首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of pudendal nerve stimulation on reflex bladder activity were investigated in cats with chronic spinal cord injury (6-12 months) under alpha-chloralose anesthesia. Electrical stimulation of the pudendal nerve on one side at different frequencies and intensities induced either inhibitory or excitatory effects on bladder activity. The inhibitory effect peaked at a stimulation frequency of 3 Hz and gradually decreased at lower or higher frequencies. The inhibitory effect could occur at stimulation intensities between 0.3 and 1 V (pulse width 0.1 ms) and increased at intensities up to 10 V. Stimulation of the central end of transected pudendal nerve also inhibited bladder activity, indicating that afferent axons in pudendal nerve are involved. Nerve transections also showed that both hypogastric and pelvic nerves might be involved in the inhibitory pudendal-to-bladder spinal reflex. Pudendal nerve stimulation at 20 Hz and at the same intensities (1-10 V) elicited a bladder excitatory response. Although this excitatory effect could not sustain a long lasting bladder contraction at small bladder volumes, it did induce continuous rhythmic bladder contractions at large bladder volumes. This study indicated the possibility of developing a neuroprosthetic device based on pudendal nerve electrical stimulation to restore micturition function after spinal cord injury.  相似文献   

2.
Objective: To determine the inhibitory effects of pudendal nerve stimulation (5 Hz) on bladder overactivity at early and late stages of spinal cord injury in dogs. Materials and Methods: The study was performed in eight dogs with chronic spinal cord transection at the T9‐T10 level. Group 1 (four dogs) underwent electrical stimulation of pudendal nerve one month after spinal cord transection. Group 2 (four dogs) underwent stimulation six months after spinal cord transection. The bladders were removed for histological examination of fibrosis after the stimulation. Results: The bladder capacity and the compliance were significantly increased (p < 0.05) by pudendal nerve stimulation in group 1, but not in group 2. The nonvoiding contractions were inhibited in both groups by electrical stimulation. Collagen fiber was increased, while elastic fiber was significantly decreased (p < 0.05) in group 2 when compared with group 1. Conclusion: Pudendal nerve stimulation can increase the bladder capacity and compliance only during the early period before the bladder wall becomes fibrosit and can inhibit the nonvoiding contraction during two stages.  相似文献   

3.
Bladder reflexes evoked by stimulation of pudendal afferent nerves (PudA-to-Bladder reflex) were studied in normal and chronic spinal cord injured (SCI) adult cats to examine the reflex plasticity. Physiological activation of pudendal afferent nerves by tactile stimulation of the perigenital skin elicits an inhibitory PudA-to-Bladder reflex in normal cats, but activates an excitatory reflex in chronic SCI cats. However, in both normal and chronic SCI cats electrical stimulation applied to the perigenital skin or directly to the pudendal nerve induces either inhibitory or excitatory PudA-to-Bladder reflexes depending on stimulation frequency. An inhibitory response occurs at 3–10 Hz stimulation, but becomes excitatory at 20–30 Hz. The inhibitory reflex activated by electrical stimulation significantly (P < 0.05) increases the bladder capacity to about 180% of control capacity in normal and chronic SCI cats. The excitatory reflex significantly (P < 0.05) reduces bladder capacity to about 40% of control capacity in chronic SCI cats, but does not change bladder capacity in normal cats. Electrical stimulation of pudendal afferent nerves during slow bladder filling elicits a large amplitude bladder contraction comparable to the contraction induced by distension alone. A bladder volume about 60% of bladder capacity was required to elicit this excitatory reflex in normal cats; however, in chronic SCI cats a volume less than 20% of bladder capacity was sufficient to unmask an excitatory response. This study revealed the co-existence of both inhibitory and excitatory PudA-to-Bladder reflex pathways in cats before and after chronic SCI. However our data combined with published electrophysiological data strongly indicates that the spinal circuitry for both the excitatory and inhibitory PudA-to-Bladder reflexes undergoes a marked reorganization after SCI.  相似文献   

4.
To determine the involvement of opioid receptors in the inhibitory pudendal-to-bladder reflex, the effect of naloxone (0.01-1 mg/kg, i.v.), an opioid receptor antagonist, on the inhibition of bladder activity evoked by pudendal nerve stimulation was investigated in α-chloralose anesthetized cats. The inhibition of reflex isovolumetric bladder contractions induced by pudendal nerve stimulation (5-10 Hz) at intensity threshold (T) for producing complete inhibition was significantly suppressed by naloxone at a high dose (0.3 mg/kg). However, the inhibition elicited at higher intensities (1.5-3 T) was not changed. Naloxone (1 mg/kg) did not alter the frequency dependence of the inhibitory effect of pudendal stimulation. During cystometrograms (CMGs) pudendal nerve stimulation significantly increased bladder capacity to 155.1 ± 24.5% and 163.4 ± 10% of the control at stimulation intensities of 1 T and 1.5-3 T, respectively. After administration of naloxone (1 mg/kg), the bladder capacity during pudendal nerve stimulation at inhibition threshold (1 T) was not significantly different from control, but it was significantly increased at higher intensities (1.5-3 T). Naloxone alone markedly reduced bladder capacity to 43 ± 11.1% of the control, and pudendal stimulation completely reversed this facilitatory effect. This study revealed that activation of opioid receptors contributes to or facilitates the inhibitory pudendal-to-bladder reflex. The reduction in bladder capacity after naloxone treatment also indicates that endogenous opioid peptides mediate a tonic inhibition of micturition. Understanding the neurotransmitter mechanisms involved in the inhibitory pudendal-to-bladder reflex could promote the development of new treatments for bladder overactivity and incontinence.  相似文献   

5.
The dorsal commissural nucleus (DCN) in the lumbosacral spinal cord (L6–S1) receives primary afferent fibers from both pelvic and pudendal nerves in rats. However, the physiological and pharmacological properties of synaptic responses of the DCN neurons to stimulation of those nerves remain unclear. We have developed a longitudinal spinal cord (L6–S1) slice preparation from mature rats that retained both nerves attached. Blind whole-cell recordings were made from the DCN neurons in this preparation. In most neurons, mono- and/or poly-synaptic fast excitatory postsynaptic potentials (EPSPs) were evoked by electrical stimulation of either the pelvic or pudendal nerve. These EPSPs were mediated by activation of Aβ/Aδ and/or C fibers (conduction velocities, 0.5–17.3 m/s), and were abolished by CNQX. Fast EPSPs elicited by either pelvic or pudendal nerve stimulation were occasionally accompanied by bicuculline- and strychnine-sensitive IPSPs. In one-third of the neurons tested, mono- and/or poly-synaptic EPSPs were elicited by the stimulation of both the pelvic and pudendal nerves, indicating convergence of the visceral and somatic primary afferent inputs from the pelvic region onto the DCN neurons. The preparation is applicable to study the mechanism of the integration of the visceral and somatic inputs in the spinal cord.  相似文献   

6.
Bladder contractions evoked by pudendal nerve stimulation in both spinal intact and spinal transected cats support the possibility of restoring urinary function in persons with chronic spinal cord injury (SCI). However, electrically evoked bladder responses in persons with SCI were limited to transient contractions at relatively low pressures. This prompted the present study, which presents a detailed quantification of the responses evoked by selective stimulation of individual branches of the pudendal nerve at different stimulation frequencies. In spinal intact cats anesthetized with α-chloralose, selective frequency-dependent electrical activation of the sensory (2 Hz ≤ f ≤ 50 Hz), cranial sensory (f ≤ 5 Hz), dorsal genital (f ≥ 20 Hz) and rectal perineal (f ≤ 10 Hz) branches of the pudendal nerve evoked sustained bladder contractions dependent on the stimulation frequency. Contractions evoked by selective electrical stimulation resulted in significant increases in voiding efficiency compared to bladder emptying by distension-evoked contractions (pANOVA < 0.05). Acute spinal transection abolished reflex bladder contractions evoked by low frequency stimulation of the cranial sensory or rectal perineal branches, whereas contractions evoked by high frequency stimulation of the dorsal genital branch remained intact. This study presents evidence for two distinct micturition pathways (spino-bulbo-spinal vs. spinal reflexes) activated by selective afferent pudendal nerve stimulation, the latter of which may be applied to restore bladder function in persons with SCI.  相似文献   

7.
Duong M  Downie JW  Du HJ 《Brain research》1999,819(1-2):108-119
The micturition reflex pathway is a supraspinal pathway. Anatomical tracing evidence is compatible with an involvement of the periaqueductal gray (PAG) in the ascending limb of this reflex. We tested the involvement of the PAG in receiving urinary tract- or perineum-related information and attempted to characterize this ascending path in terms of what type of information is being conveyed. Electrical stimulation of the pelvic nerves, which carry afferent information from the urinary bladder, evoked maximum field potentials in the caudal third of the PAG, primarily in the dorsal part of the lateral PAG and in the ventrolateral PAG. Since the regions activated by pelvic nerve stimulation differed from those activated by stimulation of the sensory pudendal or superficial perineal nerves, it is possible that specific pathways for different nerve inputs to the PAG exist. Sacral spinal cord neurons ascending to the PAG were identified by antidromic activation and then tested for inputs from pelvic, sensory pudendal or superficial perineal nerves. Of 18 units identified, only five received inputs from any of the peripheral nerves tested and only two projecting neurons received a pelvic nerve input. Thus the PAG may receive inputs from bladder and perineum, but the small proportion of cells with direct projections to the PAG receiving inputs from our test nerves implies that the major part of this pathway is not directly related to lower urinary tract function.  相似文献   

8.
Previous studies have shown that, anode block electrical stimulation of the sacral nerve root can produce physiological urination and reconstruct urinary bladder function in rabbits. However, whether long-term anode block electrical stimulation causes damage to the sacral nerve root remains unclear, and needs further investigation. In this study, a complete spinal cord injury model was established in New Zealand white rabbits through T9–10 segment transection. Rabbits were given continuous electrical stimulation for a short period and then chronic stimulation for a longer period. Results showed that compared with normal rabbits, the structure of nerve cells in the anterior sacral nerve roots was unchanged in spinal cord injury rabbits after electrical stimulation. There was no significant difference in the expression of apoptosis-related proteins such as Bax, Caspase-3, and Bcl-2. Experimental findings indicate that neurons in the rabbit sacral nerve roots tolerate electrical stimulation, even after long-term anode block electrical stimulation.  相似文献   

9.
Persons with a suprasacral spinal cord injury cannot empty their bladder voluntarily. Bladder emptying can be restored by intermittent electrical stimulation of the sacral nerve roots (SR) to cause bladder contraction. However, this therapy requires sensory nerve transection to prevent dyssynergic contraction of the external urethral sphincter (EUS). Stimulation of the compound pudendal nerve trunk (PN) activates spinal micturition circuitry, leading to a reflex bladder contraction without a reflex EUS contraction. The present study determined if PN stimulation could produce bladder emptying without nerve transection in cats anesthetized with alpha-chloralose. With all nerves intact, intermittent PN stimulation emptied the bladder (64 +/- 14% of initial volume, n = 37 across six cats) more effectively than either distention-evoked micturition (40 +/- 19%, p < 0.001, n = 27 across six cats) or bilateral intermittent SR stimulation (25 +/- 23%, p < 0.005, n = 4 across two cats). After bilateral transection of the nerves innervating the urethral sphincter, intermittent SR stimulation voided 79 +/- 17% (n = 12 across three cats), comparable to clinical results obtained with SR stimulation. Voiding via intermittent PN stimulation did not increase after neurotomy (p > 0.10), indicating that PN stimulation was not limited by bladder-sphincter dyssynergia. Intermittent PN stimulation holds promise for restoring bladder emptying following spinal injury without requiring nerve transection.  相似文献   

10.
Stimulating electrodes were placed on the terminal branches of the pudendal nerve to the external urethral and external anal sphincters. The proximity of the electrodes to the sphincters assured organ specificity. Evoked responses produced by stimulation of these terminal nerve branches were recorded in the fascicles and rootlets of the lower thoracic, lumbar, and sacral nerve roots. By this method, the segmental spinal cord origin of the innervation of the external urethral and anal sphincters was determined for the Rhesus monkey and chimpanzee. The data indicated that the pudendal nerves to the urethral and anal sphincters in the Rhesus monkey arose from the sixth and seventh lumbar spinal segments and the first and second sacral spinal segments which are homologous to the S-1 and S-4 segments found to give innervation to these structures in the chimpanzee. The primate experiments thus indicate that the spinal origin of the pudendal nerve was more rostrally located by one segment or more than was the origin of the pelvic nerves to the urinary bladder.  相似文献   

11.
Surgical microscopy and electrophysiological techniques were used to standardize the nomenclature for the pudendal nerve and sacral plexus according to their somatic axonal composition in the male rat. We conclude that the pudendal nerve is the segment running from the L6–S1 trunk to the sacral plexus, carrying efferent fibers to the coccygeus, internal obturator, ventral and dorsal bulbospongiosus, ischiocavernosus, external anal sphincter, and external urethral sphincter muscles, and afferent fibers from the penis, prepuce, scrotum, and ventral-proximal tail. The sacral plexus is the complex formed by the bridge-like structure connecting the pudendal nerve with the lumbosacral trunk, and two nerve branches emerging from it, one innervating the proximal half of the scrotal skin, and the other innervating the muscles at the base of the penis known as the motor branch. These branches are only considered as a part of the sacral plexus because they integrate axons from both the lumbosacral trunk and pudendal nerve. The gross anatomy of the pudendal nerve and sacral plexus has a main organization that was observed in 70% of cases, whereas the remaining 30% occurred in two variants. This nomenclature is appropriate to describe the pudendal nerve and sacral plexus in studies that involve them being lesioned or electrophysiologically analysed. A main additional finding was that two large afferent branches innervate the scrotum, one the proximal half and the other the distal half. As mentioned above, the proximal branch belongs to the sacral plexus, whereas the distal branch belongs to the pudendal nerve because all its axons travel to the cord via this nerve. Since stimulation or even manipulation of the scrotal branches resulted in the secretion of semen containing spermatozoa, it is suggested that scrotal afferents are involved in some way in the ejaculatory process, a topic that deserves further research.  相似文献   

12.
Serotonin (5-HT) may be inhibitory to micturition at a spinal level. A potential mechanism of action for serotonergic inhibition of bladder function is a depression of the ascending limb of the supraspinal reflex mediating micturition. Ascending activity evoked by pelvic nerve stimulation was recorded in the thoracic spinal cord of anesthetized cats. For comparison, spinal reflex activity evoked by pelvic nerve stimulation was recorded on the pudendal nerve. The effects of intrathecal administration of serotonergic agents were examined to determine whether spinal and supraspinal responses to bladder afferent activation were modulated by 5-HT. Methysergide (60 nmol), a non-selective serotonergic antagonist, increased ascending activity by 61±7% and depressed spinal reflex activity by 38±6%. Zatosetron (10 nmol), a 5-HT3 antagonist had a similar effect on both activities (increased by 93±24% and decreased by 77±7%, respectively). The effect on ascending activity of blocking 5-HT3 receptors was also confirmed with ICS 205930 and MDL 72222. 2-Methyl-5-HT (800 nmol), a 5-HT3 agonist, depressed ascending activity to 46±9% of control, but enhanced spinal reflex activity by 73±92%. These results demonstrate that stimulation of 5-HT3 and methysergide-sensitive 5-HT receptors can inhibit ascending activity and facilitate spinal reflex activity elicited by activation of bladder afferents. It is suggested that descending serotonergic pathways may participate in the spinal coordination of urinary continence.  相似文献   

13.
Electrical stimulation of peripheral nerves can be used to cause muscle contraction, to activate reflexes, and to modulate some functions of the central nervous system (neuromodulation). If applied to the spinal cord or nerves controlling the lower urinary tract, electrical stimulation can produce bladder or sphincter contraction, produce micturition, and can be applied as a medical treatment in cases of incontinence and urinary retention. This article first reviews the history of electrical stimulation applied for treatment of bladder dysfunction and then focuses on the implantable Finetech-Brindley stimulator to produce bladder emptying, and on external and implantable neuromodulation systems for treatment of incontinence. We conclude by summarizing some recent research efforts including: (a) combined sacral posterior and anterior sacral root stimulator implant (SPARSI), (b) selective stimulation of nerve fibers for selective detrusor activation by sacral ventral root stimulation, (c) microstimulation of the spinal cord, and (d) a newly proposed closed-loop bladder neuroprosthesis to treat incontinence caused by bladder overactivity.  相似文献   

14.
This study utilized neuronal c-fos expression to examine the spinal pathways involved in processing nociceptive and non-nociceptive afferent input from the lower urinary tract (LUT) of the urethane-anesthetized rat. C-fos protein was detected immunocytochemically in only a small number of cells (< 2 cells/L6 section) in control animals. However, chemical irritation with 1% acetic acid or mechanical stimulation of the LUT markedly increased the number of c-fos-positive neurons (56-180 cells/L6 section) in four regions of the caudal lumbosacral (L6-S1) spinal cord: medial dorsal horn (MDH), lateral dorsal horn, dorsal commissure (DCM), and sacral parasympathetic nucleus (SPN). Only small numbers of c-fos-positive cells were detected in rostral lumbar segments, a region that is thought to receive nociceptive input from the LUT via afferent pathways in sympathetic nerves. The distribution of c-fos-positive cells in the L6 spinal cord varied according to the stimulus (i.e., urethral catheter, bladder distension, or chemical irritation). Distension of the urinary bladder increased the number of c-fos-positive cells mainly in DCM and SPN regions of the cord. In contrast, irritation of the LUT increased c-fos expression largely in DCM and MDH areas. Spinal cord transection (T8 level) did not alter the c-fos expression induced by a catheter or chemical irritation, indicating that gene expression was mediated by spinal pathways. Denervation experiments showed that c-fos expression was induced by activation of afferent pathways in the pelvic and pudendal nerves. These results suggest that neurons in several regions of the spinal cord are involved in processing afferent input from different parts of the LUT. Neurons in the DCM appear to have an important role since they respond to both nociceptive and non-nociceptive inputs and to visceral (pelvic nerve) and somatic (pudendal nerve) afferent pathways. Thus, these neurons may be involved in the mechanisms of visceral-somatic referred pain.  相似文献   

15.
The current studies describing magnetic stimulation for treatment of nervous system diseases mainly focus on transcranial magnetic stimulation and rarely focus on spinal cord magnetic stimula-tion.Spinal cord magnetic stimulation has been confirmed to promote neural plasticity after injuries of spinal cord,brain and peripheral nerve.To evaluate the effects of impulse magnetic stimulation of the spinal cord on peripheral nerve regneration,we compressed a 3 mm segment located in the middle third of the hip using a sterilized artery forceps to induce ischemia.Then,all animals un-derwent impulse magnetic stimulation of the lumbar portion of spinal crod and spinal nerve roots daily for 1 month.Electron microscopy results showed that in and below the injuryed segment,the inflammation and demyelination of neural tissue were alleviated,apoptotic cells were reduced,and injured Schwann cells and myelin fibers were repaired.These findings suggest that high-frequency impulse magnetic stimulation of spinal cord and corresponding spinal nerve roots promotes synaptic regeneration following sciatic nerve injury.  相似文献   

16.
Sectioning the sciatic nerve of experimental animals at the neonatal stage triggers growth of afferent fibers in the ventral root. The present study examined the possibility that the regenerating fiber terminals grow into the spinal cord. The sciatic nerve on one side was cut in neonatal rats. After the rats were fully grown, either an electrophysiological or a histochemical study was performed. The results of electrophysiological experiments showed that stimulation of certain loci in the L5 spinal cord evoked antidromic potentials in the L5 ventral root with a long latency. Various evidence suggests that the long latency potentials are due to activation of C fibers. These C-fiber potentials were on average bigger and were elicited from more numerous loci on the side ipsilateral to the sciatic nerve lesion than on the contralateral side. Furthermore, stimulation of the spinal cord of unoperated normal rats rarely evoked such potentials. For the histochemical study, horseradish peroxidase (HRP) was injected into the L5 spinal cord after cutting the L4-L6 dorsal roots. A lot more cells in the L5 dorsal root ganglion (DRG) on the side ipsilateral to the sciatic nerve lesion were labeled with HRP transported retrogradely through the L5 ventral root than on the contralateral side. Control experiments showed that few DRG cells are labeled with HRP in normal unoperated rats. The combined results of the electrophysiological and histochemical studies suggest invasion of ventral root afferents into the spinal cord, given enough postoperative time. It is not known whether or not these terminals make functional synaptic contacts in the spinal cord.  相似文献   

17.
Urinary bladder and urethral sphincter responses evoked by bladder distention, ventral root stimulation, or microstimulation of S2 segment of the sacral spinal cord were investigated under alpha-chloralose anesthesia in cats with an intact spinal cord and in chronic spinal cord injured (SCI) cats 6-8 weeks after spinal cord transection at T9-T10 spinal segment. Both SCI and normal cats exhibited large amplitude reflex bladder contractions when the bladder was fully distended. SCI cats also exhibited hyperreflexic bladder contractions during filling and detrusor-sphincter dyssynergia during voiding, neither was observed in normal cats. Electrical stimulation of the ventral roots revealed that the S2 sacral spinal cord was the most effective segment for evoking large amplitude bladder contractions or voiding in both types of cats. Microstimulation with a stimulus intensity of 100 microA and duration of 30-60 s via a single microelectrode in the S2 lateral ventral horn or ventral funiculus evoked large amplitude bladder contractions with small urethral contractions in both normal and SCI cats. However, this stimulation evoked incomplete voiding due to either co-activation of the urethral sphincter or detrusor-sphincter dyssynergia. Stimulation in the S2 dorsal horn evoked large amplitude sphincter responses. The effectiveness of spinal cord microstimulation with a single electrode to induce prominent bladder and urethral sphincter responses in SCI animals demonstrates the potential for using microstimulation techniques to modulate lower urinary tract function in patients with neurogenic voiding dysfunctions.  相似文献   

18.
Urinary retention is the inability to empty the bladder completely, and may result from bladder hypocontractility, increases in outlet resistance or both. Chronic urinary retention can lead to several urological complications and is often refractory to pharmacologic, behavioral and surgical treatments. We sought to determine whether electrical stimulation of sensory fibers in the pudendal nerve could engage an augmenting reflex and thereby improve bladder emptying in an animal model of urinary retention. We measured the efficiency of bladder emptying with and without concomitant electrical stimulation of pudendal nerve afferents in urethane-anesthetized rats. Voiding efficiency (VE = voided volume/initial volume) was reduced from 72 +/- 7% to 29 +/- 7% following unilateral transection of the sensory branch of the pudendal nerve (UST) and from 70 +/- 5% to 18 +/- 4% following bilateral transection (BST). Unilateral electrical stimulation of the proximal transected sensory pudendal nerve during distention-evoked voiding contractions significantly improved VE. Low-intensity stimulation at frequencies of 1-50 Hz increased VE to 40-51% following UST and to 39-49% following BST, while high-intensity stimulation was ineffective at increasing VE. The increase in VE was mediated by increases in the duration of distention-evoked voiding bladder contractions, rather than increases in contraction amplitude. These results are consistent with an essential role for pudendal sensory feedback in efficient bladder emptying, and raise the possibility that electrical activation of pudendal nerve afferents may provide a new approach to restore efficient bladder emptying in persons with urinary retention.  相似文献   

19.
The purpose of this work was to investigate whether, by intranasal administration, the nerve growth factor bypasses the blood-brain barrier and turns over the spinal cord neurons and if such therapeutic approach could be of value in the treatment of spinal cord injury. Adult Sprague-Dawley rats with intact and injured spinal cord received daily intranasal nerve growth factor administration in both nostrils for 1 day or for 3 consecutive weeks. We found an in-creased content of nerve growth factor and enhanced expression of nerve growth factor receptor in the spinal cord 24 hours after a single intranasal administration of nerve growth factor in healthy rats, while daily treatment for 3 weeks in a model of spinal cord injury improved the deifcits in locomotor behaviour and increased spinal content of both nerve growth factor and nerve growth factor receptors. These outcomes suggest that the intranasal nerve growth factor bypasses blood-brain barrier and affects spinal cord neurons in spinal cord injury. They also suggest exploiting the possible therapeutic role of intranasally delivered nerve growth factor for the neuroprotection of damaged spinal nerve cells.  相似文献   

20.
Electrical stimulation of the phrenic nerve afferents evoked excitatory responses in the right inferior cardiac sympathetic nerve in chloralose-anaesthetized cats. The reflex was recorded in intact and spinal cats. The latency and threshold of the volley recorded from the phrenic nerve as well as of the cord dorsum potentials evoked by electrical stimulation of the phrenic nerve indicated that group III afferents were responsible for this reflex. The phrenicocardiac sympathetic reflex recorded in intact cats was followed by a silent period. The maximum amplitude of the reflex discharges was 800 microV, the latency was 83 ms and the central transmission time 53 ms. Duration of the silent period lasted up to 0.83 s. In spinal cats the reflex was recorded 5.5-8 h after spinalization. The maximum amplitude of the spinal reflex discharges ranged from 22 to 91 microV and the latency from 36 to 66 ms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号