首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional anatomy of intra- and cross-modal lexical tasks   总被引:6,自引:0,他引:6  
Functional magnetic resonance imaging (fMRI) was used to examine lexical processing in normal adults (20-35 years). Two tasks required only intramodal processing (spelling judgments with visual input and rhyming judgments with auditory input) and two tasks required cross-modal processing between phonologic and orthographic representations (spelling judgments with auditory input and rhyming judgments with visual input). Each task led to greater activation in the unimodal association area concordant with the modality of input, namely fusiform gyrus (BA 19, 37) for written words and superior temporal gyrus (BA 22, 42) for spoken words. Cross-modal tasks generated greater activation in posterior heteromodal regions including the supramarginal and angular gyri (BA 40, 39). Cross-modal tasks generated additional activation in unimodal areas representing the target of conversion, superior temporal gyrus for visual rhyming and fusiform gyrus for auditory spelling. Our findings suggest that the fusiform gyrus processes orthographic word forms, the superior temporal gyrus processes phonologic word forms, and posterior heteromodal regions are involved in the conversion between orthography and phonology.  相似文献   

2.
Cao F  Khalid K  Lee R  Brennan C  Yang Y  Li K  Bolger DJ  Booth JR 《NeuroImage》2011,57(3):750-759
Developmental differences in phonological and orthographic processing of Chinese spoken words were examined in 9-year-olds, 11-year-olds and adults using functional magnetic resonance imaging (fMRI). Rhyming and spelling judgments were made to two-character words presented sequentially in the auditory modality. Developmental comparisons between adults and both groups of children combined showed that age-related changes in activation in visuo-orthographic regions depended on a task. There were developmental increases in the left inferior temporal gyrus and the right inferior occipital gyrus in the spelling task, suggesting more extensive visuo-orthographic processing in a task that required access to these representations. Conversely, there were developmental decreases in activation in the left fusiform gyrus and left middle occipital gyrus in the rhyming task, suggesting that the development of reading is marked by reduced involvement of orthography in a spoken language task that does not require access to these orthographic representations. Developmental decreases may arise from the existence of extensive homophony (auditory words that have multiple spellings) in Chinese. In addition, we found that 11-year-olds and adults showed similar activation in the left superior temporal gyrus across tasks, with both groups showing greater activation than 9-year-olds. This pattern suggests early development of perceptual representations of phonology. In contrast, 11-year-olds and 9-year-olds showed similar activation in the left inferior frontal gyrus across tasks, with both groups showing weaker activation than adults. This pattern suggests late development of controlled retrieval and selection of lexical representations. Altogether, this study suggests differential effects of character acquisition on development of components of the language network in Chinese as compared to previous reports on alphabetic languages.  相似文献   

3.
Tong Y  Gandour J  Talavage T  Wong D  Dzemidzic M  Xu Y  Li X  Lowe M 《NeuroImage》2005,28(2):417-428
This study investigates the neural substrates underlying the perception of two sentence-level prosodic phenomena in Mandarin Chinese: contrastive stress (initial vs. final emphasis position) and intonation (declarative vs. interrogative modality). In an fMRI experiment, Chinese and English listeners were asked to selectively attend to either stress or intonation in paired 3-word sentences, and make speeded-response discrimination judgments. Between-group comparisons revealed that the Chinese group exhibited significantly greater activity in the left supramarginal gyrus and posterior middle temporal gyrus relative to the English group for both tasks. These same two regions showed a leftward asymmetry in the stress task for the Chinese group only. For both language groups, rightward asymmetries were observed in the middle portion of the middle frontal gyrus across tasks. All task effects involved greater activity for the stress task as compared to intonation. A left-sided task effect was observed in the posterior middle temporal gyrus for the Chinese group only. Both language groups exhibited a task effect bilaterally in the intraparietal sulcus. These findings support the emerging view that speech prosody perception involves a dynamic interplay among widely distributed regions not only within a single hemisphere but also between the two hemispheres. This model of speech prosody processing emphasizes the role of right hemisphere regions for complex-sound analysis, whereas task-dependent regions in the left hemisphere predominate when language processing is required.  相似文献   

4.
Cortical regions engaged by sentence processing were mapped using functional MRI. The influence of input modality (spoken word vs. print input) and parsing difficulty (sentences containing subject-relative vs. object-relative clauses) was assessed. Auditory presentation was associated with pronounced activity at primary auditory cortex and across the superior temporal gyrus bilaterally. Printed sentences by contrast evoked major activity at several posterior sites in the left hemisphere, including the angular gyrus, supramarginal gyrus, and the fusiform gyrus in the occipitotemporal region. In addition, modality-independent regions were isolated, with greatest overlap seen in the inferior frontal gyrus (IFG). With respect to sentence complexity, object-relative sentences evoked heightened responses in comparison to subject-relative sentences at several left hemisphere sites, including IFG, the middle/superior temporal gyrus, and the angular gyrus. These sites showing modulation of activity as a function of sentence type, independent of input mode, arguably form the core of a cortical system essential to sentence parsing.  相似文献   

5.
6.
The putative role of the so-called Visual Word Form Area (VWFA) during reading remains under debate. For some authors, this region is specifically involved in a pre-lexical processing of words and pseudowords, whereas such specificity is challenged by others given the VWFA involvement during both non-word reading and word listening. Here, we further investigated this issue, measuring BOLD variations and their lateralization with fMRI during word and non-word reading, in order to evaluate the lexicality effect, and during reading and listening of words, in order to evaluate the impact of stimulus delivery modality on word processing networks. Region of interest (ROI) analysis was first performed in three target areas: 1-VWFA as defined by a meta-analysis of the word reading literature, 2-a middle temporal area (T2) found co-activated by both word reading and listening, 3-an inferior occipital area (OI) belonging to the unimodal visual cortex of the inferior occipital gyrus. VWFA activity was found not different between word and non-word reading but was more leftward lateralized during word reading due to a reduction of activity in the VWFA right counterpart. A similar larger leftward lateralization during word reading was also uncovered in the T2 ROI but was related to a larger left side activity. Such a lexicality effect was not observed in the OI ROI. By contrast, BOLD increases during listening were restricted to the left VWFA and T2 ROIs. Voxel-based analysis (SPM99) showed that semantic areas were more active during word than non-word reading and co-activated by both reading and listening, exhibiting a left lateralized activity in all tasks. These results indicate that the left VWFA would be the place where visual and verbal representations bind under the control of left semantic areas.  相似文献   

7.
This study examined brain activation while participants read or listened to high-imagery sentences like The number eight when rotated 90 degrees looks like a pair of spectacles or low-imagery sentences, and judged them as true or false. The sentence imagery manipulation affected the activation in regions (particularly, the intraparietal sulcus) that activate in other mental imagery tasks, such as mental rotation. Both the auditory and visual presentation experiments indicated activation of the intraparietal sulcus area in the high-imagery condition, suggesting a common neural substrate for language-evoked imagery that is independent of the input modality. In addition to exhibiting greater activation levels during the processing of high-imagery sentences, the left intraparietal sulcus also showed greater functional connectivity in this condition with other cortical regions, particularly language processing regions, regardless of the input modality. The comprehension of abstract, nonimaginal information in low-imagery sentences was accompanied by additional activation in regions in the left superior and middle temporal areas associated with the retrieval and processing of semantic and world knowledge. In addition to exhibiting greater activation levels during the processing of low-imagery sentences, this left temporal region also revealed greater functional connectivity in this condition with other left hemisphere language processing regions and with prefrontal regions, regardless of the input modality. The findings indicate that sentence comprehension can activate additional cortical regions that process information that is not specifically linguistic but varies with the information content of the sentence (such as visual or abstract information). In particular, the left intraparietal sulcus area appears to be centrally involved in processing the visual imagery that a sentence can evoke, while activating in synchrony with some core language processing regions.  相似文献   

8.
Egner T  Hirsch J 《NeuroImage》2005,24(2):539-547
It is well known that performance on a given trial of a cognitive task is affected by the nature of previous trials. For example, conflict effects on interference tasks, such as the Stroop task, are reduced subsequent to high-conflict trials relative to low-conflict trials. This interaction effect between previous and current trial types is called "conflict adaptation" and thought to be due to processing adjustments in cognitive control. The current study aimed to identify the neural substrates of cognitive control during conflict adaptation by isolating neural correlates of reduced conflict from those of increased cognitive control. We expected cognitive control to be implemented by prefrontal cortex through context-specific modulation of posterior regions involved in sensory and motor aspects of task performance. We collected event-related fMRI data on a color-word naming Stroop task and found distinct fronto-parietal networks of current trial conflict detection and conflict adaptation through cognitive control. Conflict adaptation was associated with increased activity in left middle frontal gyrus (GFm) and superior frontal gyrus (GFs), consistent with increased cognitive control, and with decreased activity in bilateral prefrontal and parietal cortices, consistent with reduced response conflict. Psychophysiological interaction analysis (PPI) revealed that cognitive control activation in GFs and GFm was accompanied by increased functional integration with bilateral inferior frontal, right temporal and parietal areas, and the anterior cerebellum. These data suggest that cognitive control is implemented by medial and lateral prefrontal cortices that bias processes in regions that have been implicated in high-level perceptual and motor processes.  相似文献   

9.
The ability to create new meanings from combinations of words is one important function of the language system. We investigated the neural correlates of combinatorial semantic processing using fMRI. During scanning, participants performed a rating task on auditory word or pseudoword strings that differed in the presence of combinatorial and word-level semantic information. Stimuli included normal sentences comprised of thematically related words that could be readily combined to produce a more complex meaning, semantically incongruent sentences in which content words were randomly replaced with other content words, pseudoword sentences, and versions of these three sentence types in which syntactic structure was removed by randomly re-ordering the words. Several regions showed greater BOLD signal for stimuli with words than for those with pseudowords, including the left angular gyrus, left superior temporal sulcus, and left inferior frontal gyrus, suggesting that these areas are involved in semantic access at the single word level. In the angular and inferior frontal gyri these differences emerged early in the course of the hemodynamic response. An effect of combinatorial semantic structure was observed in the left angular gyrus and left lateral temporal lobe, which showed greater activation for normal compared to semantically incongruent sentences. These effects appeared later in the time course of the hemodynamic response, beginning after the entire stimulus had been presented. The data indicate a complex spatiotemporal pattern of activity associated with computation of word and sentence-level semantic information, and suggest a particular role for the left angular gyrus in processing overall sentence meaning.  相似文献   

10.
Functional neuroimaging previously has been considered to provide inadequate temporal resolution to study changes of brain states as a function of cognitive computations; however, we have obtained evidence of differential amounts of brain activity related to high-level cognition (sentence processing) within 1.5 s of stimulus onset. The study used an event-related paradigm with high-speed echoplanar functional magnetic resonance imaging (fMRI) to trace the time course of the brain activation in the temporal and parietal regions as participants comprehended single sentences describing a spatial configuration. Within the first set of images, on average 1 s from when the participant begins to read a sentence, there was significant activation in a key cortical area involved in language comprehension (the left posterior temporal gyrus) and visuospatial processing (the left and right parietal regions). In all three areas, the amount of activation during sentence comprehension was higher for negative sentences than for their affirmative counterparts, which are linguistically less complex. The effect of negation indicates that the activation in these areas is modulated by the difficulty of the linguistic processing. These results suggest a relatively rapid coactivation in both linguistic and spatial cortical regions to support the integration of information from multiple processing streams.  相似文献   

11.
Neuroimaging studies of auditory and visual phonological processing have revealed activation of the left inferior and middle frontal gyri. However, because of task differences in these studies (e.g., consonant discrimination versus rhyming), the extent to which this frontal activity is due to modality-specific linguistic processes or to more general task demands involved in the comparison and storage of stimuli remains unclear. An fMRI experiment investigated the functional neuroanatomical basis of phonological processing in discrimination and rhyming tasks across auditory and visual modalities. Participants made either "same/different" judgments on the final consonant or rhyme judgments on auditorily or visually presented pairs of words and pseudowords. Control tasks included "same/different" judgments on pairs of single tones or false fonts and on the final member in pairs of sequences of tones or false fonts. Although some regions produced expected modality-specific activation (i.e., left superior temporal gyrus in auditory tasks, and right lingual gyrus in visual tasks), several regions were active across modalities and tasks, including posterior inferior frontal gyrus (BA 44). Greater articulatory recoding demands for processing of pseudowords resulted in increased activation for pseudowords relative to other conditions in this frontal region. Task-specific frontal activation was observed for auditory pseudoword final consonant discrimination, likely due to increased working memory demands of selection (ventrolateral prefrontal cortex) and monitoring (mid-dorsolateral prefrontal cortex). Thus, the current study provides a systematic comparison of phonological tasks across modalities, with patterns of activation corresponding to the cognitive demands of performing phonological judgments on spoken and written stimuli.  相似文献   

12.
Neural correlates of numbers and mathematical terms   总被引:1,自引:0,他引:1  
Zhang H  Chen C  Zhou X 《NeuroImage》2012,60(1):230-240
Numerical processing has been demonstrated to be subserved typically by the brain regions around the bilateral intraparietal sulcus (IPS). The goal of the current study was to investigate whether the processing of mathematical terms shared the same brain regions with numerical processing. Healthy adult participants performed semantic distance judgment tasks on five types of materials, including geometric terms, algebraic terms, linguistic terms, words for tools and other common objects, and Arabic numbers. Brain activation was measured with functional magnetic resonance imaging (fMRI). The results showed that geometric terms had greater activation than algebraic terms, linguistic terms and tool words in the horizontal IPS, but algebraic terms did not have greater activation than linguistic terms and tool words in this region. Arabic numbers showed greater activation than non-number materials (including geometric terms, algebraic terms, linguistic terms and tool words) in the bilateral IPS, right inferior frontal gyrus and bilateral middle frontal gyrus, but the non-number materials showed stronger activation in the left inferior frontal gyrus and left middle temporal gyrus. These results suggest that the brain area for the processing of numbers (the left IPS) seems to be involved in semantic processing of geometric terms, but not that of other mathematical terms such as algebraic terms. Both algebraic and geometric terms share similar brain organization with basic semantic processing in the left temporal and frontal regions.  相似文献   

13.
Witt ST  Laird AR  Meyerand ME 《NeuroImage》2008,42(1):343-356
Finger-tapping tasks are one of the most common paradigms used to study the human motor system in functional neuroimaging studies. These tasks can vary both in the presence or absence of a pacing stimulus as well as in the complexity of the tapping task. A voxel-wise, coordinate-based meta-analysis was performed on 685 sets of activation foci in Talairach space gathered from 38 published studies employing finger-tapping tasks. Clusters of concordance were identified within the primary sensorimotor cortices, supplementary motor area, premotor cortex, inferior parietal cortices, basal ganglia, and anterior cerebellum. Subsequent analyses performed on subsets of the primary set of foci demonstrated that the use of a pacing stimulus resulted in a larger, more diverse network of concordance clusters, in comparison to varying the complexity of the tapping task. The majority of the additional concordance clusters occurred in regions involved in the temporal aspects of the tapping task, rather than its execution. Tapping tasks employing a visual pacing stimulus recruited a set of nodes distinct from the results observed in those tasks employing either an auditory or no pacing stimulus, suggesting differing cognitive networks when integrating visual or auditory pacing stimuli into simple motor tasks. The relatively uniform network of concordance clusters observed across the more complex finger-tapping tasks suggests that further complexity, beyond the use of multi-finger sequences or bimanual tasks, may be required to fully reveal those brain regions necessary to execute truly complex movements.  相似文献   

14.
Xu J  Kemeny S  Park G  Frattali C  Braun A 《NeuroImage》2005,25(3):1002-1015
Context exerts a powerful effect on cognitive performance and is clearly important for language processing, where lexical, sentential, and narrative contexts should differentially engage neural systems that support lexical, compositional, and discourse level semantics. Equally important, but thus far unexplored, is the role of context within narrative, as cognitive demands evolve and brain activity changes dynamically as subjects process different narrative segments. In this study, we used fMRI to examine the impact of context, comparing responses to a single, linguistically matched set of texts when these were differentially presented as random word lists, unconnected sentences and coherent narratives. We found emergent, context-dependent patterns of brain activity in each condition. Perisylvian language areas were always active, consistent with their supporting core linguistic computations. Sentence processing was associated with expanded activation of the frontal operculum and temporal poles. The same stimuli presented as narrative evoked robust responses in extrasylvian areas within both hemispheres, including precuneus, medial prefrontal, and dorsal temporo-parieto-occipital cortices. The right hemisphere was increasingly active as contextual complexity increased, maximal at the narrative level. Furthermore, brain activity was dynamically modulated as subjects processed different narrative segments: left hemisphere activity was more prominent at the onset, and right hemisphere more prominent at the resolution of a story, at which point, it may support a coherent representation of the narrative as a whole. These results underscore the importance of studying language in an ecologically valid context, suggesting a neural model for the processing of discourse.  相似文献   

15.
Lateralization of scalp-recorded event-related potentials (ERPs) and functional MRI (fMRI) activation was investigated using a verb generation task in 10 healthy right-handed adults. ERPs showed an early transient positivity in the left inferior temporal region (500-1250 ms) following auditory presentation of the stimulus noun. A sustained slow cortical negativity of later onset (1250-3000 ms) was then recorded, most pronounced over left inferior frontal regions. fMRI data were in agreement with both ERP effects, showing left lateralized activation in inferior and superior temporal as well as inferior frontal cortices. Lateralized ERP effects occurred during the verb generation task but not during passive word listening or during word- and nonword repetition. Thus, ERPs and fMRI provided convergent evidence regarding language lateralization, with ERPs revealing the temporal sequence of posterior to anterior cortical activation during semantic retrieval.  相似文献   

16.
目的利用fMRI技术,通过听觉呈现语言任务,探讨刺激呈现通道对负激活脑区的影响,进一步检验静息状态人脑默认活动假说。方法13名健康成年志愿者参加实验。进行2次fMRI实验。实验1(简单任务)任务期要求受试者听无意义假词;实验2(复杂任务)要求受试者听真词并作词语属性判断(具体或抽象)。静息期要求受试者闭眼、静卧,不要做任何主动思维活动。利用SPM2软件进行数据处理。先分析单个被试,然后行组间比较。采用反减法获得负激活图。并把本次实验结果与以往视觉呈现任务结果进行比较。结果初级视觉皮层与初级听觉皮层的负激活存在明显的通道依赖性,听觉呈现刺激引起视觉皮层负激活,视觉呈现刺激时听觉皮层表现为负激活。非任务依赖性负激活脑区包括扣带回后部/楔前叶(BA31/30)、扣带回前部(BA24/32)、两侧颞上回(BA8)、两颞下回前部(BA20)、两侧顶下小叶(BA39/40)。这些区域的负激活与刺激呈现通道方式及特定刺激任务无关。该负激活脑区模式与人类默认脑活动网络基本一致。结论刺激呈现通道是影响任务依赖性负激活的因素之一,探讨负激活问题时应该考虑到这一因素。同时,本研究进一步验证了静息状态时人脑默认活动假说。  相似文献   

17.
The processing of syntactic and semantic information in written sentences by native (L1) and non-native (L2) speakers was investigated in an fMRI experiment. This was done by means of a violation paradigm, in which participants read sentences containing either a syntactic, a semantic, or no violation. The results of this study were compared to those of a previous fMRI study, in which auditory sentence processing in L1 and L2 was investigated. The results indicate greater activation for L2 speakers as compared to L1 speakers when reading sentences in several language- and motor-related brain regions. The processing of syntactically incorrect sentences elicited no reliably greater activation in language areas in L2 speakers. In L1 speakers, on the other hand, syntactic processing, as compared to semantic processing, was associated with increased activation in left mid to posterior superior temporal gyrus. In response to the processing of semantically incorrect sentences, both L2 and L1 speakers demonstrated increased involvement of left inferior frontal gyrus. The results of this study were compared to a previously conducted fMRI study, which made use of identical sentence stimuli in the auditory modality. Results from the two studies are in general agreement with one another, although some differences in the response of brain areas very proximal to primary perceptual processing areas (i.e. primary auditory and visual cortex) were observed in conjunction with presentation in the different modalities. The combined results provide evidence that L1 and L2 speakers rely on the same cortical network to process language, although with a higher level of activation in some regions for L2 processing.  相似文献   

18.
Effects of word form on brain processing of written Chinese   总被引:16,自引:0,他引:16  
Fu S  Chen Y  Smith S  Iversen S  Matthews PM 《NeuroImage》2002,17(3):1538-1548
Both logographic characters and alphabetic pinyins can be used to write words in Chinese. Here we use fMRI to address the question of whether the written form affects brain processing of a word. Fifteen healthy, right-handed, native Chinese-reading volunteers participated in our study and were asked to read silently either Chinese characters (8 subjects) or pinyins (7 subjects). The stimulus presentation rate was varied for both tasks to allow us to identify brain regions with word-load-dependent activation. Rate effects (fast minus slow presentations) for Chinese character reading were observed in striate and extrastriate visual cortex, superior parietal lobule, left posterior middle temporal gyrus, bilateral inferior temporal gyri, and bilateral superior frontal gyri. Rate effects for pinyin reading were observed in bilateral fusiform, lingual, and middle occipital gyri, bilateral superior parietal lobule/precuneus, left inferior parietal lobule, bilateral inferior temporal gyrus, left middle temporal gyrus, and left superior temporal gyrus. These results demonstrate that common regions of the brain are involved in reading both Chinese characters and pinyins, activated apparently independently of the surface form of the word. There also appear to be brain regions in which activation is dependent on word form. However, it is unlikely that these are entirely specific for a given word form; their activation more likely reflects relative functional specializations within broader networks for processing written language.  相似文献   

19.
20.
C J Moore  C J Price 《NeuroImage》1999,10(2):181-192
This study investigates word and object processing during naming and viewing tasks and identifies three distinct regions in the left ventral occipitotemporal cortex. Irrespective of task, words and objects (relative to meaningless visual controls) activated the medial surface of the left anterior fusiform gyrus, a region that has previously been associated with semantic knowledge. A more lateral region was differentially active for naming words and objects relative to viewing the same stimuli and a more posterior region was differentially active for objects relative to words irrespective of task. In addition, we found that word processing resulted in greater activation than object processing on the dorsal surface of the left superior temporal gyrus and the left supramarginal gyrus. These regions appear to be important for converting orthography into phonology; their response to words irrespective of task is consistent with established psychological evidence that implicit phonological processing is stronger for words than objects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号