首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 975 毫秒
1.
Summary.  Significant progress has recently been made in the development of gene therapy for the treatment of hemophilia A and B. These advances parallel the development of improved gene delivery systems. Long-term therapeutic levels of factor (F) VIII and FIX can be achieved in adult FVIII- and FIX-deficient mice and in adult hemophiliac dogs using adeno-associated viral (AAV) vectors, high-capacity adenoviral vectors (HC-Ad) and lentiviral vectors. In mouse models, some of the highest FVIII or FIX expression levels were achieved using HC-Ad vectors with no or only limited adverse effects. Encouraging preclinical data have been obtained using AAV vectors, yielding long-term FIX levels above 10% in primates and in hemophilia B dogs, which prevented spontaneous bleeding. Non-viral ex vivo gene therapy approaches have also led to long-term therapeutic levels of coagulation factors in animal models. Nevertheless, the induction of neutralizing antibodies (inhibitors) to FVIII or FIX sometimes precludes stable phenotypic correction following gene therapy. The risk of inhibitor formation varies depending on the type of vector, vector serotype, vector dose, expression levels and promoter used, route of administration, transduced cell type and the underlying mutation in the hemophilia model. Some studies suggest that continuous expression of clotting factors may induce immune tolerance, particularly when expressed by the liver. Several gene therapy phase I clinical trials have been initiated in patients suffering from severe hemophilia A or B. Some subjects report fewer bleeding episodes and occasionally have low levels of clotting factor activity detected. Further improvement of the various gene delivery systems is warranted to bring a permanent cure for hemophilia one step closer to reality.  相似文献   

2.
A number of distinct factors acting at different stages of the adeno-associated virus vector (AAV)-mediated gene transfer process were found to influence murine hepatocyte transduction. Foremost among these was the viral capsid protein. Self-complementary (sc) AAV pseudotyped with capsid from serotype 8 or rh.10 mediated fourfold greater hepatocyte transduction for a given vector dose when compared with vector packaged with AAV7 capsid. An almost linear relationship between vector dose and transgene expression was noted for all serotypes with vector doses as low as 1 x 10(7) vg per mouse (4 x 10(8) vg kg(-1)) mediating therapeutic levels of human FIX (hFIX) expression. Gender significantly influenced scAAV-mediated transgene expression, with twofold higher levels of expression observed in male compared with female mice. Pretreatment of mice with the proteasome inhibitor bortezomib increased scAAV-mediated hFIX expression from 4+/-0.6 to 9+/-2 microg ml(-1) in female mice, although the effect of this agent was less profound in males. Exposure of mice to adenovirus 10-20 weeks after gene transfer with AAV vectors augmented AAV transgene expression twofold by increasing the level of proviral mRNA. Hence, optimization of individual steps in the AAV gene transfer process can further enhance the potency of AAV-mediated transgene expression, thus increasing the probability of successful gene therapy.  相似文献   

3.
Hemophilia A and B are X-linked monogenic disorders caused by deficiencies in coagulation factor VIII (FVIII) and factor IX (FIX), respectively. Current treatment for hemophilia involves intravenous infusion of clotting factor concentrates. However, this does not constitute a cure, and the development of gene-based therapies for hemophilia to achieve prolonged high level expression of clotting factors to correct the bleeding diathesis are warranted. Different types of viral and nonviral gene delivery systems and a wide range of different target cells, including hepatocytes, skeletal muscle cells, hematopoietic stem cells (HSCs), and endothelial cells, have been explored for hemophilia gene therapy. Adeno-associated virus (AAV)-based and lentiviral vectors are among the most promising vectors for hemophilia gene therapy. Stable correction of the bleeding phenotypes in hemophilia A and B was achieved in murine and canine models, and these promising preclinical studies prompted clinical trials in patients suffering from severe hemophilia. These studies recently resulted in the first demonstration that long-term expression of therapeutic FIX levels could be achieved in patients undergoing gene therapy. Despite this progress, there are still a number of hurdles that need to be overcome. In particular, the FIX levels obtained were insufficient to prevent bleeding induced by trauma or injury. Moreover, the gene-modified cells in these patients can become potential targets for immune destruction by effector T cells, specific for the AAV vector antigens. Consequently, more efficacious approaches are needed to achieve full hemostatic correction and to ultimately establish a cure for hemophilia A and B.  相似文献   

4.
Zaiss AK  Muruve DA 《Gene therapy》2008,15(11):808-816
Recombinant vectors based on adeno-associated virus (AAV) have been shown to stably express many genes in vivo without mounting immune responses to vectors or transgenes. Thus, AAV vectors have rapidly become the reagents of choice for therapeutic gene transfer. Yet one of the first translations of AAV gene therapy into humans unexpectedly resulted in only short-term expression of the therapeutic gene accompanied by transient but significant toxicity. Immune responses to the vector capsid were held accountable for these results, confirming that a detailed understanding of the interaction of AAV vectors with the immune system is of great importance for the safety and success of gene therapy applications. Most humans display naturally acquired immunity to AAV; circumventing neutralizing antibodies and memory T-cell responses is challenging, but not impossible. This review will evaluate the strategies that have been proposed to overcome such responses and summarize recent findings about the mechanisms and circumstances that lead to the activation of innate and adaptive immune responses to AAV vector components.  相似文献   

5.
Summary. Background: Adeno‐associated viral vector (AAV)‐mediated and muscle‐directed gene therapy is a safe and non‐invasive approach to treatment of hemophilia B and other genetic diseases. However, low efficiency of transduction, inhibitor formation and high prevalence of pre‐existing immunity to the AAV capsid in humans remain as main challenges for AAV2‐based vectors using this strategy. Vectors packaged with AAV7, 8 and 9 serotypes have improved gene transfer efficiencies and may provide potential alternatives to overcome these problems. Objective: To compare the long‐term expression of canine factor IX (cFIX) levels and anti‐cFIX antibody responses following intramuscular injection of vectors packaged with AAV1, 2, 5, 7, 8 and 9 capsid in immunocompetent hemophilia B mice. Results: Highest expression was detected in mice injected with AAV2/8 vector (28% of normal), followed by AAV2/9 (15%) and AAV2/7 (10%). cFIX expression by AAV2/1 only ranged from 0 to 5% of normal levels. High incidences of anti‐cFIX inhibitor (IgG) were detected in mice injected with AAV2 and 2/5 vectors, followed by AAV2/1. None of the mice treated with AAV2/7, 2/8 and 2/9 developed inhibitors or capsid T cells. Conclusions: AAV7, 8 and 9 are more efficient and safer vectors for muscle‐directed gene therapy with high levels of transgene expression and absence of inhibitor formation. The absence of antibody response to transgene by AAV7, 8 and 9 is independent of vector dose but may be due to the fact that these three serotypes are associated with high level distribution to, and transduction of, hepatocytes following i.m. injection.  相似文献   

6.
Adeno‐associated virus serotype 8 (AAV8) gene therapy has shown efficacy in several clinical trials and is considered a highly promising technology to treat monogenic diseases such as hemophilia A and B. However, a major drawback of AAV8 gene therapy is that it can be applied only once because anti‐AAV8 immunity develops after the first treatment. Readministration may be required in patients who are expected to need redosing, eg, due to organ growth, or to boost suboptimal expression levels, but no redosing protocol has been established. We have developed a preventive immune‐suppressive protocol for a human factor IX (FIX) vector with an intended dose of ~5 × 1011 vg/kg that inhibits the development of anti‐AAV8 neutralizing‐antibody (NAb) responses and anti‐AAV8 T‐cell responses using CTLA4‐IgG (abatacept). In a preclinical model, transient treatment with abatacept during initial human FIX gene therapy efficiently inhibited the generation of AAV8‐specific cellular and humoral responses, and thus permitted redosing of FIX. Furthermore, our data suggest that by suppression of anti‐AAV8 NAb responses after the second higher dose (4 × 1012 vg/kg) this protocol can be used to enable redosing up to such high doses. An additional advantage of CTLA4‐IgG blocking CD28‐mediated signals is its potential suppression of AAV8‐specific cytotoxic CD8 T‐cell responses, which are believed to kill transduced hepatocytes and might interfere with a successful readministration. Redosing protocols using approved drugs would be beneficial for patients because they could effortlessly be applied in clinical trials and enable safe and efficient treatment options for patients undergoing AAV8 gene therapy.  相似文献   

7.
Recombinant adeno-associated viruses (AAVs) have been used widely for in vivo gene therapy. However, adaptive immune responses to AAV have posed a significant hurdle in clinical application of AAV vectors. Recent advances have suggested a crucial role for innate immunity in shaping adaptive immune responses. How AAV activates innate immunity, and thereby promotes AAV-targeted adaptive immune responses, remains unknown. Here we show that AAV activates mouse plasmacytoid DCs (pDCs) via TLR9 to produce type I IFNs. In vivo, the TLR9-MyD88 pathway was crucial to the activation of CD8+ T cell responses to both the transgene product and the AAV capsid, leading to loss of transgene expression and the generation of transgene product–specific and AAV-neutralizing antibodies. We further demonstrate that TLR9-dependent activation of adaptive immunity targeting AAV was mediated by type I IFNs and that human pDCs could be activated in vitro to induce type I IFN production via TLR9. These results reveal an essential role for the TLR9-MyD88–type I IFN pathway in induction of adaptive immune responses to AAV and suggest that strategies that interfere with this pathway may improve the outcome of AAV-mediated gene therapy in humans.  相似文献   

8.
Although effective gene therapy vectors have been developed for organ systems such as the liver, an effective delivery vector to the pancreas in vivo has remained elusive. Of the currently available viral vectors, adenovirus and adeno-associated virus (AAV) are two of the most efficient at transducing nondividing cells. We have constructed recombinant adenovirus (AdVLacZ), adeno-associated virus serotype 2 (AAV2LacZ), and pseudotyped adeno-associated virus serotype 5 and 8 (AAV5LacZ, AAV8LacZ) carrying the LacZ reporter, and compared the transduction efficiency of these four vectors in the pancreas of mice in vivo. We showed that adenovirus, AAV2, and AAV8 are capable of transducing the pancreas in vivo, but with different expression kinetics, efficiencies of transduction, and persistence. AdVLacZ-transduced pancreas exhibited maximum LacZ expression at 1 week postdelivery, with greater than 90% of expression lost at 4 weeks. AAV2LacZ-transduced pancreas displayed peak LacZ levels at 4 weeks postdelivery, with no significant decrease in expression for up to 8 weeks. AAV8LacZ was at least 10-fold more efficient than AAV2LacZ in transducing the pancreas in vivo, with significant levels of expression detectable at 1 week, whereas AAV5LacZ did not result in any detectable transgene expression at all tested time points. All three vectors primarily transduced pancreatic acinar cell types, with limited transduction of pancreatic endocrine cells. AdVLacZ elicited a significant leukocyte infiltration early after delivery into the pancreas, whereas none of the AAV vectors elicited a significant leukocyte response. None of the tested vectors caused significant changes in serum amylase or blood glucose levels, suggesting that they do not significantly alter pancreatic function. These vectors will be useful for studying novel gene delivery based treatments in animal models for diabetes and other pancreatic disorders.  相似文献   

9.
The past 3 years have been characterized by a number of impressive advances as well as setbacks in gene therapy for genetic disease. Children with X-linked severe combined immunodeficiency disorder (SCID-X1) have shown almost complete reconstitution of their immune system after receiving retrovirally transduced autologous CD34+ hematopoietic stem cells (HSCs). However, two of 11 treated patients subsequently developed a leukemia-like disease probablydue to the undesired activation of an oncogene. Gene transfer to HSCs resulted in substantial correction of immune function and multi-lineage engraftment in two patients with adenosine deaminase (ADA)-SCID. Several Phase I clinical trials for treatment of hemophilia A and B have been initiated or completed. Partial correction of hemophilia A, albeit transient, has been reported by ex vivo gene transfer to autologous fibroblasts. Intramuscular injection of adeno-associated viral (AAV) vector to patients with severe hemophilia B resulted in evidence of Factor IX gene transfer to skeletal muscle and a separate trial based on hepatic infusion of AAV vector is ongoing. Sustained therapeutic levels of coagulation factor expression have been achieved in preclinical models using retroviral, lentiviral, AAV and high capacity adenoviral vectors. Efficient lentiviral gene transfer to HSC in murine models of beta-thalassemia and sickle cell disease demonstrated sustained phenotypic correction.  相似文献   

10.
Molecular basis of the inflammatory response to adenovirus vectors   总被引:11,自引:0,他引:11  
Liu Q  Muruve DA 《Gene therapy》2003,10(11):935-940
  相似文献   

11.
The corticospinal tract (CST) is extensively used as a model system for assessing potential therapies to enhance neuronal regeneration and functional recovery following spinal cord injury (SCI). However, efficient transduction of the CST is challenging and remains to be optimised. Recombinant adeno-associated viral (AAV) vectors and integration-deficient lentiviral vectors are promising therapeutic delivery systems for gene therapy to the central nervous system (CNS). In the present study the cellular tropism and transduction efficiency of seven AAV vector serotypes (AAV1, 2, 3, 4, 5, 6, 8) and an integration-deficient lentiviral vector were assessed for their ability to transduce corticospinal neurons (CSNs) following intracortical injection. AAV1 was identified as the optimal serotype for transducing cortical and CSNs with green fluorescent protein (GFP) expression detectable in fibres projecting through the dorsal CST (dCST) of the cervical spinal cord. In contrast, AAV3 and AAV4 demonstrated a low efficacy for transducing CNS cells and AAV8 presented a potential tropism for oligodendrocytes. Furthermore, it was shown that neither AAV nor lentiviral vectors generate a significant microglial response. The identification of AAV1 as the optimal serotype for transducing CSNs should facilitate the design of future gene therapy strategies targeting the CST for the treatment of SCI.  相似文献   

12.
The past 3 years have been characterized by a number of impressive advances as well as setbacks in gene therapy for genetic disease. Children with X-linked severe combined immunodeficiency disorder (SCID-X1) have shown almost complete reconstitution of their immune system after receiving retrovirally transduced autologous CD34+ hematopoietic stem cells (HSCs). However, two of 11 treated patients subsequently developed a leukemia-like disease probablydue to the undesired activation of an oncogene. Gene transfer to HSCs resulted in substantial correction of immune function and multi-lineage engraftment in two patients with adenosine deaminase (ADA)-SCID. Several Phase I clinical trials for treatment of hemophilia A and B have been initiated or completed. Partial correction of hemophilia A, albeit transient, has been reported by ex vivo gene transfer to autologous fibroblasts. Intramuscular injection of adeno-associated viral (AAV) vector to patients with severe hemophilia B resulted in evidence of Factor IX gene transfer to skeletal muscle and a separate trial based on hepatic infusion of AAV vector is ongoing. Sustained therapeutic levels of coagulation factor expression have been achieved in preclinical models using retroviral, lentiviral, AAV and high capacity adenoviral vectors. Efficient lentiviral gene transfer to HSC in murine models of β-thalassemia and sickle cell disease demonstrated sustained phenotypic correction.  相似文献   

13.
A major obstacle to the clinical application of systemic adenoviral gene replacement therapy is the host innate immune response. Although recent studies have attempted to characterize the cellular basis for this response to systemically administered helper-dependent adenoviral vector (HD-Ad), the underlying molecular components of the innate immune repertoire required to recognize the viral vector have yet to be identified. Here, we show that primary macrophages can sense HD-Ad vectors via the Toll-like Receptor 9 (TLR9) and respond by increasing pro-inflammatory cytokine secretion. Moreover, TLR9 sensing is involved in the rapid innate immune response to HD-Ad in vivo. TLR9 deficiency attenuates the innate immune response to HD-Ad, whereas TLR9 blockade reduces the acute inflammatory response after intravenous injection of the vector. Moreover, HD-Ad upregulates TLR9 gene expression independent of TLR9 function, suggesting that additional innate signaling pathways work cooperatively with TLR9. The identification of the components of the innate immune response to adenovirus will facilitate the development of combinatorial therapy directed at increasing the maximal tolerated dose of systemically delivered adenoviral vectors.  相似文献   

14.
Direct intramuscular injection (IM) of adeno-associated virus (AAV) has been proven a safe and potentially efficient procedure for gene therapy of many genetic diseases including hemophilia B. It is, however, contentious whether high antigen level induces tolerance or immunity to coagulation factor IX (FIX) following IM of AAV. We recently reported induction of FIX-specific immune tolerance by IM of AAV serotype one (AAV1) vector in mice. We hypothesize that the expression of high levels of FIX is critical to induction of FIX tolerance. In this study, we investigated the correlation among AAV dose, FIX expression, and tolerance induction. We observed that induction of immune tolerance or immunity to FIX was dependent on the dose of AAV1–human FIX (hFIX) given and the level of FIX antigen expressed in both normal and hemophilia mice. We then defined the minimum AAV1–hFIX dose and the lowest level of FIX needed for FIX tolerance. Different from hepatic AAV–hFIX gene transfer, we found that FIX tolerance induced by IM of AAV1 was not driven by regulatory T cells. These results provided further insight into the mechanism(s) of FIX tolerance, contributing to development of hemophilia gene therapy, and optimization of FIX tolerance induction protocols.  相似文献   

15.
Due to their efficient transduction potential, adeno-associated virus (AAV) vectors are leading candidates for gene therapy in skeletal muscle diseases. However, immune responses toward the vector or transgene product have been observed in preclinical and clinical studies. TLR9 has been implicated in promoting AAV-directed immune responses, but vectors have not been developed to circumvent this barrier. To assess the requirement of TLR9 in promoting immunity toward AAV-associated antigens following skeletal muscle gene transfer in mice, we compared immunological responses in WT and Tlr9-deficient mice that received an AAV vector with an immunogenic capsid, AAVrh32.33. In Tlr9-deficient mice, IFN-γ T cell responses toward capsid and transgene antigen were suppressed, resulting in minimal cellular infiltrate and stable transgene expression in target muscles. These findings suggest that AAV-directed immune responses may be circumvented by depleting the ligand for TLR9 (CpG sequences) from the vector genome. Indeed, we found that CpG-depleted AAVrh32.33 vectors could establish persistent transgene expression, evade immunity, and minimize infiltration of effector cells. Thus, CpG-depleted AAV vectors could improve outcome of clinical trials of gene therapy for skeletal muscle disease.  相似文献   

16.
17.
The transduction efficiencies of adeno-associated viral vectors (AAV, serotype 2) and adenovirus vectors (ADV, serotype 5) were examined in three different models of cancer. First, we used flow cytometry to quantitate AAV-GFP or ADV-GFP transduction in 13 cell lines derived from malignant tissue (6 gliomas, 6 mammary cancers, and 1 leukemia). These experiments showed variable transduction efficiency (0%-81%) between the cell lines, with ADV being more effective compared to AAV in 9 of 13 cell lines. Second, spheroids prepared from human glioblastomas were infected with ADV or AAV expressing GFP or lacZ cassettes, and after 2 weeks, uniform reporter gene expression was observed on the spheroid. Whereas AAV produced consistent transduction throughout the spheroids, ADV infection was mainly limited to the outer cell layers of the spheroids, suggesting that AAV were more efficient at penetrating solid tumor tissue. Third, human biopsies from glioblastoma multiforme patients were xenografted into nude rats and grown for 4 weeks followed by viral vector injection. Combined use of high-resolution magnetic resonance imaging (MRI) and histologic analysis allowed the identification of transduced cells and their spatial distribution within the tumors. AAV-mediated transgene expression was observed in cell clusters through the entire tumor, while ADV-mediated transduction was restricted to cells at the tumor periphery. Thus, while AAV and ADV vectors may infect tumor-derived cell lines to a similar degree, AAV penetrated glioblastoma spheroids and xenografts more efficiently compared to ADV vectors. These results suggest that AAV may be suitable for therapeutic gene delivery to malignant tumors.  相似文献   

18.
Transplantation of allogeneic pancreatic islets is an effective approach to treat type 1 diabetes. To bypass the need for systemic administration of immunosuppression drugs following transplantation, approaches to genetically modify allogeneic islets to express anti-inflammatory, immunosuppressive, or antiapoptotic proteins prior to transplantation are being developed. Adeno-associated viral (AAV) based vectors have been used for gene transfer to islets, but the efficiency of functional transduction is low. Recently, double-stranded (ds) or double-copy (dc) based AAV vectors have been developed that allow for more rapid and efficient AAV-mediated transgene expression following transduction. Here we demonstrate that intact human and murine islets can be transduced with dsAAV2-eGFP efficiently compared to single-stranded AAV2-eGFP. Furthermore, our results demonstrate that murine islets transduced with dsAAV2-eGFP have normal islet glucose responsiveness, viability, and islet insulin content. Transplantation of the dsAAV2-eGFP transduced islet restored normal glycemia in diabetic mice without eliciting an immune response. Significant dsAAV2-mediated eGFP expression was observed in the islet grafts for at least 6 months post-transplant. Finally, we demonstrated that dsAAV serotypes 2, 6, and 8 infect human islets efficiently. Taken together, these results suggest that dsAAV based vectors are highly appropriate for gene transfer to islets to facilitate transplantation.  相似文献   

19.
Peripheral nervous system (PNS) sensory neurons are directly involved in the pathophysiology of a number of debilitating inherited and acquired neurological conditions. The lack of effective treatments for many such conditions provides a strong rationale for exploring novel therapeutic approaches, including gene therapy. Friedreich ataxia (FRDA), a sensory neuropathy, is a progressive neurodegenerative disease associated with a loss of large sensory neurons from the dorsal root ganglia. Because a mouse model for this well-characterized disease has been generated, we elected to use FRDA as a model disease. In previous studies we achieved efficient and sustained delivery of a reporter gene to PNS sensory neurons, using recombinant adeno-associated viral (AAV) and lentiviral (LV) vectors. In the current study, AAV and LV vectors encoding the human frataxin cDNA were constructed and assessed for frataxin expression and function in primary FRDA patient fibroblast cell lines. FRDA fibroblasts have been shown to exhibit subtle biochemical changes, including increased mitochondrial iron and sensitivity to oxidant stress. Despite the inherent difficulty in working with primary cells, transduction of patient fibroblasts with either vector resulted in the expression of appropriately localized frataxin and partial reversal of phenotype.  相似文献   

20.
BACKGROUND: The formation of inhibitory anti-factor IX (anti-FIX) antibodies is a major complication of FIX protein replacement-based treatment for hemophilia B. It is difficult to treat patients with anti-FIX antibodies. Gene therapy is emerging as a potentially effective treatment for hemophilia. Direct i.m. injection of adeno-associated virus (AAV) is a safe and efficient procedure for hemophilia B gene therapy. However, the development of anti-FIX antibodies following i.m. of AAV may impede its application to patients. OBJECTIVE: We aimed to investigate induction of immune tolerance to human FIX (hFIX) by i.m. of AAV1, further validating i.m. of AAV1 for hemophilia B gene therapy. METHODS AND RESULTS: Cohorts of hemostatically normal and hemophilia B mice with diverse genetic and MHC backgrounds received i.m. of AAV-hFIX. Human FIX antigen and anti-hFIX antibodies were examined. I.m. of 1 x 10(11) vector genomes (VG) of AAV2 elicits formation of anti-hFIX antibodies comparable to those by hFIX protein replacement. I.m. of 1 x 10(11) VG of AAV1 results in expression of therapeutic levels of hFIX (up to 950 ng mL(-1), mean = 772 ng mL(-1), SEM +/- 35.7) and hFIX-specific immune tolerance in C57BL/6 mice. CONCLUSIONS: A single i.m. of AAV1 can result in efficient expression of therapeutic levels of hFIX and induction of hFIX tolerance in hemostatically normal and hemophilic B mice. Our results substantiate the prospect of i.m. of AAV1 for hemophilia B gene therapy and FIX tolerance induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号