首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To assess the functional capacity of the heterogeneous Fc gamma RII (CD32) family and to identify critical regions for functioning, we generated a panel of B-cell transfectants. The Fc gamma R-negative B- cell line IIA1.6 was transfected with wild-type or mutant human Fc gamma RIIa and IIb molecules. Solely Fc gamma RIIa-expressing IIA1.6 cells were capable of phagocytosing opsonized Staphylococcus aureus bacteria, and cross-linking of Fc gamma RIIa triggered a rapid induction of tyrosine phosphorylation after 20 seconds. Analysis of Fc gamma RIIa mutants identified the immunoreceptor tyrosine-based activation motif (ITAM; previously described as ARH-1 motif) within the IIa cytoplasmic tail to be critical for B-cell activation. In contrast, Fc gamma RIIb isoforms triggered tyrosine phosphorylation on cross- linking with much slower kinetics (> 3 minutes) than Fc gamma RIIa. Furthermore, solely Fc gamma RIIb molecules proved capable of downregulating [Ca2+]i and interleukin-2 production on co-cross-linking with sIgG in IIA1.6. The Fc gamma RIIb-mediated functions were absent in Fc gamma RIIb mutants in which the tyrosine or leucine within the YSLL motif in a conserved 13-aa region (now known as immunoreceptor tyrosine-based inhibitor motif [ITIM]) were changed into phenylalanines. In conclusion, these data show the presence of functionally critical motifs within Fc gamma RII cytoplasmic tails. Fc gamma RIIa contains an ITAM involved in B-cell activatory functions, whereas the downregulatory activity of Fc gamma RIIb isoforms is linked to an ITIM.  相似文献   

2.
The IgA Fc receptor (FcalphaRI) has dual proinflammatory and anti-inflammatory functions that are transmitted through the immunoreceptor tyrosine-based activation motifs (ITAMs) of the associated FcRgamma subunit. Whereas the involvement of FcalphaRI in inflammation is well documented, little is known of its anti-inflammatory mechanisms. Here we show that monomeric targeting of FcalphaRI by anti-FcalphaRI Fab or serum IgA triggers apoptosis in human monocytes, monocytic cell lines, and FcalphaRI+ transfectants. However, the physiologic ligand IgA induced apoptosis only when cells were cultured in low serum conditions, indicating differences with induction of anti-inflammatory signaling. Apoptosis signaling required the FcRgamma ITAM, as cells transfected with FcalphaRI or with a chimeric FcalphaRI-FcRgamma responded to death-activating signals, whereas cells expressing a mutated FcalphaRI(R209L) unable to associate with FcRgamma, or an ITAM-mutated chimeric FcalphaRI-FcRgamma, did not respond. FcalphaRI-mediated apoptosis signals were blocked by treatment with the pan-caspase inhibitor zVAD-fmk, involved proteolysis of procaspase-3, and correlated negatively with SHP-1 concentration. Anti-FcalphaRI Fab treatment of nude mice injected subcutaneously with FcalphaRI+ mast-cell transfectants prevented tumor development and halted the growth of established tumors. These findings demonstrate that, on monomeric targeting, FcalphaRI functions as an FcRgamma ITAM-dependent apoptotic module that may be fundamental for controlling inflammation and tumor growth.  相似文献   

3.
The mechanism of enhanced presentation of ovalbumin (OVA)internalized as immunoglobulin A (IgA)-OVA via the IgA Fc receptor (FcR) was analyzed by focusing on the role of the FcR-associated  chain. Comparison of B-cell transfectants expressing FcR plus wild-type (WT)  chain or  chain in which theimmunoreceptor tyrosine-based activation motif (ITAM) was altered bytyrosine mutation or substitution with the ITAM of FcRIIA showedthat signaling-competent ITAM was not required for endocytosis ofIgA-OVA. However, antigen presentation was impaired by ITAM changes.Signaling-competent -chain ITAM appeared necessary for transport ofligated FcR to a lamp-1+ late endocytic compartment forremodeling and/or activation of that compartment and also for efficientdegradation of IgA complexes. Moreover, FcR ligation also activatedefficient processing of nonreceptor-targeted antigen. Theresults suggest that -chain signaling activates the antigenprocessing compartment.  相似文献   

4.
During Fcγ receptor (FcR)-mediated phagocytosis by macrophages, cytoplasm advances over IgG-coated particles by the sequential ligation of FcR in plasma membranes. If FcR signaling was strictly autonomous, then the signals generated during phagocytosis should be proportional to the number of ligated receptors. By measuring FcR-dependent responses to beads coated with various densities of IgG, this study identified nonlinear signaling that organizes an all or none response during particle ingestion. Phagocytosis of beads with IgG at low density either stalled after making small, actin-rich cups or proceeded to completion at the same rate as phagocytosis of high-density IgG beads. Signals were measured by quantifying the recruitment of YFP-labeled probes to phagocytic cup membranes. Although the magnitude of early signals correlated with IgG density, later signals showed an all or none response, which was regulated by the concentrations of 3' phosphoinositides in phagocytic cup membranes. Thus, 3' phosphoinositides, shown previously to be required for phagocytosis, function in a feedback regulatory mechanism affecting late but not early signals. This indicates a mechanism for the coordination of cell movements initiated by receptor signaling.  相似文献   

5.
Wu Y  Suzuki-Inoue K  Satoh K  Asazuma N  Yatomi Y  Berndt MC  Ozaki Y 《Blood》2001,97(12):3836-3845
Interaction between von Willebrand factor (vWF) and glycoprotein Ib (GPIb) stimulates tyrosine kinases and subsequent tyrosine phosphorylation events in human platelets. This study found that the combination of vWF and botrocetin, by interacting with GPIb, induced tyrosine phosphorylation of Fc receptor gamma-chain (FcR gamma-chain), Syk, linker for activation of T cells (LAT), and phospholipase C gamma2 (PLCgamma2). Pretreatment of platelets with 10 microM PP1 completely inhibited these tyrosine phosphorylation events. On GPIb stimulation, Src and Lyn formed a complex with FcR gamma-chain and Syk, suggesting that Src and Lyn are involved in FcR gamma-chain tyrosine phosphorylation and downstream signals. In spite of the PLCgamma2 tyrosine phosphorylation, however, there was no intracellular calcium release and inositol 1,4,5-trisphosphate production. In Brij 35 lysates, FcR gamma-chain was found to constitutively associate with GPIb. The number of GPIb expressed on FcR gamma-chain-deficient platelets was comparable to that of the wild-type, as assessed by flow cytometry. However, tyrosine phosphorylation of Syk, LAT, and PLCgamma2 in response to vWF plus botrocetin was significantly suppressed, suggesting that FcR gamma-chain mediates activation signals related to GPIb. Compared with the aggregation response of wild-type platelets, that of FcR gamma-chain-deficient platelets in response to vWF plus botrocetin was impaired, implying that FcR gamma-chain is required for the full activation of platelets mediated by GPIb. (Blood. 2001;97:3836-3845)  相似文献   

6.
Protein-tyrosine kinase p72syk in Fc gamma RI receptor signaling   总被引:2,自引:1,他引:2  
Durden  DL; Liu  YB 《Blood》1994,84(7):2102-2108
In this report we show that gamma-interferon (IFN) induces the expression of the nonreceptor protein tyrosine kinase, p72syk, and that cross-linking the Fc gamma RI receptor in IFN-differentiated U937 cells (U937IF cells) results in the activation of syk kinase. We show that syk is tyrosine phosphorylated (12-fold increase) after Fc gamma RI cross-linking. In vitro kinase assays demonstrate that the specific kinase activity of syk increased eightfold after Fc gamma RI cross- linking. The activation of signal transduction through the Fc gamma RI receptor, as measured by the respiratory burst, is associated with the tyrosine phosphorylation and catalytic activation of the syk kinase. We show that syk coprecipitates with the gamma subunit of the Fc gamma RI, Fc gamma RI gamma. The data suggest that p72syk is involved in signal transduction through the Fc gamma RI receptor, involving the Fc gamma RI gamma subunit.  相似文献   

7.
The presence of multiple receptors for disparate nucleotides on endothelial cells makes it unclear how the endothelium differentiates among these signals. We propose that endothelial P2Y receptors are organized into cholesterol-rich signaling domains, such as caveolae and respond to nucleotide agonists by mobilizing intracellular calcium. Treatment of endothelial cells with 5 mmol/L beta-methyl-cyclodextrin prevents calcium release in response to the nucleotide receptor agonists 2-methylthio-ATP, ATP, ADP, and UTP, but not the kinin receptor agonist bradykinin, suggesting that depletion of membrane cholesterol disrupts signaling at P2Y receptors and that bradykinin receptors are not prelocalized to cholesterol microdomains in these cells. Direct measurement of cholesterol content after beta-methyl-cyclodextrin treatment of aortic rings reveals a concentration-dependent depletion of cholesterol that parallels functional antagonism of P2Y-mediated relaxation. Nucleotide- and bradykinin-mediated relaxation is disrupted by 5 to 15 mmol/L beta -methyl-cyclodextrin treatment or 1 to 10 microg/mL filipin III in a concentration-dependent fashion. Norepinephrine contracted aorta treated with A23187 relaxes in an endothelium-dependent fashion despite depletion of 84% of membrane-extractable cholesterol. These data indicate that in the basal state, P2Y receptors but not the kinin receptor may be compartmented to cholesterol-dependent signaling domains in guinea pig endothelium and that cholesterol-rich microdomains in these cells can respond to intracellular calcium in an agonist-specific manner. We suggest that the functional organization of cholesterol-rich signaling microdomains allows agonist-specific responses to increases in intracellular calcium and that this property may be a general phenomenon that permits cells to respond disparately to agonists that may signal through common calcium release pathways.  相似文献   

8.
Biochemical studies in endothelial cells (ECs) and genetic studies in mice and humans have yielded major insights into the role of transforming growth factor beta (TGF-beta) and its downstream Smad effectors in embryonic vascular morphogenesis and in the establishment and maintenance of vessel wall integrity. These studies showed that TGF-beta signaling is of critical importance for normal vascular development and physiology. They also indicated the involvement of two distinct TGF-beta signaling cascades within ECs, namely the activin receptor-like kinase 5 (ALK5)-Smad2/3 pathway and the ALK1-Smad1/5 pathway. Aberrant TGF-beta signaling forms the basis for several vascular disorders such as hereditary hemorrhagic telengiectasia and primary pulmonary hypertension as well as neovascularization during tumorigenesis. This review describes the role of TGF-beta in angiogenesis and some of the controversial issues concerning TGF-beta signaling through ALK1 and ALK5 in ECs.  相似文献   

9.
The glycoprotein localization of the platelet binding site for the Fc IgG has been the subject of debate. We attempted to resolve this issue by relating the binding of radiolabeled IgG immune complexes composed of heat-aggregated IgG to platelets from healthy individuals; an individual with Bernard-Soulier syndrome lacking glycoproteins IIb and IX; and a patient with Glanzmann's thrombasthenia lacking glycoproteins IIb and IIIa. The binding of IgG complexes to platelets was determined by measuring the specific binding of radiolabeled heat-aggregated IgG to washed platelets in a plasma-free mileu. 125I aggregated IgG bound to normal platelets in a saturable and concentration-dependent fashion. Specific binding could be inhibited by a 50-fold excess of purified Fc, but not by F(ab')2. Identical binding curves were obtained by using platelets from a patient with Glanzmann's thrombasthenia and a patient with Bernard-Soulier syndrome, indicating that the platelet Fc receptor is not carried on glycoproteins Ib, IIb, IIIa, or IX. We then measured the binding of radiolabeled detergent-solubilized platelets to IgG fixed to a solid matrix. A 40-kD platelet fragment bound to the immobilized IgG following passage across a density gradient. Confirmation of the Fc specificity of the interaction was shown by inhibition of platelet glycoprotein binding by excess IgG or purified Fc but not F(ab')2. The electrophoretic mobility decreased slightly after reduction, which indicated the existence of at least one intrachain disulfide bond. Treatment with high salt solutions or urea did not solubilize the receptor, which indicated that it was an integral protein. Enzyme studies showed that the platelet Fc receptor was not digested by neuraminidase, but neuraminidase treatment altered mobility by about 3%. In addition, treatment of platelets with trypsin or pronase did not affect its function as measured by the binding of 125I-IgG aggregates to enzyme-treated platelets, but did prevent its detection when using radioimmunoprecipitation studies. The platelet Fc receptor is a 40-kD, integral protein without interchain disulfide bonds.  相似文献   

10.
A polymorphism in the human Cx37 gene (C1019T), resulting in a non-conservative amino acid change in the regulatory C-terminus of the Cx37 protein (P319S), has been proposed as a prognostic marker for atherosclerosis. We have recently demonstrated that Cx37 hemichannels control the initiation of atherosclerotic plaque development by regulating ATP-dependent monocyte adhesion in atherosclerosis-susceptible apolipoprotein E-deficient mice. In this study, we have measured the electrical properties of Cx37 hemichannels (HCs) and gap junction channels (GJCs) with voltage-clamp methods. To this end, we have transfected hCx37-P319, hCx37-S319 or empty pIRES-eGFP vector cDNA into communication-deficient HeLa cells. In clones expressing similar levels of Cx37, exposure of single cells to low-Ca2+ solution induced a voltage-sensitive HC current. The analysis yielded a bell-shaped function ghc = f(Vm) (ghc: normalized conductance at steady state; Vm: membrane potential) with a maximum around Vm = − 30 mV. The peak ghc of Cx37-P319 was 3-fold larger than that of Cx37-S319 HCs. Experiments on cell pairs revealed that Cx37-P319 GJCs exhibited a 1.5-fold larger unitary conductance than Cx37-S319 GJCs. Hence, the larger peak ghc of the former may reflect a larger conductance of their HCs. Using the same clones, we found that Cx37-P319 cells released more ATP and were less adhesive than Cx37-S319 cells. The reduction in adhesiveness of Cx37-expressing cells was prevented by extracellular apyrase. We conclude that the differences in biophysical properties between polymorphic HCs may be responsible for inequality in ATP release between Cx37-P319 and Cx37-S319 cells, which results in differential cell adhesion.  相似文献   

11.

Aims/hypothesis

Beta cells situated in the islet of Langerhans respond more vigorously to glucose than do dissociated beta cells. Mechanisms for this discrepancy were studied by comparing insulin-producing MIN6 cells aggregated into pseudoislets with MIN6 monolayer cells and mouse and human islets.

Methods

MIN6 monolayers, pseudoislets and mouse and human islets were exposed to glucose, α-ketoisocaproic acid (KIC), pyruvate, KIC plus glutamine and the phosphatidylinositol 3-kinase (PI3K) inhibitors LY294002 or wortmannin. Insulin secretion (ELISA), cytoplasmic Ca2+ concentration ([Ca2+]c; microfluorometry), glucose oxidation (radiolabelling), the expression of genes involved in mitochondrial metabolism (PCR) and the phosphorylation of insulin receptor signalling proteins (western blotting) were measured.

Results

Insulin secretory responses to glucose, pyruvate, KIC and glutamine were higher in pseudoislets than monolayers and comparable to those of human islets. Glucose oxidation and genes for mitochondrial metabolism were upregulated in pseudoislets compared with single cells and monolayers, respectively. Phosphorylation at the inhibitory S636/639 site of IRS-1 was significantly higher in monolayers and dispersed human and mouse cells than pseudoislets and intact human and mouse islets. PI3K inhibition only slightly attenuated glucose-stimulated insulin secretion from monolayers, but substantially reduced that from pseudoislets and human and mouse islets without suppressing the glucose-induced [Ca2+]c response.

Conclusions/interpretation

We propose that islet architecture is critical for proper beta cell mitochondrial metabolism and IRS-1 signalling, and that PI3K regulates insulin secretion at a step distal to the elevation of [Ca2+]c.  相似文献   

12.
13.
Mouse mast cells express gp49B1, a cell-surface member of the Ig superfamily encoded by the gp49B gene. We now report that by ALIGN comparison of the amino acid sequence of gp49B1 with numerous receptors of the Ig superfamily, a newly recognized family has been established that includes gp49B1, the human myeloid cell Fc receptor for IgA, the bovine myeloid cell Fc receptor for IgG2, and the human killer cell inhibitory receptors expressed on natural killer cells and T lymphocyte subsets. Furthermore, the cytoplasmic domain of gp49B1 contains two immunoreceptor tyrosine-based inhibition motifs that are also present in killer cell inhibitory receptors; these motifs downregulate natural killer cell and T-cell activation signals that lead to cytotoxic activity. As assessed by flow cytometry with transfectants that express either gp49B1 or gp49A, which are 89% identical in the amino acid sequences of their extracellular domains, mAb B23.1 was shown to recognize only gp49B1. Coligation of mAb B23.1 bound to gp49B1 and IgE fixed to the high-affinity Fc receptor for IgE on the surface of mouse bone marrow-derived mast cells inhibited exocytosis in a dose-related manner, as defined by the release of the secretory granule constituent beta-hexosaminidase, as well as the generation of the membrane-derived lipid mediator, leukotriene C4. Thus, gp49B1 is an immunoreceptor tyrosine-based inhibition motif-containing integral cell-surface protein that downregulates the high-affinity Fc receptor for IgE-mediated release of proinflammatory mediators from mast cells. Our findings establish a novel counterregulatory transmembrane pathway by which mast cell activation can be inhibited.  相似文献   

14.
beta-arrestins bind to G protein-coupled receptor kinase (GRK)-phosphorylated seven transmembrane receptors, desensitizing their activation of G proteins, while concurrently mediating receptor endocytosis, and some aspects of receptor signaling. We have used RNA interference to assess the roles of the four widely expressed isoforms of GRKs (GRK 2, 3, 5, and 6) in regulating beta-arrestin-mediated signaling to the mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK) 1/2 by the angiotensin II type 1A receptor. Angiotensin II-stimulated receptor phosphorylation, beta-arrestin recruitment, and receptor endocytosis are all mediated primarily by GRK2/3. In contrast, inhibiting GRK 5 or 6 expression abolishes beta-arrestin-mediated ERK activation, whereas lowering GRK 2 or 3 leads to an increase in this signaling. Consistent with these findings, beta-arrestin-mediated ERK activation is enhanced by overexpression of GRK 5 and 6, and reciprocally diminished by GRK 2 and 3. These findings indicate distinct functional capabilities of beta-arrestins bound to receptors phosphorylated by different classes of GRKs.  相似文献   

15.
The IgG Fc receptor family   总被引:14,自引:0,他引:14  
IgG immune complexes are of central importance in the humoral immune system and strongly implicated in the pathogenesis of hematologic and rheumatic autoimmune disorders. Cross-linking of receptors for the Fc domain of IgG antibodies (FcγRs) triggers a wide variety of effector functions including phagocytosis, antibody-dependent cellular cytotoxicity, and release of inflammatory mediators, as well as immune complex clearance and regulation of antibody production. In this way, FcγR provide an essential feedback between the humoral and cellular immune response. In the past, significant advances have been made in the molecular dissection of FcγR function using cellular transfection systems. Current approaches designed to target and change individual FcγR genes in mice have given further insight into their specific contributions to systemic processes, also indicating them to be important immunoregulatory receptors involved in various disease states of allergy, autoimmunity, and inflammation. Future work on targeting FcγR binding sites in combination with humanized FcγR mouse models will lead to novel therapeutic strategies in the treatment of IgG-mediated human disease in which FcγR activation plays an integral part. Received: January 28, 1998 / Accepted: March 31, 1998  相似文献   

16.
17.
18.
A muscle acetylcholine receptor (AChR) has two neurotransmitter binding sites located in the extracellular domain, at αδ and either αε (adult) or αγ (fetal) subunit interfaces. We used single-channel electrophysiology to measure the effects of mutations of five conserved aromatic residues at each site with regard to their contribution to the difference in free energy of agonist binding to active versus resting receptors (ΔGB1). The two binding sites behave independently in both adult and fetal AChRs. For four different agonists, including ACh and choline, ΔGB1 is ∼−2 kcal/mol more favorable at αγ compared with at αε and αδ. Only three of the aromatics contribute significantly to ΔGB1 at the adult sites (αY190, αY198, and αW149), but all five do so at αγ (as well as αY93 and γW55). γW55 makes a particularly large contribution only at αγ that is coupled energetically to those contributions of some of the α-subunit aromatics. The hydroxyl and benzene groups of loop C residues αY190 and αY198 behave similarly with regard to ΔGB1 at all three kinds of site. ACh binding energies estimated from molecular dynamics simulations are consistent with experimental values from electrophysiology and suggest that the αγ site is more compact, better organized, and less dynamic than αε and αδ. We speculate that the different sensitivities of the fetal αγ site versus the adult αε and αδ sites to choline and ACh are important for the proper maturation and function of the neuromuscular synapse.Receptors at synapses respond to specific chemical signals in the extracellular environment because the active conformation of the protein has a higher affinity for the ligand compared with the resting conformation (1, 2). The active vs. resting difference in binding free energy increases the relative stability of the active state and, hence, the probability of a cellular response. In this report, we describe and distinguish sources of ligand-binding free energy in three kinds of agonist site present in mouse muscle nicotinic acetylcholine receptors (AChRs). Our goal was to use single-channel electrophysiology to assess the relative contribution of significant functional groups to the overall free energy generated by the affinity change at each type of site.At cholinergic synapses, the main chemical signals are ACh released from nerve terminals and choline, which is an ACh precursor, hydrolysis product, and stable component of serum (3). The muscle AChR has central pore surrounded by five subunits of composition α2βδε in adult-type and α2βδγ in fetal-type (Fig. 1A) (4). The fetal, γ, subunit is essential for proper synapse maturation, and the adult, ε, subunit is necessary for proper function of mature synapses (57). Each AChR pentamer has two agonist binding sites in the extracellular domain, at αδ and either αε (adult) or αγ (fetal) subunit interfaces.Open in a separate windowFig. 1.Ligand binding sites. (A) Side view of a muscle AChR [Torpedo marmorata; PDB ID code 2bg9 (34)] showing an agonist site in the extracellular domain (αW149 and loops A, B, and C are marked). (Inset) Each AChR has two sites (filled circles) at αδ and αε (adult) or αγ (fetal) subunit interfaces. (B) High-resolution view of the ligand binding site of an acetylcholine binding protein occupied by carbamylcholine (CCh) [Lymnaea stagnalis; PDB ID code 1uv6 (11)]. Aromatic residues are labeled using mouse AChR numbering.The change in agonist affinity occurs within the global, resting↔active “gating” conformational change. Structural rearrangements at agonist sites that generate the affinity change are akin to movements of S4 in voltage-gated channels that generate gating currents. Given the central role of receptors at synapses, we thought it important to understand in detail the components of the free energy change that undergird the agonist affinity change. In wild-type AChRs, a large, uphill gating energy without agonists ensures the system will rarely activate constitutively, and a large, downhill free energy generated by affinity increases at the two agonist sites ensures that the protein will be active with a high probability after the release of ACh from the motor nerve terminal (8).We have estimated the free energy contributions of eight functional groups of five conserved residues at three different kinds of muscle AChR agonist site (αδ, αε, and αγ). On the α side of each site, there are four aromatics known to influence agonist affinity: αY190 (in loop C), αY198 (loop C), αY93 (loop A), and αW149 (loop B) (Fig. 1) (913). In addition, there is a conserved tryptophan in the nonα subunit, W55 (at position 57 in the δ subunit) (11, 1416). In fetal AChRs, αW149 and αY198 have been shown to stabilize the quaternary ammonium of the agonist by cation-π forces (10, 13, 17).Previously, estimates of the ACh-binding free energy difference in mouse adult-type receptors after mutations indicated that only three of the mentioned aromatics (αY190, αY198, and αW149) are important (18), and other experiments showed that the free energy difference from both agonist sites combined is greater in fetal vs. adult AChRs (19). Here, we extend and refine these estimates. First, we measured the change in the net binding free energy after a mutation of each aromatic side chain in AChRs having just one functional binding site, so that the αδ, αε, and αγ sites could be probed independently, rather than pairwise. Second, we made some of these measurements using three partial agonists in addition to ACh, including the physiological ligand choline. Third, we estimated the degree of free energy coupling between some of the aromatic side chains at the fetal, αγ, site. Fourth, we used molecular dynamics (MD) simulations to estimate ACh binding energies and suggest structural correlates for differences between the three types of agonist site. We hypothesize that a greater sensitivity of fetal vs. adult AChRs to choline is a reason for the γ→ε subunit swap required for proper maturation of the neuromuscular synapse.  相似文献   

19.
Functional differences between hepcidin 1 and 2 in transgenic mice   总被引:17,自引:4,他引:17       下载免费PDF全文
Hepcidin is a 25-amino acid peptide involved in iron homeostasis in mice and humans. It is produced in the liver from a larger precursor, and it is detectable in blood and urine. In contrast to the human genome, which contains only one copy of the gene, the mouse genome contains 2 highly similar hepcidin genes, hepc1 and hepc2, which are, however, considerably divergent at the level of the corresponding mature 25-amino acid peptide. This striking observation led us to ask whether hepc1 and hepc2 performed the same biologic activity with regard to iron metabolism in the mouse. We recently described the severe iron-deficient anemia phenotype in transgenic mice overexpressing hepc1 in the liver. Here we report that, in contrast to the hepc1-transgenic mice, none of the 7 founder hepc2-transgenic animals suffered from anemia. They all developed normally with hematologic parameters similar to the nontransgenic littermates. Hepc2 transgenic mRNA level was found to be very high for all lines compared with the level of hepc1 transgene mRNA necessary to produce severe anemia. These data provide evidence that hepc2 does not act on iron metabolism like hepc1 and give clues for the identification of amino acids important for the iron-regulatory action of the mature 25-amino acid peptide.  相似文献   

20.
Apelin is a peptide involved in the regulation of body fluid homeostasis and cardiovascular functions, that was recently isolated as the endogenous ligand for the human orphan APJ receptor, a G protein-coupled receptor which shares 31% amino-acid sequence identity with the angiotensin II type 1 receptor. The predominant molecular forms of apelin naturally occuring in vivo are apelin 36, apelin 17 (K17F) and the pyroglutamyl form of apelin 13 (pE13F). We investigated the structure-activity relationships of apelin at the rat apelin receptor, tagged at its C-terminal end with enhanced green fluorescent protein and stably expressed in CHO cells. We compared the abilities of N- and C-terminal deleted fragments of K17F (KFRRQRPRLSHKGPMPF) to bind with high affinity to the apelin receptor, to inhibit cAMP production and to induce apelin receptor internalization. The first five N-terminal and the last two C-terminal amino acids of K17F were not essential for apelin binding or cAMP response. In contrast, deletion of the arginine in position 6 drastically decreased binding and cAMP response. The full-length sequence of K17F was the most potent inducer of apelin receptor internalization because successive N-terminal amino-acid deletions progressively reduced internalization and the removal of a single amino acid, the phenylalanine in position 17 at the C-terminus of K17F abolished this process. Thus, K16P binds with high affinity to the apelin receptor and strongly inhibits cAMP production, but does not induce apelin receptor endocytosis. These data indicate that apelin receptor signaling (coupling to Gi) and endocytosis are functionally dissociated, possibly reflecting the existence of several conformational states of this receptor, stabilized by the binding of different apelin fragments to the receptor. We then investigated the consequences for biological activity of this functional dissociation by evaluating the effects of various apelin fragments, injected iv, on arterial blood pressure in normotensive Wistar Kyoto rats. We showed that apelin fragments, that did not induce receptor internalization in vitro but kept their ability to activate receptor coupling to Gi, did not decrease arterial blood pressure. Our data showed that hypotensive actions of apelin peptides correlate with the ability of those ligands to internalize. Thus, the depressor response of apelin may be controlled by apelin receptor endocytosis, which is probably required for initiation of a second wave of signal transduction. The development of biaised agonists of the apelin receptor capable of promoting only one specific signal transduction pathway may therefore offer new therapeutic avenues for the treatment of cardiovascular disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号