首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
In a nerve crush model of denervation, we examined muscle matrix metalloproteinase (MMP) expression, localization and activity. In normal muscle, MMP mRNA levels were low, and immunohistochemically MMPs were distributed around the muscle fibre with MMPs-3, -7 and -9 also staining at the neuromuscular junction. Seven days after nerve crush, muscle MMP immunoreactivity, especially MMP-12 and MMP-14, became irregularly distributed. At 20 days reinnervation of the muscle was observed, and some restitution of the normal pattern of immunoreactivity was noted concomitant with a higher level of MMP mRNA expression. In situ zymography showed that MMP activity was very weak in normal muscle whereas it was increased up to 40 days following denervation. Our results suggest that MMPs in muscle are involved in the tissue changes following denervation. Further experiments are required to test the hypothesis that MMP inhibition may be beneficial in protecting muscle from excessive remodelling following denervation and therefore improve reinnervation.  相似文献   

4.
Introduction: The purpose of this study was to provide a comprehensive understanding of gene expression during Wallerian degeneration and axon regeneration after peripheral nerve injury. Methods: A microarray was used to detect gene expression in the distal nerve 0, 3, 7, and 14 days after sciatic nerve crush. Bioinformatic analysis was used to predict function of the differentially expressed mRNAs. Microarray results and the key pathways were validated by quantitative real‐time polymerase chain reaction (qRT‐PCR). Results: Differentially expressed mRNAs at different time‐points (3, 7, and 14 days) after injury were identified and compared with a control group (0 day). Nine general trends of changes in gene expression were identified. Key signal pathways and 9 biological processes closely associated with nerve regeneration were identified and verified. Conclusions: Differentially expressed genes and biological processes and pathways associated with axonal regeneration may elucidate the molecular‐biological mechanisms underlying peripheral nerve regeneration. Muscle Nerve 55 : 373–383, 2017  相似文献   

5.
Previous research revealed the positive activity of matrix metalloproteinase 7 (MMP7) on migration and myelin regeneration of Schwann cells (SCs). However, understanding of the molecular changes and biological activities induced by increased amounts of MMP7 in SCs remains limited. To better understand the underlying molecular events, primary SCs were isolated from the sciatic nerve stump of newborn rats and cultured with 10 nM human MMP7 for 24 hours. The results of genetic testing were analyzed at a relatively relaxed threshold value (fold change ≥ 1.5 and P-value < 0.05). Upon MMP7 exposure, 149 genes were found to be upregulated in SCs, whereas 133 genes were downregulated. Gene Ontology analysis suggested that many differentially expressed molecules were related to cellular processes, single-organism processes, and metabolic processes. Kyoto Enrichment of Genes and Genomes pathway analysis further indicated the critical involvement of cell signaling and metabolism in MMP7-induced molecular regulation of SCs. Results of Ingenuity Pathway Analysis (IPA) also revealed that MMP7 regulates biological processes, molecular functions, cellular components, diseases and functions, biosynthesis, material metabolism, cell movement, and axon guidance. The outcomes of further analysis will deepen our comprehension of MMP7-induced biological changes in SCs. This study was approved by the Laboratory Animal Ethics Committee of Nantong University, China (approval No. 20190225-004) on February 27, 2019.

Chinese Library Classification No. R447; R741; Q344+.13  相似文献   

6.
7.
Differential expression of miRNAs occurs in injured proximal nerve stumps and includes miRNAs that are firstly down-regulated and then gradually up-regulated following nerve injury. These miRNAs might be related to a Schwann cell phenotypic switch. miR-30c, as a member of this group, was further investigated in the current study. Sprague-Dawley rats underwent sciatic nerve transection and proximal nerve stumps were collected at 1, 4, 7, 14, 21, and 28 days post injury for analysis. Following sciatic nerve injury, miR-30c was down-regulated, reaching a minimum on day 4, and was then upregulated to normal levels. Schwann cells were isolated from neonatal rat sciatic nerve stumps, then transfected with miR-30c agomir and co-cultured in vitro with dorsal root ganglia. The enhanced expression of miR-30c robustly increased the amount of myelin-associated protein in the co-cultured dorsal root ganglia and Schwann cells. We then modeled sciatic nerve crush injury in vivo in Sprague-Dawley rats and tested the effect of perineural injection of miR-30c agomir on myelin sheath regeneration. Fourteen days after surgery, sciatic nerve stumps were harvested and subjected to immunohistochemistry, western blot analysis, and transmission electron microscopy. The direct injection of miR-30c stimulated the formation of myelin sheath, thus contributing to peripheral nerve regeneration. Overall, our findings indicate that miR-30c can promote Schwann cell myelination fol-lowing peripheral nerve injury. The functional study of miR-30c will benefit the discovery of new therapeutic targets and the development of new treatment strategies for peripheral nerve regeneration.  相似文献   

8.
9.
Methylprednisolone is a commonly used drug for the treatment of spinal cord injury, but high doses of methylprednisolone can increase the incidence of infectious diseases. Methotrexate has anti-inflammatory activity and immunosuppressive effects, and can reduce in-flammation after spinal cord injury. To analyze gene expression changes and the molecular mechanism of methotrexate combined with methylprednisolone in the treatment of spinal cord injury, a rat model of spinal cord contusion was prepared using the PinPoint? preci-sion cortical impactor technique. Rats were injected with methylprednisolone 30 mg/kg 30 minutes after injury, and then subcutaneously injected with 0.3 mg/kg methotrexate 1 day after injury, once a day, for 2 weeks. TreadScan gait analysis found that at 4 and 8 weeks after injury, methotrexate combined with methylprednisolone significantly improved hind limb swing time, stride time, minimum longitudinal deviation, instant speed, footprint area and regularity index. Solexa high-throughput sequencing was used to analyze differential gene ex-pression. Compared with methylprednisolone alone, differential expression of 316 genes was detected in injured spinal cord treated with methotrexate and methylprednisolone. The 275 up-regulated genes were mainly related to nerve recovery, anti-oxidative, anti-inflammatory and anti-apoptotic functions, while 41 down-regulated genes were mainly related to proinflammatory and pro-apoptotic functions. These results indicate that methotrexate combined with methylprednisolone exhibited better effects on inhibiting the activity of inflammatory cytokines and enhancing antioxidant and anti-apoptotic effects and thereby produced stronger neuroprotective effects than methotrexate alone. The 316 differentially expressed genes play an important role in the above processes.  相似文献   

10.
11.
The pro-inflammatory cytokine tumor necrosis factor-alpha (TNF) is involved in injury-induced peripheral nerve pathology and in the generation of neuropathic pain. Here, we investigated local protein levels of the two known TNF receptors, TNF receptor 1 and 2 (TNFR1, TNFR2), on days 0, 1, 3, 7, 14, and 28 after unilateral crush or chronic constriction injury (CCI) of mouse sciatic nerves using enzyme-linked immunoassay. Both receptors were detectable at a low level in nerve homogenates from naive mice. After crush or CCI, TNFR1 increased by 2-fold on days 3 and day 7. Unlike TNFR1, TNFR2 was markedly upregulated already on day 1 after crush or CCI. TNFR2 increased by 7-fold on days 3 and 7, and remained elevated at a lower level until day 28 after both CCI and crush injury. These data indicate that endoneurial TNFR1 and TNFR2 proteins are differentially regulated during Wallerian degeneration.  相似文献   

12.
The Slit family of axon guidance cues act as repulsive molecules for precise axon pathfinding and neuronal migration during nervous system development through interactions with specific Robo receptors.Although we previously reported that Slit1–3 and their receptors Robo1 and Robo2 are highly expressed in the adult mouse peripheral nervous system,how this expression changes after injury has not been well studied.Herein,we constructed a peripheral nerve injury mouse model by transecting the right sciatic nerve.At 14 days after injury,quantitative real-time polymerase chain reaction was used to detect mRNA expression of Slit1–3 and Robo1–2 in L4–5 spinal cord and dorsal root ganglia,as well as the sciatic nerve.Immunohistochemical analysis was performed to examine Slit1–3,Robo1–2,neurofilament heavy chain,F4/80,and vimentin in L4–5 spinal cord,L4 dorsal root ganglia,and the sciatic nerve.Co-expression of Slit1–3 and Robo1–2 in L4 dorsal root ganglia was detected by in situ hybridization.In addition,Slit1–3 and Robo1–2 protein expression in L4–5 spinal cord,L4 dorsal root ganglia,and sciatic nerve were detected by western blot assay.The results showed no significant changes of Slit1–3 or Robo1–2 mRNA expression in the spinal cord within 14 days after injury.In the dorsal root ganglion,Slit1–3 and Robo1–2 mRNA expression were initially downregulated within 4 days after injury;however,Robo1–2 mRNA expression returned to the control level,while Slit1–3 mRNA expression remained upregulated during regeneration from 4–14 days after injury.In the sciatic nerve,Slit1–3 and their receptors Robo1–2 were all expressed in the proximal nerve stump;however,Slit1,Slit2,and Robo2 were barely detectable in the nerve bridge and distal nerve stump within 14 days after injury.Slit3 was highly ex-pressed in macrophages surrounding the nerve bridge and slightly downregulated in the distal nerve stump within 14 days after injury.Robo1 was upregulated in vimentin-positive cells and migrating Schwann cells inside the nerve bridge.Robo1 was also upregulated in Schwann cells of the distal nerve stump within 14 days after injury.Our findings indicate that Slit3 is the major ligand expressed in the nerve bridge and distal nerve stump during peripheral nerve regeneration,and Slit3/Robo signaling could play a key role in peripheral nerve repair after injury.This study was approved by Plymouth University Animal Welfare Ethical Review Board (approval No.30/3203) on April 12,2014.  相似文献   

13.
Wallerian degeneration is a critical biological process that occurs in distal nerve stumps after nerve injury. To systematically investigate molecular changes underlying Wallerian degeneration, we used a rat sciatic nerve transection model to examine microarray analysis out-comes and investigate significantly involved Kyoto Enrichment of Genes and Genomes (KEGG) pathways in injured distal nerve stumps at 0, 0.5, 1, 6, 12, and 24 hours, 4 days, 1, 2, 3, and 4 weeks after peripheral nerve injury. Bioinformatic analysis showed that only one KEGG pathway (cytokine-cytokine receptor interaction) was significantly enriched at an early time point (1 hour post-sciatic nerve transection). At later time points, the number of enriched KEGG pathways initially increased and then decreased. Three KEGG pathways were studied in further detail: cytokine-cytokine receptor interaction, neuroactive ligand-receptor interaction, and axon guidance. Moreover, temporal expression patterns of representative differentially expressed genes in these KEGG pathways were validated by real time-polymerase chain reaction. Taken together, the above three signaling pathways are important after sciatic nerve injury, and may increase our understanding of the molecular mechanisms underlying Wallerian degeneration.  相似文献   

14.
15.
16.
D S Kim  S J Lee  S Y Park  H J Yoo  S H Kim  K J Kim  H J Cho 《Neuroreport》2001,12(15):3401-3405
Ordered differential display PCR was used to identify differentially expressed genes in rat dorsal root ganglia at 7 days following chronic constriction injury (CCI) of the sciatic nerve. Fourteen differentially displayed cDNA bands were isolated, cloned and verified by RT-PCR. The four mRNAs were increased, which included mRNAs encoding heat shock protein 27, fatty acid binding protein, apolipoprotein D and one novel gene. Six down-regulated clones were microtubule-associated protein 1B, protein tyrosine phosphatase alpha, Kv1.2 channel, myelin protein SR13, medium-sized neurofilament protein, and one novel gene. Our results show that many differentially regulated genes after CCI may play a role in nerve degeneration and/or regeneration and provide a molecular framework for understanding the peripheral mechanism underlying neuropathic pain.  相似文献   

17.
The aim of the present study was to evaluate whether tissue levels of vitamin B complex and vitamin B12 were altered after crush-induced peripheral nerve injury in an experimental rat model. A total of 80 male Wistar rats were randomized into one control (n = 8) and six study groups (1, 6, 12, 24 hours, 3, and 7 days after experimental nerve injury;n = 12 for each group). Crush-induced peripheral nerve injury was per-formed on the sciatic nerves of rats in six study groups. Tissue samples from the sites of peripheral nerve injury were obtained at 1, 6, 12, 24 hours, 3 and 7 days after experimental nerve injury. Enzyme-linked immunosorbent assay results showed that tissue levels of vitamin B complex and vitamin B12 in the injured sciatic nerve were signiifcantly greater at 1 and 12 hours after experimental nerve injury, while they were signiifcantly lower at 7 days than in control group. Tissue level of vitamin B12 in the injured sciatic nerve was signiifcantly lower at 1, 6, 12 and 24 hours than in the control group. These results suggest that tissue levels of vitamin B complex and vitamin B12 vary with progression of crush-induced peripheral nerve injury, and supplementation of these vitamins in the acute period may be beneficial for acceleration of nerve regeneration.  相似文献   

18.
In this study,an Alzheimer’s disease model was established in rats through stereotactic injection of condensed amyloid beta 1-40 into the bilateral hippocampus,and the changes of gene expression profile in the hippocampus of rat models and sham-operated rats were compared by genome expression profiling analysis.Results showed that the expression of 50 genes was significantly up-regulated(fold change ≥ 2),while 21 genes were significantly down-regulated in the hippocampus of Alzheimer’s disease model rats(fold change ≤ 0.5) compared with the sham-operation group.The differentially expressed genes are involved in many functions,such as brain nerve system development,neuronal differentiation and functional regulation,cellular growth,differentiation and apoptosis,synaptogenesis and plasticity,inflammatory and immune responses,ion channels/transporters,signal transduction,cell material/energy metabolism.Our findings indicate that several genes were abnormally expressed in the metabolic and signal transduction pathways in the hippocampus of amyloid beta 1-40-induced rat model of Alzheimer’s disease,thereby affecting the hippocampal and brain functions.  相似文献   

19.
20.
Neurofibromas represent one of the hallmarks of neurofibromatosis 1 (NF1) patients. Tumor progression of neurofibromas to malignant peripheral nerve sheath tumors (MPNST) is a frequent and life threatening complication. To learn more about processes involved in malignant transformation, we evaluated differential gene expression in plexiform neurofibroma and MPNST from the same NF1 patient. Suppression subtractive hybridization (SSH) yielded 133 differentially expressed genes confirmed by reverse Northern blotting. Virtual Northern blots were employed to validate 23 genes. To independently verify differential expression, immunohistochemical analyses with antibodies to matrix metalloproteinase 13 (MMP13), platelet-derived growth factor receptor alpha (PDGFRA) and fibronectin (FN1) were performed on 9 dermal and 9 plexiform neurofibromas and 16 MPNST from 19 NF1 patients. All three proteins proved to be up-regulated in MPNST. MMP13 expression was observed in 44% of MPNST but was absent in neurofibromas. PDGFRA was expressed in all tumors, but the number of cells expressing it was below 30% in neurofibromas and over 50% in MPNST. Likewise, FN1 was expressed in all tumors, but less than 30% of the cells in neurofibromas and more than 70% of the cells in MPNST exhibited antibody binding. Our data point to several genes not previously recognized to be differentially expressed, and provide a framework for future studies on progression-associated gene expression in low- and high-grade nerve sheath tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号