进行了研究。CYP2C19与CYP2D6等在表型和基因型水平上均发现存在氧化代谢多态性 ,并对其分子机制有了深入的了解 ,而CYP2C9,CYP1A1等其他酶可能存在多态性 ,但其分子机制尚不清楚。本文综述了这些P45 0酶的底物 ,种族差异 ,遗传多态性 ,以及其对药物代谢和疾病易感性的影响  相似文献   

3.
AIMS: The study aimed to identify the specific human cytochrome P450 (CYP450) enzymes involved in the metabolism of artemisinin. METHODS: Microsomes from human B-lymphoblastoid cell lines transformed with individual CYP450 cDNAs were investigated for their capacity to metabolize artemisinin. The effect on artemisinin metabolism in human liver microsomes by chemical inhibitors selective for individual forms of CYP450 was investigated. The relative contribution of individual CYP450 isoenzymes to artemisinin metabolism in human liver microsomes was evaluated with a tree-based regression model of artemisinin disappearance rate and specific CYP450 activities. RESULTS: The involvement of CYP2B6 in artemisinin metabolism was demonstrated by metabolism of artemisinin by recombinant CYP2B6, inhibition of artemisinin disappearance in human liver microsomes by orphenadrine (76%) and primary inclusion of CYP2B6 in the tree-based regression model. Recombinant CYP3A4 was catalytically competent in metabolizing artemisinin, although the rate was 10% of that for recombinant CYP2B6. The tree-based regression model suggested CYP3A4 to be of importance in individuals with low CYP2B6 expression. Even though ketoconazole inhibited artemisinin metabolism in human liver microsomes by 46%, incubation with ketoconazole together with orphenadrine did not increase the inhibition of artemisinin metabolism compared to orphenadrine alone. Troleandomycin failed to inhibit artemisinin metabolism. The rate of artemisinin metabolism in recombinant CYP2A6 was 15% of that for recombinant CYP2B6. The inhibition of artemisinin metabolism in human liver microsomes by 8-methoxypsoralen (a CYP2A6 inhibitor) was 82% but CYP2A6 activity was not included in the regression tree. CONCLUSIONS: Artemisinin metabolism in human liver microsomes is mediated primarily by CYP2B6 with probable secondary contribution of CYP3A4 in individuals with low CYP2B6 expression. The contribution of CYP2A6 to artemisinin metabolism is likely of minor importance.  相似文献   

4.
Drug-metabolizing enzymes are called mixed-function oxidase or monooxygenase and containing many enzymes including cytochrome P450, cytochrome b5, and NADPH-cytochrome P450 reductase and other components. The hepatic cytochrome P450s (Cyp) are a multigene family of enzymes that play a critical role in the metabolism of many drugs and xenobiotics with each cytochrome isozyme responding differently to exogenous chemicals in terms of its induction and inhibition. For example, Cyp 1A1 is particularly active towards polycyclic aromatic hydrocarbons (PAHs), activating them into reactive intermediates those covalently bind to DNA, a key event in the initiation of carcinogenesis. Likewise, Cyp 1A2 activates a variety of bladder carcinogens, such as aromatic amines and amides. Also, some forms of cytochrome P450 isozymes such as Cyp 3A and 2E1 activate the naturally occurring carcinogens (e.g. aflatoxin B1) and N-nitrosamines respectively into highly mutagenic and carcinogenic agents. The carcinogenic potency of PAHs, and other carcinogens and the extent of binding of their ultimate metabolites to DNA and proteins are correlated with the induction of cytochrome P450 isozymes. Phase II drug-metabolizing enzymes such as glutathione S-transferase, aryl sulfatase and UDP-glucuronyl transferase inactivate chemical carcinogens into less toxic or inactive metabolites. Many drugs change the rate of activation or detoxification of carcinogens by changing the activities of phases I and II drug-metabolizing enzymes. The balance of detoxification and activation reactions depends on the chemical structure of the agents, and is subjected to many variables that are a function of this structure, or genetic background, sex, endocrine status, age, diet, and the presence of other chemicals. It is important to realize that the enzymes involved in carcinogen metabolism are also involved in the metabolism of a variety of substrates, and thus the introduction of specific xenobiotics may change the operating level and the existence of other chemicals. The mechanisms of modification of drug-metabolizing enzyme activities and their role in the activation and detoxification of xenobiotics and carcinogens have been discussed in the text.  相似文献   

5.
非甾体抗炎药药物代谢酶多态性的研究进展   总被引:3,自引:1,他引:3  
非甾体抗炎药(NAIDs)是一类具有解热、镇痛和抗炎作用的药物,临床上用于治疗骨关节炎、类风湿关节炎等疾病,疗效确切但常伴有胃肠道不适等不良反应,其产生与其药物代谢酶的遗传多态性有关.参与NSAIDs氧化代谢的细胞色素P450酶系,主要有CYP2C9、CYP1A2、CYP2E1和CYP3A4,本文就NSAIDs的药物代谢酶及其多态性和P450代谢的部分NSAIDs(双氯芬酸、布洛芬、氟比洛芬、萘普生和醋氨芬)等作一综述.  相似文献   

6.
The cynomolgus macaque is an important nonhuman primate species in drug metabolism studies, in part because of its evolutionary closeness to humans. Cytochromes P450 (P450s) have been investigated in the major drug-metabolizing organs, i.e., the liver and small intestine, but have not been fully investigated in the brain. However, recent investigations have indicated possible important roles for P450s in the brain. In this study, by using the quantitative polymerase chain reaction, we measured the mRNA levels of 38 cynomolgus drug-metabolizing enzymes, including 19 P450s, 10 UDP-glycosyltransferases, and 9 other enzymes, in 11 brain regions. Among these drug-metabolizing enzymes, expression of 32 enzyme mRNAs were detected in one or more brain regions, indicating their possible roles in the brain. Further investigation of metabolic activities would facilitate better understanding of the importance of these enzymes in the brain.  相似文献   

7.
  1. Cytochrome P450 (CYP) enzymes constitute an essential xenobiotic metabolizing system that regulates the elimination of lipophilic compounds from the body. Convenient and affordable assays for CYP enzymes are important for assessing these metabolic pathways.

  2. In this study, 10 novel profluorescent coumarin derivatives with various substitutions at carbons 3, 6 and 7 were developed. Molecular modeling indicated that 3-phenylcoumarin offers an excellent scaffold for the development of selective substrate compounds for various human CYP forms, as they could be metabolized to fluorescent 7-hydroxycoumarin derivatives. Oxidation of profluorescent coumarin derivatives to fluorescent metabolites by 13 important human liver xenobiotic-metabolizing CYP forms was determined by enzyme kinetic assays.

  3. Four of the coumarin derivatives were converted to fluorescent metabolites by CYP1 family enzymes, with 6-methoxy-3-(4-trifluoromethylphenyl)coumarin being oxidized selectively by CYP1A2 in human liver microsomes. Another set of four compounds were metabolized by CYP2A6 and CYP1 enzymes. 7-Methoxy-3-(3-methoxyphenyl)coumarin was oxidized efficiently by CYP2C19 and CYP2D6 in a non-selective fashion.

  4. The advantages of the novel substrates were (1) an excellent signal-to-background ratio, (2) selectivity for CYP1 forms, and (3) convenient multiwell plate measurement, allowing for precise determination of potential inhibitors of important human hepatic forms CYP1A2, CYP2C19 and CYP2D6.

  相似文献   

8.
1.?Common marmosets (Callithrix jacchus) are potentially useful nonhuman primate models for preclinical drug metabolism studies. However, the roles of marmoset cytochrome P450 (P450) isoforms in the oxidation of endobiotic progesterone have not been fully investigated. In this study, the roles of marmoset P450 isoforms in progesterone hydroxylation were extensively determined.

2.?The activities of liver microsomes from individual marmosets with respect to progesterone 21/17α- and 16α/6β-hydroxylation were significantly correlated with those for flurbiprofen 4-hydroxylation and midazolam 1′-hydroxylation, respectively, as similar correlations have been found in humans. Anti-P450 2?C and 3?A antibodies suppressed progesterone 21/17α- and 16α/6β-hydroxylation, respectively, in marmoset liver microsomes.

3.?Recombinant marmoset P450 2C58 and 2C19 catalyzed progesterone to form 21-hydroxyprogesterone and 16α-hydroxyprogesterone, respectively, as major products with high maximum velocity/Km values of 0.53 and 0.089?mL/min/nmol, respectively. Recombinant marmoset P450 3A4/90 oxidized progesterone to form 6β-hydroxyprogesterone as a major product with homotropic cooperativity (>1 of Hill coefficients).

4.?These results indicate that the overall activities and roles of liver microsomal P450 enzymes in marmoset livers are similar to those in humans, especially for progesterone 21/17α- and 16α/6β-hydroxylation by marmoset P450 2?C and 3?A enzymes, respectively, suggesting important roles for these P450 enzymes in the metabolism of endobiotics in marmosets.  相似文献   

9.
The role of different cytochrome P450 enzymes on the metabolism of 3-methylindole (3MI) was investigated using selective chemical inhibitors. Eight chemical inhibitors of P450 enzymes were screened for their inhibitory specificity towards 3MI metabolism in porcine microsomes: alpha-naphthoflavone (CYP1A1/2), 8-methoxypsoralen (CYP2A6), menthofuran (CYP2A6), diethyldithiocarbamate (CYP2A6), 4-methylpyrazole (CYP2E1), sulphaphenazole (CYP2C9), quinidine (CYP2D6), and troleandomycin (CYP3A4). The production of 3MI metabolites was only affected by the presence of inhibitors of CYP2A6 and CYP2E1 in the microsomal incubations. In a second experiment, a set of porcine microsomes (n = 30) was analyzed for CYP2A6 content by protein immunoblot analysis and for their coumarin 7-hydroxylation activity (CYP2A6 activity). Both CYP2A6 content and enzymatic activity were found to be highly and negatively correlated with 3MI fat content. The results of the present study indicate that the CYP2A6 porcine ortholog plays an important role in the metabolism of 3MI and that measurement of CYP2A6 levels and/or activity could be a useful marker for 3MI-induced boar taint.  相似文献   

10.
CYP2B6是一个在药理和毒理学上均占有重要地位的代谢酶,参与约7%临床上常用药物代谢,其中包括一些治疗窗较窄的药物。CYP2B6具有高度基因多态性,在基因编码区和非编码存在许多单碱基突变。到目前为止,已发现并被命名的等位基因有CYP2B6*1~*29。本文主要对CYP2B6的基因多态性、种族差异及其在药物代谢上的功能意义等方面的研究进展进行综述。  相似文献   

11.
Cytochrome P450 (P450) enzymes oxidize xenobiotics into chemically reactive metabolites or intermediates as well as into stable metabolites. If the reactivity of the product is very high, it binds to a catalytic site or sites of the enzyme itself and inactivates it. This phenomenon is referred to as mechanism-based inactivation. Many clinically important drugs are mechanism-based inactivators that include macrolide antibiotics, calcium channel blockers, and selective serotonin uptake inhibitors, but are not always structurally and pharmacologically related. The inactivation of P450s during drug therapy results in serious drug interactions, since irreversibility of the binding allows enzyme inhibition to be prolonged after elimination of the causal drug. The inhibition of the metabolism of drugs with narrow therapeutic indexes, such as terfenadine and astemizole, leads to toxicities. On the other hand, the fate of P450s after the inactivation and the toxicological consequences remains to be elucidated, while it has been suggested that P450s modified and degraded are involved in some forms of tissue toxicity. Porphyrinogenic drugs, such as griseofulvin, cause mechanism-based heme inactivation, leading to formation of ferrochelatase-inhibitory N-alkylated protoporphyrins and resulting in porphyria. Involvement of P450-derived free heme in halothane-induced hepatotoxicity and catalytic iron in cisplatin-induced nephrotoxicity has also been suggested. Autoantibodies against P450s have been found in hepatitis following administration of tienilic acid and dihydralazine.Tienilic acid is activated by and covalently bound to CYP2C9, and the neoantigens thus formed activate immune systems, resulting in the formation of an autoantibodydirected against CYP2C9, named anti-liver/kidney microsomal autoantibody type 2, whereas the pathological role of the autoantibodies in drug-induced hepatitis remains largely unknown.  相似文献   

12.
Cytochrome P450 enzymes are remarkably diverse oxygenation catalysts that are found throughout nature. Although most of the interest in the pharmaceutical industry has focused on the role of cytochrome P450s in drug development, these enzymes also offer potential in the discovery not only of drugs, but also of other useful chemicals. Potential applications range from the use of cytochrome P450s as drug targets, to the use of randomly generated mutants of cytochrome P450s to produce libraries of new chemicals and drugs.  相似文献   

13.
In vitro studies were carried out to identify the major contribution of CYP2C8, CYP2D6 and CYP3A4 to the metabolism of perospirone (cis-N-[4-[4-(1,2-benzisothiazol-3-yl)-1-piperazinyl]butyl]cyclohexane-1,2-dicarboximide monohydrochloride dehydrate), a novel antipsychotic agent, using human liver microsomes and expressed P450 isoforms. Quinidine (a specific inhibitor of CYP2D6) did not markedly affect the metabolism of perospirone, whereas quercetin (an inhibitor of CYP2C8) and ketoconazole (an inhibitor of CYP3A4) caused a decrease in the metabolism with human liver microsomes in a concentration dependent fashion. With 10 microM quercetin, the metabolism of perospirone was inhibited by 60.0% and with 1 microM ketoconazole almost complete inhibition was apparent. Anti-CYP2C8 and anti-CYP2D6 antisera did not exert marked effects, whereas anti-CYP3A4 antiserum caused almost complete inhibition. With expressed P450s, K(m) and V(max) values were 1.09 microM and 1.93 pmol/min/pmol P450 for CYP2C8, 1.38 microM and 5.73 pmol/min/pmol P450 for CYP2D6, and 0.245 microM and 61.3 pmol/min/pmol P450 for CYP3A4, respectively. These results indicated that the metabolism of perospirone in human liver was mainly catalysed by CYP3A4, and to a lesser extent CYP2C8 and CYP2D6 were responsible because kinetic data (K(m) and V(max)) of CYP2C8 and CYP2D6 suggested catalytic potential.  相似文献   

14.
Recent studies with cytochrome P450 (P450) enzymes from the 2E and 2B subfamilies have shed light on what may be a new trend in the mechanism-based inactivation of P450s: reversibility. The reversible inactivation of P450-type enzymes was first reported in the mid-1990s by Dexter and Hager [Dexter AF and Hager LP (1995) J Am Chem Soc 117:817-818], who studied the transient heme N-alkylation of chloroperoxidase by allylbenzene and 1-hexyne. While characterizing small tert-butyl acetylenes as mechanism-based inactivators of P450s 2E1 and 2B4, Hollenberg and coworkers observed the reversible inactivation of an acetylene-inactivated T303A mutant of P450 2E1. The mechanism of reversibility was a combined product of the structure of the inactivator and the positioning of conserved amino acid residues, threonine 303 (alanine in the mutant) and glutamate 302, in the enzyme active site. Reversibility was also observed with both wild-type P450 2B4 and the T302A mutant of 2B4, although this inactivation and reversibility did not seem to depend on the T302 residue. Subsequent studies have attempted to elucidate the chemical/structural requirements of the inactivator in determining reversibility and have shown that both the size and the chemical nature of functional groups play an important role. At this time, reversibility has only been observed with P450 2E and 2B enzymes during their mechanism-based inactivation by terminal alkynes. Future studies with P450s from other subfamilies and structurally distinct inactivators will greatly aid our understanding of the molecular and chemical determinants of reversibility.  相似文献   

15.
Metabolism in the eye for any species, laboratory animals or human, is gaining rapid interest as pharmaceutical scientists aim to treat a wide range of so-called incurable ocular diseases. Over a period of decades, reports of metabolic activity toward various drugs and biochemical markers have emerged in select ocular tissues of animals and humans. Ocular cytochrome P450 (P450) enzymes and transporters have been recently reviewed. However, there is a dearth of collated information on non-P450 drug metabolizing enzymes in eyes of various preclinical species and humans in health and disease. In an effort to complement ocular P450s and transporters, which have been well reviewed in the literature, this review is aimed at presenting collective information on non-P450 oxidative, hydrolytic, and conjugative ocular drug metabolizing enzymes. Herein, we also present a list of xenobiotics or drugs that have been reported to be metabolized in the eye.  相似文献   

16.
17.
20(S)‐Protopanaxadiol (aPPD), a ginseng sapogenin, has been shown to be a promising anti‐cancer compound and anti‐depressant agent. Although the bacterial biotransformation of ginsenosides has been studied thoroughly, few have reported on the cytochrome P450 (P450) mediated metabolism of aPPD. Taken orally, aPPD must first undergo absorption and metabolism in the intestine before further metabolism in the liver. The present study investigated the comparative biotransformation profile of aPPD in human intestinal microsomes (HIM) and human liver microsomes (HLM) and characterized the human P450 enzymes involved in aPPD metabolism. Three major monooxygenated metabolites and five minor dioxygenated metabolites were identified as the predominant products in aPPD incubations with HIM and HLM using liquid chromatography–mass spectrometry. Reaction phenotyping studies were performed with a panel of specific P450 chemical inhibitors, antibody inhibition and human recombinant P450 enzymes. Ketoconazole, a CYP3A inhibitor, blocked the formation of oxygenated metabolites of aPPD in both HIM and HLM in a concentration dependent manner. Among the human recombinant P450 enzymes assayed, CYP3A4 exhibited the highest activity towards aPPD oxidative metabolite formation, followed by CYP3A5. In summary, the results have shown that aPPD is extensively metabolized by HIM and the metabolite profile following in vitro incubations is similar in HIM and HLM. CYP3A4 and CYP3A5 isoforms are the predominant enzymes responsible for oxygenation of aPPD in HIM and HLM. The characterization of aPPD as a CYP3A substrate may facilitate better prediction of drug–herb interactions when aPPD is taken concomitantly with other therapeutic agents. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
细胞色素P450与外源物的相互作用研究进展   总被引:4,自引:4,他引:0  
细胞色素P450酶是一种多功能酶系,它既参与外源物的生物转化,也与内源性物质的代谢有关,并且作为肝细胞药物代谢的主要酶系参与药物毒性的代谢灭活。由于P450酶结构、功能和基因调控的多样性,自其发现以来,该酶系的研究一直是毒理学研究中的一个热点。本文综述了P450与药物代谢相关的主要亚型及其与药物的相互作用,探讨了P450酶与外源物代谢之间的相互作用机制。  相似文献   

19.
《药学学报(英文版)》2022,12(6):2832-2844
Algae are a large group of photosynthetic organisms responsible for approximately half of the earth's total photosynthesis. In addition to their fundamental ecological roles as oxygen producers and as the food base for almost all aquatic life, algae are also a rich source of bioactive natural products, including several clinical drugs. Cytochrome P450 enzymes (P450s) are a superfamily of biocatalysts that are extensively involved in natural product biosynthesis by mediating various types of reactions. In the post-genome era, a growing number of P450 genes have been discovered from algae, indicating their important roles in algal life-cycle. However, the functional studies of algal P450s remain limited. Benefitting from the recent technical advances in algae cultivation and genetic manipulation, the researches on P450s in algal natural product biosynthesis have been approaching to a new stage. Moreover, some photoautotrophic algae have been developed into “photo-bioreactors” for heterologous P450s to produce high-value added pharmaceuticals and chemicals in a carbon-neutral or carbon-negative manner. Here, we comprehensively review these advances of P450 studies in algae from 2000 to 2021.  相似文献   

20.
An important role of human cytochrome P450s (P450s) has been well recognized in the area of drug metabolism and pharmacokinetics. It has become possible in recent years to express catalytically active forms of these enzymes in various host systems. The resulting recombinant human P450s are either purified for studies of protein structure and the mechanism of catalysis or isolated in microsomal forms to serve the purposes of P450 phenotyping, metabolic stability screening and inhibitory potential evaluation. Intact mammalian cells expressing human enzymes may also be used to test the mutagenic and toxicity potential of drug candidates. The issue remains, however, that the data derived from recombinant P450s are not always consistent with those generated from human tissue preparations. The aim of this communication is to discuss applications of recombinant P450s in the drug discovery and development setting, with an emphasis on comparison of recombinant and human liver microsomal systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号