首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tanshinone ⅡA, extracted from Salvia miltiorrhiza Bunge, exerts neuroprotective effects through its anti-inflammatory, anti-oxidative and anti-apoptotic properties. This study intravenously injected tanshinone ⅡA 20 mg/kg into rat models of spinal cord injury for 7 consecutive days. Results showed that tanshinone ⅡA could reduce the inflammation, edema as well as compensatory thickening of the bladder tissue, improve urodynamic parameters, attenuate secondary injury, and promote spinal cord regeneration. The number of hypertrophic and apoptotic dorsal root ganglion(L_6–S_1) cells was less after treatment with tanshinone ⅡA. The effects of tanshinone ⅡA were similar to intravenous injection of 30 mg/kg methylprednisolone. These findings suggested that tanshinone ⅡA improved functional recovery after spinal cord injury-induced lower urinary tract dysfunction by remodeling the spinal pathway involved in lower urinary tract control.  相似文献   

2.
Methylprednisolone is a commonly used drug for the treatment of spinal cord injury, but high doses of methylprednisolone can increase the incidence of infectious diseases. Methotrexate has anti-inflammatory activity and immunosuppressive effects, and can reduce in-flammation after spinal cord injury. To analyze gene expression changes and the molecular mechanism of methotrexate combined with methylprednisolone in the treatment of spinal cord injury, a rat model of spinal cord contusion was prepared using the PinPoint? preci-sion cortical impactor technique. Rats were injected with methylprednisolone 30 mg/kg 30 minutes after injury, and then subcutaneously injected with 0.3 mg/kg methotrexate 1 day after injury, once a day, for 2 weeks. TreadScan gait analysis found that at 4 and 8 weeks after injury, methotrexate combined with methylprednisolone significantly improved hind limb swing time, stride time, minimum longitudinal deviation, instant speed, footprint area and regularity index. Solexa high-throughput sequencing was used to analyze differential gene ex-pression. Compared with methylprednisolone alone, differential expression of 316 genes was detected in injured spinal cord treated with methotrexate and methylprednisolone. The 275 up-regulated genes were mainly related to nerve recovery, anti-oxidative, anti-inflammatory and anti-apoptotic functions, while 41 down-regulated genes were mainly related to proinflammatory and pro-apoptotic functions. These results indicate that methotrexate combined with methylprednisolone exhibited better effects on inhibiting the activity of inflammatory cytokines and enhancing antioxidant and anti-apoptotic effects and thereby produced stronger neuroprotective effects than methotrexate alone. The 316 differentially expressed genes play an important role in the above processes.  相似文献   

3.
Experimental studies and clinical observations show that spinal cord lesions are greatly enlarged by a process called secondary cell death. A detailed understanding of the molecular and cellular processes underlying these events is still lacking. In clinical studies using methylprednisolone in spinal cord injured patients a mega-dose of methylprednisolone applied during the first dew hours after injury was found to improve the neurological outcome. In the present study the possible neuroprotective mechanism of methylprednisolone was assessed by histologically studying its effect on the extent of secondary cell death and on early inflammatory reactions following partial transection of the spinal cord in the rat. Our results show that a single high dose of 30 or 60 mg/kg methylprednisolone affects neither the time course nor the extent of secondary cell death. In contrast, methylprednisolone markedly suppressed the invasion of the injured spinal cord tissue by polymorphonuclear granulocytes and macrophages. The role of these inflammatory cells in traumatic CNS lesions is very unclear at present. It is possible that they lead to further damage of the injured spinal cord tissue and that the beneficial effect of methylprednisolone is at least partially due to its anti-inflammatory effect, thereby inhibiting bystander damage of invading inflammatory cells.  相似文献   

4.
BACKGROUND: A systematic review of the evidence pertaining to methylprednisolone infusion following acute spinal cord injury was conducted in order to address the persistent confusion about the utility of this treatment. METHODS: A committee of neurosurgical and orthopedic spine specialists, emergency physicians and physiatrists engaged in active clinical practice conducted an electronic database search for articles about acute spinal cord injuries and steroids, from January 1, 1966 to April 2001, that was supplemented by a manual search of reference lists, requests for unpublished additional information, translations of foreign language references and study protocols from the author of a Cochrane systematic review and Pharmacia Inc. The evidence was graded and recommendations were developed by consensus. RESULTS: One hundred and fifty-seven citations that specifically addressed spinal cord injuries and methylprednisolone were retrieved and 64 reviewed. Recommendations were based on one Cochrane systematic review, six Level I clinical studies and seven Level II clinical studies that addressed changes in neurological function and complications following methylprednisolone therapy. CONCLUSIONS: There is insufficient evidence to support the use of high-dose methylprednisolone within eight hours following an acute closed spinal cord injury as a treatment standard or as a guideline for treatment. Methylprednisolone, prescribed as a bolus intravenous infusion of 30 mg per kilogram of body weight over fifteen minutes within eight hours of closed spinal cord injury, followed 45 minutes later by an infusion of 5.4 mg per kilogram of body weight per hour for 23 hours, is only a treatment option for which there is weak clinical evidence (Level I- to II-1). There is insufficient evidence to support extending methylprednisolone infusion beyond 23 hours if chosen as a treatment option.  相似文献   

5.
Background and purposeFree radical production after spinal cord injury (SCI) plays an important role in secondary damage. The aim of this study was to investigate neuroprotective effects of the powerful antioxidant alpha-lipoic acid (ALA) in a spinal cord clip compression injury model.Material and methodsFifty-six Sprague-Dawley rats, weighing between 210 and 300 g, were randomly divided into seven groups. Spinal cord injury was performed by an aneurysm clip placed extradurally at the level of T9. Group 1 (sham) received laminectomy only. Group 2 (control) received SCI; Group 3 received 30 mg/kg of methylprednisolone sodium succinate (MPSS); Groups 4, 5, 6 and 7 received ALA at doses of 50, 100, 150, 200 mg/kg, respectively, via the intraperitoneal route immediately after SCI. The rats were neurologically tested 24 hours after trauma. Spinal cord samples from injury sites were harvested for measurement of lipid peroxidation products and histopathological evaluation.ResultsSpinal cord malonyldialdehyde levels of rats in treatment groups decreased after administration of ALA. The difference between the trauma group and groups receiving MPSS-ALA was statistically significant. The difference between the ALA (50, 100, 150 mg/kg) and MPSS groups was insignificant. Group 7 (ALA 200 mg/kg) was excluded from the study because of the possible toxic effect. Alpha lipoic acid and MPSS had similar effects on spinal cord injury in terms of lipid peroxidation, neurological recovery and histopathological changes.ConclusionsAlpha lipoic acid at a dose range of 50–150 mg/kg is as effective as MPSS (30 mg/kg) in neuroprotection after SCI. Further, more detailed experimental studies are needed to determine the effects of ALA on the detrimental results of secondary SCI before its use in humans.  相似文献   

6.
BACKGROUND: For the treatment of spinal cord injury, any pathological changes of the injured tissue should be primarily corrected or reversed. Any remaining fibrous function and neurons with intact structure should be retained, and the toxic substances caused by ischemia-hypoxia following spinal cord injury, should be eliminated to create a favorable environment that would promote neural functional recovery. OBJECTIVE: This study was designed to investigate the effects of the impact of early methylprednisolone-treatment on the sensory and motor function recovery in patients with acute spinal cord injury. DESIGN: A self-control observation. SETTING: Department of Spine Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China. PARTICIPANTS: Forty-three patients with acute spinal cord injury were admitted to the Department of Spine Surgery, First Affiliated Hospital of Nanjing Medical University, between October 2005 and September 2007. These patients were recruited for the present study. The patients comprised 33 males and 10 females, and all met with the inclusive criteria namely, the time between suffering from acute spinal cord injury and receiving treatment was less than or equal to eight hours. METHODS: According to the protocol determined by the State Second Conference of Acute Spinal Cord Injury of USA, all patients received the drop-wise administration of a 30-mg/kg dose of methylprednisolone (H200040339, 500 mg/bottle, Pharmacia N.V/S.A, Belgium) for 15 minutes within 8 hours post injury. After a 45-minute interval, methylprednisolone was administered at 5.4 mg/kg/h for 23 hours. MAIN OUTCOME MEASURES: Prior to and post treatment, acupuncture sense and light touch scoring were performed at 28 dermatomic area key points, including occipital tuberosity and supraclavicular fossa. At the same time, motor scoring of key muscles among 10 pairs of sarcomeres was also performed. RESULTS: All 43 patients participated in the final analysis. There was no s  相似文献   

7.
BACKGROUND: For the treatment of spinal cord injury, any pathological changes of the injured tissue should be primarily corrected or reversed. Any remaining fibrous function and neurons with intact structure should be retained, and the toxic substances caused by ischemia-hypoxia following spinal cord injury, should be eliminated to create a favorable environment that would promote neural functional recovery. OBJECTIVE: This study was designed to investigate the effects of the impact of early methylprednisolone-treatment on the sensory and motor function recovery in patients with acute spinal cord injury. DESIGN: A self-control observation. SETTING: Department of Spine Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China. PARTICIPANTS: Forty-three patients with acute spinal cord injury were admitted to the Department of Spine Surgery, First Affiliated Hospital of Nanjing Medical University, between October 2005 and September 2007. These patients were recruited for the present study. The patients comprised 33 males and 10 females, and all met with the inclusive criteria namely, the time between suffering from acute spinal cord injury and receiving treatment was less than or equal to eight hours. METHODS: According to the protocol determined by the State Second Conference of Acute Spinal Cord Injury of USA, all patients received the drop-wise administration of a 30-mg/kg dose of methylprednisolone (H200040339,500mg/bottle, Pharmacia N.V/S.A, Belgium) for 15 minutes within 8 hours post injury. After a 45-minute interval, methylprednisolone was administered at 5.4mg/kg/h for 23 hours. MAIN OUTCOME MEASURES: Prior to and post treatment, acupuncture sense and light touch scoring were performed at 28 dermatomic area key points, including occipital tuberosity and supraclavicular fossa. At the same time, motor scoring of key muscles among 10 pairs of sarcomeres was also performed.RESULTS: All 43 patients participated in the final analysis. There was no significant difference of sensory and motor scores in patients with complete acute spinal cord injury between prior to and post methylprednisolone impact treatment (P>0.05). The motor score was significantly decreased in patients with incomplete acute spinal cord injury post methylprednisolone impact treatment (P<0.01).CONCLUSION: Early methylprednisolone impact may improve the motor function of patients with incomplete acute spinal cord injury. However, it has no influences on patients with complete acute spinal cord injury.  相似文献   

8.
Oligodendrocyte-produced Nogo-A has been shown to inhibit axonal regeneration. Methylprednisolone plays an effective role in treating spinal cord injury, but the effect of methylprednisolone on Nogo-A in the injured spinal cord remains unknown. The present study established a rat model of acute spinal cord injury by the weight-drop method. Results showed that after injury, the motor behavior ability of rats was reduced and necrotic injury appeared in spinal cord tissues, which was accompanied by increased Nogo-A expression in these tissues. After intravenous injection of high-dose methylprednisolone, although the pathology of spinal cord tissue remained unchanged, Nogo-A expression was reduced, but the level was still higher than normal. These findings implicate that methylprednisolone could inhibit Nogo-A expression, which could be a mechanism by which early high dose methylprednisolone infusion helps preserve spinal cord function after spinal cord injury.  相似文献   

9.
Salvianolic acid B,an active pharmaceutical compound present in Salvia miltiorrhiza,exerts a neuroprotective effect in animal models of brain and spinal cord injury.Salvianolic acid B can promote recovery of neurological function;however,its protective effect on the myelin sheath after spinal cord injury remains poorly understood.Thus,in this study,in vitro tests showed that salvianolic acid B contributed to oligodendrocyte precursor cell differentiation,and the most effective dose was 20 μg/m L.For in vivo investigation,rats with spinal cord injury were intraperitoneally injected with 20 mg/kg salvianolic acid B for 8 weeks.The amount of myelin sheath and the number of regenerating axons increased,neurological function recovered,and caspase-3 expression was decreased in the spinal cord of salvianolic acid B-treated animals compared with untreated control rats.These results indicate that salvianolic acid B can protect axons and the myelin sheath,and can promote the recovery of neurological function.Its mechanism of action is likely to be associated with inhibiting apoptosis and promoting the differentiation and maturation of oligodendrocyte precursor cells.  相似文献   

10.
A spinal cord injury refers to an injury to the spinal cord that is caused by a trauma instead of diseases. Spinal cord injury includes a primary mechanical injury and a much more complex secondary injury pro-cess involving inlfammation, oxidation, excitotoxicity, and cell death. During the secondary injury, many signal pathways are activated and play important roles in mediating the pathogenesis of spinal cord injury. Among them, the RhoA/Rho kinase pathway plays a particular role in mediating spinal degeneration and regeneration. In this review, we will discuss the role and mechanism of RhoA/Rho kinase-mediated spinal cord pathogenesis, as well as the potential of targeting RhoA/Rho kinase as a strategy for promoting both neuroprotection and axonal regeneration.  相似文献   

11.
OBJECTIVE: Primary impact to the spinal cord causes rapid oxidative stress after injury. To protect neural tissue, it is important to prevent secondary pathophysiological mechanisms. Etomidate, a strong antiexcitotoxic agent, stimulates the gamma aminobutyric acid (GABA) receptors. The purpose of this study was to investigate neurobehavioral and histological recovery and to evaluate the biochemical responses to treatment of experimental spinal cord injury (SCI) in rats with etomidate or methylprednisolone (MP) or both etomidate and MP. MATERIAL AND METHODS: Seventy-two rats were randomly allocated into six groups: a control group (laminectomy alone), a trauma group (laminectomy+trauma), a methylprednisolone group (30 mg/kg MP), an etomidate group (2 mg/kg), a methylprednisolone and etomidate combined treatment group (30 mg/kg MP and 2 mg/kg etomidate) and a vehicle group. Six rats from each group were killed at the 24th hour after the injury. Malondialdehyde, glutathione, nitric oxide and xanthine oxidase levels were measured. Neurological functions of the remaining rats were recorded weekly. Six weeks after injury, all of those rats were killed for histopathological assessment. RESULTS: Etomidate treatment revealed similar neurobehavioral and histopathological recovery to MP treatment 6 weeks after injury. Combined treatment did not provide additional neuroprotection. CONCLUSION: Etomidate treatment immediately after spinal cord injury has similar neuroprotection to MP. In spite of different neuroprotection mechanisms, combined treatment with MP and etomidate does not provide extra protection.  相似文献   

12.
Methylprednisolone markedly reduces autophagy and apoptosis after secondary spinal cord injury. Here, we investigated whether pretreatment of cells with methylprednisolone would protect neuron-like cells from subsequent oxidative damage via suppression of autophagy and apoptosis. Cultured N_2 a cells were pretreated with 10 μM methylprednisolone for 30 minutes, then exposed to 100 μM H_2O_2 for 24 hours. Inverted phase contrast microscope images, MTT assay, flow cytometry and western blot results showed that, compared to cells exposed to 100 μM H_2O_2 alone, cells pretreated with methylprednisolone had a significantly lower percentage of apoptotic cells, maintained a healthy morphology, and showed downregulation of autophagic protein light chain 3B and Beclin-1 protein expression. These findings indicate that methylprednisolone exerted neuroprotective effects against oxidative damage by suppressing autophagy and apoptosis.  相似文献   

13.
《中国神经再生研究》2016,(9):1379-1384
The pathologic process of chronic phase traumatic brain injury is associated with spreading inlfamma-tion, cell death, and neural dysfunction. It is thought that sequestration of inlfammatory mediators can facilitate recovery and promote an environment that fosters cellular regeneration. Studies have targeted post-traumatic brain injury inlfammation with the use of pharmacotherapy and cell therapy. These thera-peutic options are aimed at reducing the edematous and neurodegenerative inlfammation that have been associated with compromising the integrity of the blood-brain barrier. Although studies have yielded posi-tive results from anti-inlfammatory pharmacotherapy and cell therapy individually, emerging research has begun to target inlfammation using combination therapy. The joint use of anti-inlfammatory drugs along-side stem cell transplantation may provide better clinical outcomes for traumatic brain injury patients. Despite the promising results in this ifeld of research, it is important to note that most of the studies men-tioned in this review have completed their studies using animal models. Translation of this research into a clinical setting will require additional laboratory experiments and larger preclinical trials.  相似文献   

14.
Effects of MPSS and a potent iNOS inhibitor on traumatic spinal cord injury   总被引:5,自引:0,他引:5  
ONO-1714, a selective inhibitor of inducible nitric oxide synthetase (iNOS) attenuated the increase of apoptosis and improved the functional outcome of urinary bladder after traumatic spinal cord injury. These findings suggest that iNOS plays a role in the process of SCI. Early treatment with 30 mg/kg methylprednisolone sodium succinate (MPSS) could also inhibit the expression of iNOS gene, apoptosis and the loss of urinary bladder function. We confirmed that early MPSS treatment may prevent injury associated with apoptosis and urinary bladder disability by reducing iNOS mRNA. However, delayed single MPSS treatment 8 h after spinal cord injury was not effective. Early repeated MPSS treatment might allow greater recovery from acute spinal cord injury.  相似文献   

15.
Clinical studies have shown that hyperbaric oxygen therapy improves motor function in patients with spinal cord injury. In the present study, we explored the mechanisms associated with the recovery of neurological function after hyperbaric oxygen therapy in a rat model of spinal cord injury. We established an acute spinal cord injury model using a modification of the free-falling object method, and treated the animals with oxygen at 0.2 MPa for 45 minutes, 4 hours after injury. The treatment was administered four times per day, for 3 days. Compared with model rats that did not receive the treatment, rats exposed to hyperbaric oxygen had fewer apoptotic cells in spinal cord tissue, lower expression levels of aquaporin 4/9 mRNA and protein, and more NF-200 positive nerve fibers. Furthermore, they had smaller spinal cord cavities, rapid recovery of somatosensory and motor evoked potentials, and notably better recovery of hindlimb motor function than model rats. Our findings indicate that hyperbaric oxygen therapy reduces apoptosis, downregulates aquaporin 4/9 mRNA and protein expression in injured spinal cord tissue, improves the local microenvironment for nerve regeneration, and protects and repairs the spinal cord after injury.  相似文献   

16.
Cerebral ischemia/reperfusion injury is partially mediated by thrombin, which causes brain damage through protease-activated receptor 1 (PAR1). However, the role and mechanisms underlying the effects of PAR1 activation require further elucidation. hTerefore, the present study investigated the effects of the PAR1 antagonist SCH79797 in a rabbit model of global cerebral ischemia induced by cardiac arrest. SCH79797 was intravenously administered 10 minutes atfer the model was established. Forty-eight hours later, compared with those ad-ministered saline, rabbits receiving SCH79797 showed markedly decreased neuronal damage as assessed by serum neuron speciifc enolase levels and less neurological dysfunction as determined using cerebral performance category scores. Additionally, in the hippocampus, cell apoptosis, polymorphonuclear cell inifltration, and c-Jun levels were decreased, whereas extracellular signal-regulated kinase phosphor-ylation levels were increased. All of these changes were inhibited by the intravenous administration of the phosphoinositide 3-kinase/Akt pathway inhibitor LY29004 (3 mg/kg) 10 minutes before the SCH79797 intervention. hTese ifndings suggest that SCH79797 mitigates brain injury via anti-inlfammatory and anti-apoptotic effects, possibly by modulating the extracellular signal-regulated kinase, c-Jun N-terminal kinase/c-Jun and phosphoinositide 3-kinase/Akt pathways.  相似文献   

17.
观察汉防己甲素(Tetrandrine ,Tet)对大鼠急性脊髓损伤后组织结构神经细胞凋亡和运动功能恢复的影响并探讨其作用机制。方法:选用100只成年大鼠,随机分为四组,即假手术组10只(A组)、损伤对照组(B组)30只、甲基强的松龙治疗组(CD组)30只、Tet治疗组(DC组)30只。胸8、9椎板切除后B、C、D组用加速压迫型Allen’s打击法制成脊髓损伤模型。C组和D组动物于制模前、伤后24h、伤后48h尾静脉注射甲基强的松龙(MP)和Tet。各组大鼠于术后8h,1d,3d,7d,14d行BBB评分,分别于术后8h,1d,3d,7d,14d取损伤段脊髓行石蜡切片HE染色,观察脊髓组织的形态结构变化和免疫组织化学染色检测细胞凋亡因子bcl-2、bax 。结果: 伤后7d、14dC组与D组大鼠运动功能评分(BBB评分)显著高于B组,各时间点C组与D组评分无统计学意义;A组的脊髓组织HE染色正常 ,C组与D组脊髓组织损害较B组轻,术后8h-14d动态观擦,3d—7d损伤表现最为严重,达到损伤高峰期;A组中bax、bcl-2表达较少,C组与D组bax 表达较B组少,而bcl-2表达较B组多。结论:汉防己甲素可通过增加bcl-2表达、降低bax 表达,抑制急性脊髓损伤后神经细胞的凋亡,能有益于脊髓组织的保护,促进运动功能的恢复。  相似文献   

18.
Neutrophil infiltration has been reported to play an important role in spinal cord injury (SCI). In addition to their cardioprotective effects, beta-blockers have been found to have neuroprotective effects on the central nervous system, but their effect on SCI has not yet been studied. In the current study, we investigated the effect of metoprolol on myeloperoxidase (MPO) activity, a marker of neutrophil activation, in the spinal cord after experimental SCI in rats. Rats were divided into six groups: controls received only laminectomy and spinal cord samples were taken immediately; the sham operated group received laminectomy, and spinal cord samples were taken 4h after laminectomy; the trauma only group underwent a 50g/cm contusion injury but received no medication; and three other groups underwent trauma as for the trauma group, and received 30mg/kg methylprednisolone, 1mg/kg metoprolol, or 1mL saline, respectively. All the medications were given intraperitoneally as single doses, immediately after trauma. Spinal cord samples were taken 4h after trauma and studied for MPO activity. The results showed that tissue MPO activity increased after injury. Both metoprolol and methylprednisolone treatments decreased MPO activity, indicating a reduction in neutrophil infiltration in damaged tissue. The effect of metoprolol on MPO activity was found to be similar to methylprednisolone. In view of these data, we conclude that metoprolol may be effective in protecting rat spinal cord from secondary injury.  相似文献   

19.
One of the most investigated molecular mechanisms involved in the secondary pathophysiology of acute spinal cord injury (SCI) is free radical-induced, iron-catalyzed lipid peroxidation (LP) and protein oxidative/nitrative damage to spinal neurons, glia, and microvascular cells. The reactive nitrogen species peroxynitrite and its highly reactive free radicals are key initiators of LP and protein nitration in the injured spinal cord, the biochemistry, and pathophysiology of which are first of all reviewed in this article. This is followed by a presentation of the antioxidant mechanistic approaches and pharmacological compounds that have been shown to have neuroprotective properties in preclinical SCI models. Two of these, which act by inhibition of LP, are high-dose treatment with the glucocorticoid steroid methylprednisolone (MP) and the nonglucocorticoid 21-aminosteroid tirilazad, have been demonstrated in the multicenter NASCIS clinical trials to produce at least a modest improvement in neurological recovery when administered within the first 8 hours after SCI. Although these results have provided considerable validation of oxidative damage as a clinically practical neuroprotective target, there is a need for the discovery of safer and more effective antioxidant compounds for acute SCI.  相似文献   

20.
Propofol has been shown to exert neuroprotective effects on the injured spinal cord.However,the effect of propofol on the blood-spinal cord barrier(BSCB) after ischemia/reperfusion injury(IRI) is poorly understood.Therefore,we investigated whether propofol could maintain the integrity of the BSCB.Spinal cord IRI(SCIRI) was induced in rabbits by infrarenal aortic occlusion for 30 minutes.Propofol,30 mg/kg,was intravenously infused 10 minutes before aortic clamping as well as at the onset of reperfusion.Then,48 hours later,we performed histological and m RNA/protein analyses of the spinal cord.Propofol decreased histological damage to the spinal cord,attenuated the reduction in BSCB permeability,downregulated the m RNA and protein expression levels of matrix metalloprotease-9(MMP-9) and nuclear factor-κB(NF-κB),and upregulated the protein expression levels of occludin and claudin-5.Our findings suggest that propofol helps maintain BSCB integrity after SCIRI by reducing MMP-9 expression,by inhibiting the NF-κB signaling pathway,and by maintaining expression of tight junction proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号