首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Over a period of 26 months, we have evaluated in a prospective fashion the use of 16S rRNA gene sequencing as a means of identifying clinically relevant isolates of nonfermenting gram-negative bacilli (non-Pseudomonas aeruginosa) in the microbiology laboratory. The study was designed to compare phenotypic with molecular identification. Results of molecular analyses were compared with two commercially available identification systems (API 20 NE, VITEK 2 fluorescent card; bioMérieux, Marcy l'Etoile, France). By 16S rRNA gene sequence analyses, 92% of the isolates were assigned to species level and 8% to genus level. Using API 20 NE, 54% of the isolates were assigned to species and 7% to genus level, and 39% of the isolates could not be discriminated at any taxonomic level. The respective numbers for VITEK 2 were 53%, 1%, and 46%, respectively. Fifteen percent and 43% of the isolates corresponded to species not included in the API 20 NE and VITEK 2 databases, respectively. We conclude that 16S rRNA gene sequencing is an effective means for the identification of clinically relevant nonfermenting gram-negative bacilli. Based on our experience, we propose an algorithm for proper identification of nonfermenting gram-negative bacilli in the diagnostic laboratory.  相似文献   

2.
Reliable automated identification and susceptibility testing of clinically relevant bacteria is an essential routine for microbiology laboratories, thus improving patient care. Examples of automated identification systems include the Phoenix (Becton Dickinson) and the VITEK 2 (bioMerieux). However, more and more frequently, microbiologists must isolate "difficult" strains that automated systems often fail to identify. An alternative approach could be the genetic identification of isolates; this is based on 16S rRNA gene sequencing and analysis. The aim of the present study was to evaluate the possible use of MicroSeq 500 (Applera) for sequencing the 16S rRNA gene to identify isolates whose identification is unobtainable by conventional systems. We analyzed 83 "difficult" clinical isolates: 25 gram-positive and 58 gram-negative strains that were contemporaneously identified by both systems--VITEK 2 and Phoenix--while genetic identification was performed by using the MicroSeq 500 system. The results showed that phenotypic identifications by VITEK 2 and Phoenix were remarkably similar: 74% for gram-negative strains (43 of 58) and 80% for gram-positive strains were concordant by both systems and also concordant with genetic characterization. The exceptions were the 15 gram-negative and 9 gram-positive isolates whose phenotypic identifications were contrasting or inconclusive. For these, the use of MicroSeq 500 was fundamental to achieving species identification. In clinical microbiology the use of MicroSeq 500, particularly for strains with ambiguous biochemical profiles (including slow-growing strains), identifies strains more easily than do conventional systems. Moreover, MicroSeq 500 is easy to use and cost-effective, making it applicable also in the clinical laboratory.  相似文献   

3.
Background and purposeBacteroides fragilis group isolates are most frequently isolated anaerobic pathogens. This study aimed to evaluate the accuracy of VITEK MS, Clin-ToF-II MS, Autof MS 1000 and VITEK 2 ANC card on the identification of clinical B. fragilis group isolates, as well as to determine their antimicrobial susceptibilities.MethodsA total of 138 isolates of B. fragilis group isolates were identified with the three MALDI-TOF MS systems and VITEK 2 ANC cards. 16S rRNA gene sequencing was used as the reference identification method for comparison. Antimicrobial susceptibilities were determined by agar dilution method to 19 antimicrobial agents recommended by Clinical and Laboratory Standards Institute (CLSI).ResultsHundred thirty three isolates of Bacteroides spp. and 5 isolates of Parabacteroides spp. were identified by 16S rRNA sequencing. The rates of accurate identification at species level of VITEK MS, Clin-ToF-II MS, Autof MS 1000 and VITEK 2 ANC card were 94.2%, 94.2%, 98.6% and 94.9%, respectively, while that at genus level were 99.3%, 100%, 100% and 97.8%, respectively. Metronidazole and chloramphenicol were the most susceptible agents (99.3% and 92.8%, respectively), followed by meropenem, ertapenem, imipenem and piperacillin/tazobactam to which the susceptible rates ranged from 76.8% to 79.0%. The susceptible rates to carbapenems decreased 12.4–15.3% from 2010–2013 to 2014–2017.ConclusionAll the four systems provided high accurate rate on the identification of B. fragilis group isolates. Metronidazole showed highest activity against these isolates. Attention should be paid to the higher resistant rates to carbapenems, clindamycin, moxifloxacin and tigecycline than the other countries.  相似文献   

4.
Phenotypic identification of gram-negative bacteria from Cystic Fibrosis (CF) patients carries a high risk of misidentification. Therefore, we compared the results of biochemical identification by API 20NE with 16S rRNA gene sequencing in 88 gram-negative, oxidase-positive rods, other than morphologically and biochemically typical P. aeruginosa, from respiratory secretions of CF patients. The API 20NE allowed correct identification of the bacterial species in 15 out of 88 (17%) isolates investigated. Agreement between the API and the 16S rRNA gene sequencing results was high only in isolates with an API result classified as "excellent identification". Even API results classified as "very good identification" or "good identification" showed a high rate of misidentification (67% and 84%). Fifty-two isolates of morphological and biochemical nontypical Pseudomonas aeruginosa, representing 59% of all isolates investigated, were not identifiable or misidentified in the API 20NE. Therefore, rapid molecular diagnostic techniques like real-time PCR and fluorescence in situ hybridization (FISH) were evaluated in this particular group of bacteria for identification of the clinically most relevant pathogen, P. aeruginosa. The LightCycler PCR assay with a P. aeruginosa-specific probe showed a sensitivity and specificity of 98.1% and 100%, respectively. For FISH analysis, a newly designed P. aeruginosa-specific probe had a sensitivity and specificity of 100%. In conclusion, molecular methods are superior over biochemical tests for identification of gram-negative, oxidase-positive rods in CF patients. In addition, real-time PCR and FISH allowed identification of morphologically nontypical isolates of P. aeruginosa within a few hours.  相似文献   

5.
An evaluation of the Vitek 2 ANC card (bioMérieux, Marcy l'Etoile, France) was performed with 301 anaerobic isolates. Each strain was identified by 16S rRNA gene sequencing, which is considered to be the reference method. The Vitek 2 ANC card correctly identified 239 (79.4%) of the 301 clinical isolates to the genus level, including 100 species that were not represented in the database. Correct species identification was obtained for 60.1% (181/301) of the clinical isolates. For the isolates not identified to the species level, a correct genus identification was obtained for 47.0% of them (47/100), and 16 were accurately designated not identified. Although the Vitek 2 ANC card allows the rapid and acceptable identification of the most common clinically important anaerobic bacteria within 6 h, improvement is required for the identification of members of the genera Fusobacterium, Prevotella, and Actinomyces and certain Gram-positive anaerobic cocci (GPAC).  相似文献   

6.
Studies have demonstrated that matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a rapid, accurate method for the identification of clinically relevant bacteria. The purpose of this study was to evaluate the performance of the VITEK MS v2.0 system (bioMérieux) for the identification of the non-Enterobacteriaceae Gram-negative bacilli (NEGNB). This multi-center study tested 558 unique NEGNB clinical isolates, representing 18 genera and 33 species. Results obtained with the VITEK MS v2.0 were compared with reference 16S rRNA gene sequencing and when indicated recA sequencing and phenotypic analysis. VITEK MS v2.0 provided an identification for 92.5 % of the NEGNB isolates (516 out of 558). VITEK MS v2.0 correctly identified 90.9 % of NEGNB (507 out of 558), 77.8 % to species level and 13.1 % to genus level with multiple species. There were four isolates (0.7 %) incorrectly identified to genus level and five isolates (0.9 %), with one incorrect identification to species level. The remaining 42 isolates (7.5 %) were either reported as no identification (5.0 %) or called “mixed genera” (2.5 %) since two or more different genera were identified as possible identifications for the test organism. These findings demonstrate that the VITEK MS v2.0 system provides accurate results for the identification of a challenging and diverse group of Gram-negative bacteria.  相似文献   

7.
The new anaerobe and Corynebacterium (ANC) identification card for Vitek 2 was compared with a 16S rRNA gene sequencing (16S) reference method for accuracy in the identification of corynebacteria and anaerobic species. Testing was performed on a Vitek 2 XL system with modified software at three clinical trial laboratories. Reproducibility was determined with nine ATCC quality control strains that were tested 20 times over a minimum of 10 days at all three sites. A challenge set of 50 well-characterized strains and 365 recent fresh and frozen clinical isolates were included in the study. The expected positive and negative biochemical well reactions were also evaluated for substrate reproducibility. All strains were tested with the ANC card, and clinical isolates were saved for 16S rRNA gene sequencing. All reproducibility tests yielded expected results within a 95% confidence interval, except for that with Corynebacterium striatum ATCC 6940, for which identification failed at one trial site. For the challenge isolates, there was 98% correct identification, 5% low discrimination, and 2% incorrect identification, and 0% were unidentified. For clinical strains, there was 95.1% correct identification, 4.9% low discrimination, and 4.6% incorrect identification, and 0.3% were unidentified. The 4.6% (17/365) of clinical isolates that were incorrectly identified consisted of 14 isolates that were correct at the genus level and three that were incorrect at the genus level. The new ANC card met all performance criteria within a 95% confidence interval compared to the identification performance by 16S rRNA gene sequencing.  相似文献   

8.
Due to the inadequate automation in the amplification and sequencing procedures, the use of 16S rRNA gene sequence-based methods in clinical microbiology laboratories is largely limited to identification of strains that are difficult to identify by phenotypic methods. In this study, using conventional full-sequence 16S rRNA gene sequencing as the "gold standard," we evaluated the usefulness of the MicroSeq 500 16S ribosomal DNA (rDNA)-based bacterial identification system, which involves amplification and sequencing of the first 527-bp fragment of the 16S rRNA genes of bacterial strains and analysis of the sequences using the database of the system, for identification of clinically significant bacterial isolates with ambiguous biochemical profiles. Among 37 clinically significant bacterial strains that showed ambiguous biochemical profiles, representing 37 nonduplicating aerobic gram-positive and gram-negative, anaerobic, and Mycobacterium species, the MicroSeq 500 16S rDNA-based bacterial identification system was successful in identifying 30 (81.1%) of them. Five (13.5%) isolates were misidentified at the genus level (Granulicatella adiacens was misidentified as Abiotrophia defectiva, Helcococcus kunzii was misidentified as Clostridium hastiforme, Olsenella uli was misidentified as Atopobium rimae, Leptotrichia buccalis was misidentified as Fusobacterium mortiferum, and Bergeyella zoohelcum was misidentified as Rimerella anatipestifer), and two (5.4%) were misidentified at the species level (Actinomyces odontolyticus was misidentified as Actinomyces meyeri and Arcobacter cryaerophilus was misidentified as Arcobacter butzleri). When the same 527-bp DNA sequences of these seven isolates were compared to the known 16S rRNA gene sequences in the GenBank, five yielded the correct identity, with good discrimination between the best and second best match sequences, meaning that the reason for misidentification in these five isolates was due to a lack of the 16S rRNA gene sequences of these bacteria in the database of the MicroSeq 500 16S rDNA-based bacterial identification system. In conclusion, the MicroSeq 500 16S rDNA-based bacterial identification system is useful for identification of most clinically important bacterial strains with ambiguous biochemical profiles, but the database of the MicroSeq 500 16S rDNA-based bacterial identification system has to be expanded in order to encompass the rarely encountered bacterial species and achieve better accuracy in bacterial identification.  相似文献   

9.
The VITEK 2 card for gram-negative bacteria (bioMérieux,Marcy-l'Etoile, France) has been redesigned to improve the identification of fermenting and nonfermenting bacilli. Forty-seven biochemical tests, including 19 enzymatic tests, are present in the new card and interpreted in a kinetic mode. Final identification results are available within 10 h. The database allows the identification of 159 different taxa. Six hundred fifty-five gram-negative rods (GNR; 511 fermenters and 144 nonfermenters), representing 54 taxa, were tested. Strains were taken from fresh routine primary isolation plates (n = 157), from stored routine plates (n = 301), and from stock cultures (n = 197). Six hundred thirty-seven strains (97.3%) were correctly identified to the species level, 14 strains (2.1%) gave low discrimination results requiring additional tests, and 4 strains (0.6%) gave discordant results; not a single strain remained unidentified. Nearly 92% of all isolates were correctly identified within 7 h of incubation. The robustness of the system was demonstrated by the fact that strains were grown on four different agar media before testing. The system may also have the potential to be applied directly to primary isolation plates, since in this instance 96.2% of 157 GNR were correctly identified and 3.8% gave low discrimination results. The new VITEK 2 card for gram-negative bacteria seems to be a promising new tool for routine, rapid identification of GNR.  相似文献   

10.
Although 16S ribosomal RNA (rRNA) gene sequencing is well established for correctly identifying bacteria, its most efficient use in a routine clinical laboratory is not clear. We devised and evaluated a strategy to select gram-negative rods and coccobacilli (GNRCB) for which sequencing might be necessary before routine identification methods had been exhausted. The prospectively applied selection criteria were primarily based on the isolate's display of unusual or discordant phenotypic results and/or disease correlation. By using this strategy, we selected a total of 120 GNRCB (representing only ~2% of all identified). The strategy was demonstrated to be efficient because the preliminary phenotypic identification for 79.2% of those isolates needed revision (18.2% were novel and about a third would have required further extensive testing). The knowledge that 1.6% (ie, 79% of 2%) of isolated GNRCB might benefit from sequence identification could provide guidelines for routine clinical laboratories toward efficient use of sequence analysis.  相似文献   

11.
目的 了解基质辅助激光解析离子-飞行时间质谱仪(MALDI-TOF-MS)在临床分离革兰阴性杆菌鉴定中的应用,为临床医师正确诊断提供科学依据.方法 采用 MALDI-TOF-MS技术对1625株临床常见革兰阴性杆菌进行鉴定.VITEK MS鉴定结果与VITEK-2 Compact全自动微生物鉴定系统对比,结果差异的菌株采用16S rDNA测序验证.结果 VITEK MS共鉴定出常见革兰阴性杆菌1625株,肠杆菌科1219株共6种,非发酵菌属406株共4种.VITEK MS系统与VITEK-2 Compact系统鉴定结果比较,120株常见革兰阴性杆菌鉴定符合率为95.83%.5株鉴定结果不符菌株用16S rDNA测序验证,与VITEK-2 Compact 鉴定符合率为2/5(40%),与VITEK MS鉴定符合率为3/5(60%).结论 VITEK MS能快速鉴定出常见革兰阴性杆菌,为临床治疗及鉴别感染病原菌提供了快速的筛选方法.  相似文献   

12.
The use of automated systems in the modern microbiology laboratory is becoming commonplace as the pressure of cost containment impacts on staff resources. With increased international travel and threats of bioterrorism, recognition and accurate identification of organisms such as Burkholderia pseudomallei is important. In areas where this organism is endemic, identification is not usually problematic. This study evaluates the performance of the new VITEK 2 colorimetric GN card for the identification of this organism. A total of 103 previously identified clinical isolates were tested with the new card with isolates taken from MacConkey agar, Columbia horse blood agar, Columbia sheep blood agar, and Trypticase soy agar in order to determine identification performance and to see if there was any variability in results due to the agar. Columbia horse blood agar produced the highest rates of identification (81%), followed by Trypticase soy agar (78%), Columbia sheep blood agar (75%), and MacConkey agar (63%). There was considerable variability in some of the reactions obtained. Seven isolates failed to identify from any of the agars used. This study highlights issues with the identification of this organism with the new VITEK 2 GN card. Enhancements of the algorithm parameters for the GN card are warranted and are in progress. Laboratory personnel need to be aware of the current limitations with this GN card and the software (version 4.02 or older for the VITEK 2 60/XL and version 1.02 or older for VITEK 2 Compact) and rely on clinical history, a high index of suspicion, and basic microbiology tests to confirm the identification of this organism.  相似文献   

13.
The new Neisseria-Haemophilus identification (NH) card for Vitek 2 was compared with 16S rRNA gene sequencing (16S) as the reference method for accurate identification of Neisseria spp., Haemophilus spp., and other fastidious gram-negative bacteria. Testing was performed on the Vitek 2 XL system with modified software at three clinical trial laboratories. Reproducibility was determined with nine ATCC quality control strains tested 20 times over a minimum of 10 days at all three sites. A challenge set of 30 strains with known identifications and 371 recent fresh and frozen clinical isolates were also tested. Expected positive and negative biochemical reactions were also evaluated for substrate reproducibility. All microorganisms were tested on the NH card, and all clinical and stock isolates were saved for 16S testing. All reproducibility tests yielded expected results within a 95% confidence interval. For challenge microorganisms, there was 98% overall correct identification, including 8% low discrimination, 2% incorrect identification, and 0% unidentified. For clinical strains, there was 96.5% overall correct identification, including 10.2% low discrimination, 2.7% incorrect identification, and 0.8% unidentified. The 2.7% (10/371) of clinical isolates that gave an incorrect identification consisted of 7 isolates correct to genus and 3 strains incorrect to genus. There were an additional 27 strains (primarily Neisseria species) for which the 16S identification result was different from the NH card result. These were all unclaimed species by the system. The new NH card met all performance criteria within a 95% confidence interval compared to identification of clinical isolates by 16S.  相似文献   

14.
During 1999, we used partial 16S rRNA gene sequencing for the prospective identification of atypical nonfermenting gram-negative bacilli isolated from patients attending our cystic fibrosis center. Of 1,093 isolates of nonfermenting gram-negative bacilli recovered from 148 patients, 46 (4.2%) gave problematic results with conventional phenotypic tests. These 46 isolates were genotypically identified as Pseudomonas aeruginosa (19 isolates, 12 patients), Achromobacter xylosoxidans (10 isolates, 8 patients), Stenotrophomonas maltophilia (9 isolates, 9 patients), Burkholderia cepacia genomovar I/III (3 isolates, 3 patients), Burkholderia vietnamiensis (1 isolate), Burkholderia gladioli (1 isolate), and Ralstonia mannitolilytica (3 isolates, 2 patients), a recently recognized species.  相似文献   

15.
Two phenotypic and three molecular methods were assessed for their ability to identify viridans group streptococci (VGS) to the species level. A panel of 23 clinical isolates, comprising strains isolated from infective endocarditis, blood cultures, pleural and peritoneal fluid, and 19 type/reference strains were analyzed. Identification was performed using two conventional phenotypic methods: API? rapid ID 32 Strep and the VITEK? 2 system, and genotypic analysis of the nucleotide sequence of the housekeeping gene sodA, restriction patterns generated by restriction fragment length polymorphism (RFLP) of the 16S rRNA gene and multilocus sequence analysis (MLSA) of seven housekeeping genes. The API? rapid ID 32 Strep accurately speciated 79% of the strains assessed, while the VITEK? 2 generated a successful identification for 55%, presenting limitations particularly with regard to species belonging to the mitis group. RFLP of the 16S rRNA gene correctly speciated 24% of the strains, having failed to allocate a species for 36% of the isolates examined. In contrast, sequence analysis of the sodA gene provided a correct identification for 95% of the strains assessed, while identification using the MLSA technique was unsuccessful due to practical limitations. The results generated herein indicate that no single methodology can be used to provide an accurate identification to the species level of all VGS, although nucleotide sequence analysis of the sodA gene proved to be useful in providing reliable speciation.  相似文献   

16.
Alpha-hemolytic streptococci are very difficult to identify by phenotypic methods. In this study, a pyrosequencing method for the identification of streptococcal species based on two variable regions of the 16S rRNA gene is described. Almost all studied streptococcal species (n = 51) represented by their type strains could be differentiated except for some closely related species of the Streptococcus bovis or S. salivarius group. The pyrosequencing results of alpha-hemolytic streptococci isolated from blood (n = 99) or from the normal pharyngeal microbiota (n = 25) were compared to the results obtained by the VITEK 2 with GP card (bioMérieux, Marcy l'Etoile, France). As expected, the results of the two methods did not completely agree, but 93 (75.0%) of the isolates assigned to the same streptococcal group by both methods and 57 (46.0%) reached consistent results at the species level. However, 10 strains remained unidentified by VITEK 2, and 4 isolates could not be assigned to any streptococcal group by pyrosequencing. Identification of members of the S. mitis and S. sanguinis groups proved difficult for both methods. Furthermore, the pyrosequencing analysis revealed great sequence variation, since only 43 (32.3%) of the 133 isolates analyzed by pyrosequencing had sequences identical to a type strain. The variation was greatest in the pharyngeal isolates, slightly lower in the blood culture isolates, and nonexistent in invasive pneumococcal isolates (n = 17) that all had the S. pneumoniae type strain sequence. The resolution of the results obtained by the two methods is impeded by the lack of a proper gold standard.  相似文献   

17.
The performance of the new VITEK 2 Advanced Colorimetry yeast identification (YST) card for use with the VITEK 2 system (bioMérieux, Inc., Hazelwood, MO) was compared to that of the API 20C AUX (API) system (bioMérieux SA, Marcy-l'Etoile, France) in a multicenter evaluation. A total of 12 quality control, 64 challenge, and 623 clinical yeast isolates were used in the study. Comparisons of species identification, platform reliability, and substrate reproducibility were made between YST and API, with API considered the reference standard. Quality control testing to assess system and substrate reproducibility matched expected results >/=95% of the time. The YST card correctly identified 100% of the challenge strains, which covered the species range of the manufacturer's performance claims. Using clinical isolates, the YST card correctly identified 98.5%, with 1.0% of isolates incorrectly identified and 0.5% unidentified. Among clinical isolates, the YST card generated fewer low-discrimination results (18.9%) than did API (30.0%). The time to identification with YST was 18 h, compared to 48 to 72 h with API. The colorimetric YST card used with the VITEK 2 provides a highly automated, objective yeast identification method with excellent performance and reproducibility. We found this system useful for timely and accurate identification of significant yeast species in the clinical microbiology laboratory.  相似文献   

18.
This multicenter study evaluated the accuracy of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry identifications from the VITEK MS system (bioMérieux, Marcy l’Etoile, France) for Enterobacteriaceae typically encountered in the clinical laboratory. Enterobacteriaceae isolates (n?=?965) representing 17 genera and 40 species were analyzed on the VITEK MS system (database v2.0), in accordance with the manufacturer’s instructions. Colony growth (≤72 h) was applied directly to the target slide. Matrix solution (α-cyano-4-hydroxycinnamic acid) was added and allowed to dry before mass spectrometry analysis. On the basis of the confidence level, the VITEK MS system provided a species, genus only, or no identification for each isolate. The accuracy of the mass spectrometric identification was compared to 16S rRNA gene sequencing performed at MIDI Labs (Newark, DE). Supplemental phenotypic testing was performed at bioMérieux when necessary. The VITEK MS result agreed with the reference method identification for 96.7 % of the 965 isolates tested, with 83.8 % correct to the species level and 12.8 % limited to a genus-level identification. There was no identification for 1.7 % of the isolates. The VITEK MS system misidentified 7 isolates (0.7 %) as different genera. Three Pantoea agglomerans isolates were misidentified as Enterobacter spp. and single isolates of Enterobacter cancerogenus, Escherichia hermannii, Hafnia alvei, and Raoultella ornithinolytica were misidentified as Klebsiella oxytoca, Citrobacter koseri, Obesumbacterium proteus, and Enterobacter aerogenes, respectively. Eight isolates (0.8 %) were misidentified as a different species in the correct genus. The VITEK MS system provides reliable mass spectrometric identifications for Enterobacteriaceae.  相似文献   

19.
Sequence analysis of the 16S rRNA gene represents a highly accurate and versatile method for bacterial classification and identification, even when the species in question is notoriously difficult to identify by phenotypic means. In this study, we evaluated the utility of 16S rRNA gene sequencing as a means of identifying clinically important Bacteroides species. We sequenced 231 clinical isolates that had been identified by a short biochemical scheme. Based on the sequence analysis, 192 clinical isolates were assigned to an established species, with the other 39 clinical strains revealing five unique sequences that may represent five novel species. This is in contrast to identification obtained from a short biochemical scheme, by which only 73.5% (172 of 231) of isolates were correctly identified to species level. Based on the solid identification obtained from 16S rRNA gene sequencing, the short biochemical scheme was modified and improved to provide clinical laboratories with an inexpensive and simple alternative for the identification of isolates of clinically significant Bacteroides species.  相似文献   

20.
Although accurate in the identification of Mycobacterium species, partial 16S rRNA gene sequencing does not distinguish Mycobacterium chelonae from M. abscessus. Thus, we designed a SmartCycler PCR assay targeting the 16S-to-23S internal transcribed spacer (ITS) region with use of MGB Eclipse probes to distinguish each species. Comparison with PCR-restriction enzyme analysis of a 441-bp fragment of the hsp65 gene resulted in 100% correlation with 25 isolates of M. chelonae and 25 isolates of M. abscessus. ITS PCR performed on 90 consecutive isolates identified by partial 16S rRNA gene sequencing (26 isolates of the M. chelonae-M. abscessus complex and 64 remaining isolates, including Mycobacterium species, Nocardia species, and other aerobic actinomycetes) showed 100% specificity and sensitivity. The ITS PCR assay is accurate and specific, easy to perform, and a good supplemental test when using partial 16S rRNA gene sequencing to identify M. chelonae and M. abscessus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号