首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microparticles of a poorly water-soluble model drug, nevirapine (NEV) were prepared by supercritical antisolvent (SAS) method and simultaneously deposited on the surface of excipients such as lactose and microcrystalline cellulose in a single step to reduce drug–drug particle aggregation. In the proposed method, termed supercritical antisolvent-drug excipient mixing (SAS-DEM), drug particles were precipitated in supercritical CO2 vessel containing excipient particles in suspended state. Drug/excipient mixtures were characterized for surface morphology, crystallinity, drug–excipient physico-chemical interactions, and molecular state of drug. In addition, the drug content uniformity and dissolution rate were determined. A highly ordered NEV–excipient mixture was produced. The SAS-DEM treatment was effective in overcoming drug–drug particle aggregation and did not affect the crystallinity or physico-chemical properties of NEV. The produced drug/excipient mixture has a significantly faster dissolution rate as compared to SAS drug microparticles alone or when physically mixed with the excipients.  相似文献   

2.

Purpose

Novel itraconazole (ITZ)-based dry powders for inhalation (DPI) were optimized for aerodynamic and dissolution properties and contained excipients that are acceptable for inhalation.

Methods

The DPI were produced by spray drying solutions. The drug content, crystallinity state, and morphological evaluation of the dry powders were determined by high performance liquid chromatography, powder X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy, respectively. A particle size analysis was conducted using laser light scattering. The aerodynamic behaviors of the powders were characterized by impaction tests. ITZ dissolution rates were evaluated using a dissolution method adapted to inhaled products.

Results

The DPI presented very high fine particle fractions that ranged from 46.9% to 67.0% of the nominal dose. The formulations showed very fast dissolution rates compared to unformulated crystalline ITZ with the possibility of modulating the dissolution rate by varying the quantity of phospholipids (PL) incorporated. ITZ remained amorphous while the mannitol was crystalline. The α, β and δ-mannitol polymorph ratios varied depending on the formulation compositions.

Conclusion

This formulation strategy could be an attractive alternative for treating invasive pulmonary aspergillosis. The ITZ and PL content are key characteristics because of their influence on the dissolution rate and aerosol performance.  相似文献   

3.
A nebulized dispersion of amorphous, high surface area, nanostructured aggregates of itraconazole (ITZ):mannitol:lecithin (1:0.5:0.2, w/w) yielded improved bioavailability in mice. The ultra-rapid freezing (URF) technique used to produce the nanoparticles was found to molecularly disperse the ITZ with the excipients as a solid solution. Upon addition to water, ITZ formed a colloidal dispersion suitable for nebulization, which demonstrated optimal aerodynamic properties for deep lung delivery and high lung and systemic levels when dosed to mice. The ITZ nanoparticles produced supersaturation levels 27 times the crystalline solubility upon dissolution in simulated lung fluid. A dissolution/permeation model indicated that the absorption of 3mum ITZ particles is limited by the dissolution rate (BCS Class II behavior), while absorption is permeation-limited for more rapidly dissolving 230nm particles. The predicted absorption half-life for 230nm amorphous ITZ particles was only 15min, as a result of the small particle size and high supersaturation, in general agreement with the in vivo results. Thus, bioavailability may be enhanced, by decreasing the particle size to accelerate dissolution and increasing permeation with (1) an amorphous morphology to raise the drug solubility, and (2) permeability enhancers.  相似文献   

4.
Two lubricants, magnesium stearate and sodium stearyl fumarate, were compared under identical mixing conditions to study their roles in drug-excipient interactions. After prolonged mixing, sodium stearyl fumarate did not interact with the drug or excipients; as a result, the disintegration time and drug dissolution rate from hand-filled, uncompacted capsules were not adversely affected. In contrast, magnesium stearate did exhibit drug-excipient interactions which resulted in lamination and subsequent adhesion of the lubricant to the drug-crospovidone agglomerates. These interactions adversely affected the disintegration time and drug dissolution rate from hand-filled, uncompacted capsules. Although the initial specific surface area of magnesium stearate was higher than that of sodium stearyl fumarate, flaking of magnesium stearate due to particulate-particulate interactions caused a large increase in the surface area. The adhesion of the magnesium stearate flakes to the drug-crospovidone agglomerates resulted in a decrease in the drug dissolution rate.  相似文献   

5.
The purpose of this study was to produce a dry powder for inhalation (DPI) of a poorly soluble active ingredient (itraconazole: ITZ) that would present an improved dissolution rate and enhanced solubility with good aerosolization properties. Solid dispersions of amorphous ITZ, mannitol and, when applicable, D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) were produced by spray-drying hydro-alcoholic solutions in which all agents were dissolved. These dry formulations were characterized in terms of their aerosol performances and their dissolution, solubility and physical properties. Modulate differential scanning calorimetry and X-ray powder diffraction analyses showed that ITZ recovered from the different spray-dried solutions was in an amorphous state and that mannitol was crystalline. The inlet drying temperature and, indirectly, the outlet temperature selected during the spray-drying were critical parameters. The outlet temperature should be below the ITZ glass transition temperature to avoid severe particle agglomeration. The formation of a solid dispersion between amorphous ITZ and mannitol allowed the dry powder to be produced with an improved dissolution rate, greater saturation solubility than bulk ITZ and good aerosol properties. The use of a polymeric surfactant (such as TPGS) was beneficial in terms of dissolution rate acceleration and solubility enhancement, but it also reduced aerosol performance. For example, significant dissolution rate acceleration (f(2)<50) and greater saturation solubility were obtained when introducing 1% (w/w) TPGS (mean dissolution time dropped from 50.4 min to 36.9 min and saturation solubility increased from 20 ± 3 ng/ml to 46 ± 2 ng/ml). However, the fine particle fraction dropped from 47 ± 2% to 37.2 ± 0.4%. This study showed that mannitol solid dispersions may provide an effective formulation type for producing DPIs of poorly soluble active ingredients, as exemplified by ITZ.  相似文献   

6.
To investigate the effect of supersaturation induced by micelle formation during dissolution on the bioavailability of itraconazole (ITZ)/Soluplus® solid dispersion. Solid dispersions prepared by hot melt extrusion (HME) were compressed into tablets directly with other excipients. Dissolution behavior of ITZ tablets was studied by dissolution testing and the morphology of micelles in dissolution media was studied using transmission electron microscopy (TEM). Drug transferring from stomach into intestine was simulated to obtain a supersaturated drug solution. Bioavailability studies were performed on the ITZ tablets and Sporanox® in beagle dogs. The morphology of micelles in the dissolution media was observed to be spherical in shape, with an average size smaller than 100 nm. The supersaturated solutions formed by Soluplus® micelles were stable and no precipitation took place over a period of 180 min. Compared with Sporanox®, ITZ tablets exhibited a 2.50-fold increase in the AUC(0–96) of ITZ and a 1.95-fold increase in its active metabolite hydroxyitraconazole (OH-ITZ) in the plasma of beagle dogs. The results obtained provided clear evidence that not only the increase in the dissolution rate in the stomach, but also the supersaturation produced by micelles in the small intestine may be of great assistance in the successful development of poorly water-soluble drugs. The micelles formed by Soluplus® enwrapped the molecular ITZ inside the core which promoted the amount of free drug in the intestinal cavity and carried ITZ through the aqueous boundary layer (ABL), resulting in high absorption by passive transportation across biological membranes. The uptake of intact micelles through pinocytosis together with the inhibition of P-glycoprotein-mediated drug efflux in intestinal epithelia contributed to the absorption of ITZ in the gastrointestinal tract. These results indicate that HME with Soluplus®, which can induce supersaturation by micelle formation, may be of great assistance to the successful development of poorly water-soluble drugs.  相似文献   

7.
Cryogenic liquids, nanoparticles, and microencapsulation   总被引:1,自引:0,他引:1  
The biopharmaceutical classification system (BCS) is used to group pharmaceutical actives depending upon the solubility and permeability characteristics of the drug. BCS class II compounds are poorly soluble but highly permeable, exhibiting bioavailability that is limited by dissolution. The dissolution rate of BCS class II drug substances may be accelerated by enhancing the wetting of the bulk powder and by reducing the primary particle size of the drug to increase the surface area. These goals may be achieved by nucleating drug particles from solution in the presence of stabilizing excipients. In the spray freezing into liquid (SFL) process, a drug containing solution is atomized and frozen rapidly to engineer porous amorphous drug/excipient particles with high surface areas and dissolution rates. Aqueous suspensions of nanostructured particles may be produced from organic solutions by evaporative precipitation into aqueous solution (EPAS). The suspensions may be dried by lyophilization. The particle size and morphology may be controlled by the type and level of stabilizers. In vivo studies have shown increased bioavailability of a wide variety of drugs particles formed by SFL or EPAS. For both processes, increased serum levels of danazol (DAN) were observed in mice relative to bulk DAN and the commercial product, Danocrine. Orally dosed itraconazole (ITZ) compositions, formed by SFL, produce higher serum levels of the drug compared to the commercial product, Sporanox oral solution. Additionally, nebulized SFL processed ITZ particles suspended in normal saline have been dosed via the pulmonary route and led to extended survival times for mice inoculated with Aspergillis flavus. SFL and EPAS processes produce amorphous drug particles with increased wetting and dissolution rates, which will subsequently supersaturate biological fluids in vivo, resulting in increased drug bioavailability and efficacy.  相似文献   

8.
Micronized prednisone was used to study the effect of powder mixing on drug-excipient interactions and their effect on in vitro dissolution from uncompacted, hand-filled capsules. Two powder formulations contained CaHPO4 X 2H2O (dibasic calcium phosphate dihydrate) as a filler and potato starch or sodium starch glycolate as a disintegrant. The third powder formulation contained pregelatinized starch as a disintegrant/filler. The lubricant in these formulations was magnesium stearate. When drug, CaHPO4 X 2H2O, and the disintegrant were thoroughly mixed and hand filled into capsules without compaction, only approximately 70% of the drug dissolved in 30 min. The incomplete dissolution of the drug was caused by the formation of agglomerates and the inclusion of the drug particles by these agglomerates. In contrast, when a mixture of drug and pregelatinized starch was used, complete dissolution of the drug was achieved after 30 min due to the absence of agglomeration and inclusion. Prolonged mixing of the formulation containing CaHPO4 X 2H2O with magnesium stearate resulted in a decrease in the dissolution rate. The total amount of the drug dissolved at the end of 30 min was reduced from 70 to 20%. The decrease in the rate of drug dissolution resulted from drug-excipient interactions which caused flaking of the magnesium stearate particles. The adhesion of these flakes to the drug particles and drug-excipient agglomerates resulted in hydrophobic coating which reduced water penetration. The rate of drug dissolution was not affected when drug and pregelatinized starch were mixed with magnesium stearate for a prolonged time due to the absence of magnesium stearate flaking and film formation.  相似文献   

9.
The aim of this study was to investigate the influence of binder content, binder particle size, granulation time and inlet air flow rate on granule size and size distribution, granule shape and flowability, as well as on drug release rate. Hydrophilic (polyetilenglycol 2000) and hydrophobic meltable binder (glyceryl palmitostearate) were used for in situ fluidized hot melt granulation. Granule size was mainly influenced by binder particle size. Binder content was shown to be important for narrow size distribution and good flow properties. The results obtained indicate that conventional fluid bed granulator may be suitable for production of highly spherical agglomerates, particularly when immersion and layering is dominant agglomeration mechanism. Granule shape was affected by interplay of binder content, binder particle size and granulation time. Solid state analysis confirmed unaltered physical state of the granulate components and the absence of interactions between the active and excipients. Besides the nature and amount of binder, the mechanism of agglomerate formation seems to have an impact on drug dissolution rate. The results of the present study indicate that fluidized hot melt granulation is a promising powder agglomeration technique for spherical granules production.  相似文献   

10.
The purpose of this study was to determine whether budesonide- and indomethacin-hydroxypropyl-beta-cyclodextrin (HPBCD) complexes could be formed using a supercritical fluid (SCF) process. The process involved the exposure of drug-HPBCD mixtures to supercritical carbon dioxide (SC CO2). The ability of the SCF process to form complexes was assessed by determining drug dissolution, drug crystallinity, and drug-excipient interactions. Drug dissolution was assessed using a HPLC assay. Crystallinity was assessed using powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC). Drug-excipient interactions were characterized using Fourier transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) was used to determine any morphological changes. SC CO2 process did not alter the dissolution rate of pure drugs but resulted in two- and three-fold higher dissolution rates for budesonide- and indomethacin-HPBCD mixtures, respectively. SCF-processed mixtures exhibited a disappearance of the crystalline peaks of the drugs (PXRD), a partial or complete absence of the melting endotherm of the drugs (DSC), and a shift in the C=O stretching of the carboxyl groups of the drugs (FTIR), consistent with the loss of drug crystallinity and formation of intermolecular bonds with HPBCD. SEM indicated no discernible drug crystals upon physical mixing with or without SCF processing. Thus, budesonide- and indomethacin-HPBCD complexes with enhanced dissolution rate can be formed using a single-step, organic solvent-free SC CO2 process.  相似文献   

11.
A simple method to fabricate itraconazole (ITZ)-loaded pectin nanoparticles prepared from nanoemulsion templates is described in this study. Nanoemulsions containing ITZ were prepared by a mechanical homogenization using pectin as emulsifier. After freeze-drying, the morphology, crystallinity state, thermal properties, drug dissolution and stability of the obtained pectin nanoparticles were characterized. The results demonstrated that the morphology of freeze-dried products was different, depending on the type of internal phase; the nanoparticles prepared from chloroform-based nanoemulsions were completely dried and provided a fragile characteristic. The pectin nanoparticles also demonstrated good properties in terms of redispersibility, thermal properties, drug crystallinity and dissolution. The ITZ-loaded pectin nanoparticles showed high percentage of drug dissolved (about 60–80% within 2 h), and maintained their good dissolution properties even after 1-year storage. The results suggested that freeze-dried pectin nanoparticles prepared from nanoemulsions could be used as an effective carrier for enhancement of ITZ dissolution.  相似文献   

12.
With the recent advent of nanotechnology for pharmaceutical applications, drug particle engineering is the focus of increasing interest as a viable approach for overcoming solubility limitations of poorly water-soluble drugs. Although these particle engineering techniques have been proven successful for enhancing the dissolution properties of many poorly water-soluble drugs, there are limitations associated with them such as particle aggregation, morphological instability, and poor wettability. The aim of this study was to demonstrate a processing technique in which hot-melt extrusion (HME) is utilized to overcome these limitations. Micronized particles of amorphous itraconazole (ITZ) stabilized with PVP or HPMC were produced and subsequently melt extruded with poloxamer 407 and PEO 200 M to deaggregate and disperse the particles into the hydrophilic polymer matrix. Differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy were used to demonstrate that the HME process did not alter the properties of the micronized particles. Dissolution testing conducted at sink conditions revealed that the dissolution rate of the micronized particles was improved by HME due to particle deaggregation and enhanced wetting. Supersaturation dissolution testing demonstrated that the ITZ-HPMC micronized particle extrudates provided superior supersaturation of ITZ compared to the ITZ-PVP micronized particle extrudates. Supersaturation dissolution testing incorporating a pH change (from pH 1.2 to 6.8 at 2 h) revealed that neither micronized particle extrudate formulation significantly reduced the rate of ITZ precipitation from supersaturated solution once pH was increased. Moreover, the two extrudate formulations performed very similarly when only considering dissolution testing from just before pH adjustment through the duration of testing at neutral pH. From oral dosing of rats, it was determined that the two extrudate formulations performed similarly in vivo as confirmed by their statistically equivalent AUC values. By correlating the results of supersaturation dissolution testing with pH change to the in vivo AUC, it appears that rapid precipitation of ITZ occurs upon entrance into the more neutral pH environment of the small intestine resulting in a brief opportunity for absorption. This suggests that perhaps the optimum formulation approach for ITZ is to control drug release so as to retard precipitation as pH is increased and extend the absorption window in the small intestine.  相似文献   

13.
This study was performed to optimize stabilizer systems used in itraconazole (ITZ) nanosuspensions to achieve the greatest extent of size reduction and investigate the effect of particle size on the in vitro dissolution and oral absorption of ITZ. The nanosuspensions were prepared by high pressure homogenization and characterized for particle size, zeta potential, and surface morphology. A central composite method was applied to identify a multiple stabilizer system of Lutrol F127 and sodium lauryl sulfate for optimal particle size reduction. By using the optimized system, an ITZ nanosuspension was prepared that showed the particle size results in good agreement with the values predicted by the model. The nanosuspension was physically stable at 25°C for 1 week. The crystalline form of ITZ was not altered. The ITZ dissolution rate is directly correlated to its particle size, and a smaller particle size yields a faster dissolution rate. Pharmacokinetics study was performed using four ITZ suspensions with various particle sizes in rats (n = 3). A significant increase in both maximal plasma concentration of drug and area under the drug concentration-time curve (AUC) was shown when the particle size was reduced from micrometer to nanometer. However, the AUC was not significantly affected by further reduction of the particle size within the nano-size range.  相似文献   

14.
Mesoporous materials have an ability to enhance dissolution properties of poorly soluble drugs. In this study, different mesoporous silicon (thermally oxidized and thermally carbonized) and non-ordered mesoporous silica (Syloid AL-1 and 244) microparticles were compared as drug carriers for a hydrophobic drug, itraconazole (ITZ). Different surface chemistries pore volumes, surface areas, and particle sizes were selected to evaluate the structural effect of the particles on the drug loading degree and on the dissolution behavior of the drug at pH 1.2. The results showed that the loaded ITZ was apparently in amorphous form, and that the loading process did not change the chemical structure/morphology of the particles' surface. Incorporation of ITZ in both microparticles enhanced the solubility and dissolution rate of the drug, compared to the pure crystalline drug. Importantly, the physicochemical properties of the particles and the loading procedure were shown to have an effect on the drug loading efficiency and drug release kinetics. After storage under stressed conditions (3 months at 40 °C and 70% RH), the loaded silica gel particles showed practically similar dissolution profiles as before the storage. This was not the case with the loaded mesoporous silicon particles due to the almost complete chemical degradation of ITZ after storage.  相似文献   

15.
Micronization is a commonly used enabling technology to improve the bioavailability of compounds where absorption is dissolution rate limited. However, decreasing particle size often results in increased Van der Waals' interactions and electrostatic attraction between particles. This causes agglomeration of particles, thereby compromising the increase in surface area gained by micronization. Comicronization with excipients has been reported to offer significant advantages over neat micronization. The present work describes the comicronization of a model compound CI-1040 at a high drug load that shows an increase in the dissolution rate and bioavailability in male Wistar rats. Physicochemical characterization of the comicronized and neat micronized material is presented to help explain the in-vitro and in-vivo data.  相似文献   

16.
In this work, amorphous atorvastatin calcium nanoparticles were successfully prepared using the supercritical antisolvent (SAS) process. The effect of process variables on particle size and distribution of atorvastatin calcium during particle formation was investigated. Solid state characterization, solubility, intrinsic dissolution, powder dissolution studies and pharmacokinetic study in rats were performed. Spherical particles with mean particle size ranging between 152 and 863 nm were obtained by varying process parameters such as precipitation vessel pressure and temperature, drug solution concentration and feed rate ratio of CO2/drug solution. XRD, TGA, FT-IR, FT-Raman, NMR and HPLC analysis indicated that atorvastatin calcium existed as anhydrous amorphous form and no degradation occurred after SAS process. When compared with crystalline form (unprocessed drug), amorphous atorvastatin calcium nanoparticles were of better performance in solubility and intrinsic dissolution rate, resulting in higher solubility and faster dissolution rate. In addition, intrinsic dissolution rate showed a good correlation with the solubility. The dissolution rates of amorphous atorvastatin calcium nanoparticles were highly increased in comparison with unprocessed drug by the enhancement of intrinsic dissolution rate and the reduction of particle size resulting in an increased specific surface area. The absorption of atorvastatin calcium after oral administration of amorphous atorvastatin calcium nanoparticles to rats was markedly increased.  相似文献   

17.
The primary objective of the study is to investigate the influence of composition parameters including drug:polymer ratio and polymer type, and particle structure of enteric solid dispersions on the release of ITZ under sink and supersaturated dissolution conditions. Modulated differential scanning calorimetry (MDSC) was utilized to define the level of ITZ miscibility with each polymer. The compositions were completely miscible at 60% ITZ for both polymers and as high as 70% in HP-55. High potency composition glass transition temperatures (T(g)) correlated with predicted T(g)'s from the Gordon-Taylor equation, however, recrystallization exotherms revealed pure amorphous regions indicating that phase separation occurred during particle formation. Furthermore, in vitro studies including X-ray powder diffraction (XRD), scanning electron microscopy (SEM), surface area analysis (BET), and dissolution were performed to determine differences between low potency (completely miscible) and high potency (partially miscible) compositions. Dissolution studies on low potency ITZ compositions revealed that miscibility plays an active role in ITZ release under sink conditions, and square root diffusion through the enteric polymer is observed. Supersaturated dissolution profiles revealed high potency compositions had maximum saturation levels (C/Ceq(max)) between 10.6- and 8-times equilibrium solubility, but had higher cumulative extents of supersaturation, compared to low potency compositions which had C/Ceq(max) values of 15-19.6. However, these low potency compositions rapidly precipitated leading to significantly lower AUCs (p<0.05). The change in the miscibility of the solid dispersion had a pronounced effect of drug release (sink) while differences in potency influenced supersaturated dissolution profiles.  相似文献   

18.

Purpose

The purpose of this study was to develop an amorphous solid dispersion (SD) of an extremely water-insoluble and very weakly basic drug, itraconazole (ITZ), by interaction with weak organic acids and then drying that would enhance dissolution rate of drug and physical stability of formulation.

Methods

Aqueous solubility of ITZ in concentrated solutions of weak organic acids, such as glutaric, tartaric, malic and citric acid, was determined. Solutions with high drug solubility were dried using vacuum oven and the resulting SDs having 2 to 20% drug load were characterized by differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. The dissolution of SDs was initially studied in 250 mL of 0.1 N HCl (pH 1.1), and any undissolved solids were collected and analyzed by PXRD. The pH of the dissolution medium was then changed from 1.1 to 5.5, particle size of precipitates were measured, and drug concentrations in solution were determined by filtration through membrane filters of varying pore sizes.

Results

The aqueous solubility of ITZ was greatly enhanced in presence of weak acids. While the solubility of ITZ in water was ~4 ng/ mL, it increased to 25–40 mg per g of solution at 25°C and 200 mg per g of solution at 65°C at a high acid concentration leading to extremely high solubilization. PXRD of SDs indicated that ITZ was present in the amorphous form, wherein the acid formed a partially crystalline matrix. ATR-FTIR results showed possible weak interactions, such as hydrogen bonding, between drug and acid but there was no salt formation. SDs formed highly supersaturated solutions at pH 1.1 and had superior dissolution rate as compared to amorphous drug and physical mixtures of drug and acids. Following the change in pH from 1.1 to 5.5, ITZ precipitated as mostly nanoparticles, providing high surface area for relatively rapid redissolution.

Conclusions

A method of highly solubilizing an extremely water-insoluble drug, ITZ, in aqueous media and converting it into an amorphous form in a physically stable SD was successfully investigated. The dissolution rate and the extent of supersaturation of the drug in dissolution media improved greatly, and any precipitate formed at high pH had very small particle size.
  相似文献   

19.
Micronization is a commonly used enabling technology to improve the bioavailability of compounds where absorption is dissolution rate limited. However, decreasing particle size often results in increased Van der Waals' interactions and electrostatic attraction between particles. This causes agglomeration of particles, thereby compromising the increase in surface area gained by micronization. Comicronization with excipients has been reported to offer significant advantages over neat micronization. The present work describes the comicronization of a model compound CI-1040 at a high drug load that shows an increase in the dissolution rate and bioavailability in male Wistar rats. Physicochemical characterization of the comicronized and neat micronized material is presented to help explain the in-vitro and in-vivo data.  相似文献   

20.
Levodopa (LEVO) as the gold standard in the treatment of Parkinson’s disease is usually administrated per os but its bioavailability is low. The intranasal administration is a potential alternative route to increase bioavailability of the drug and treat the off period. Our aim was to develop LEVO-containing binary nasal powders with different excipients by dry cogrinding process. The interactions between the components were examined. The optimized cogrinding process parameters (LEVO:excipient ratio and grinding time) resulted in the desired particle size range (5-40 μm). The α-cyclodextrin and poly(vinylpyrrolidone) (PVP) had an intensive crystallinity degree reducing effect on LEVO measured by XRPD, and they functioned as cogrinding agents. Hydroxypropyl methylcellulose, poly (vinyl alcohol) (PVA), and D-mannitol associate around the LEVO crystals preventing its crystalline structure. Hydrogen bonding was detected only for LEVO-PVP and LEVO-D-mannitol used Fourier-transformed infrared spectroscopy. Chemical degradation of LEVO in the products was not detected even after the accelerated stability test. The dissolution profile of the products can be characterized by the first-order kinetic model with different dissolution rate. The dissolution rate of LEVO was increased with α-cyclodextrin and PVP, and the drug release decreased in the case of hydroxypropyl methylcellulose, PVA, and D-mannitol compared to the LEVO powder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号