首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ischemic preconditioning elicited by a non-fatal brief occlusion of blood flow has been applied for an experimental therapeutic strategy against a subsequent fatal ischemic insult. In this study, we investi-gated the neuroprotective effects of ischemic preconditioning (2-minute transient cerebral ischemia) on calbindin D28k immunoreactivity in the gerbil hippocampal CA1 area following a subsequent fatal tran-sient ischemic insult (5-minute transient cerebral ischemia). A large number of pyramidal neurons in the hippocampal CA1 area died 4 days after 5-minute transient cerebral ischemia. Ischemic preconditioning reduced the death of pyramidal neurons in the hippocampal CA1 area. Calbindin D28k immunoreactivity was greatly attenuated at 2 days after 5-minute transient cerebral ischemia and it was hardly detected at 5 days post-ischemia. Ischemic preconditioning maintained calbindin D28k immunoreactivity after transient cerebral ischemia. These findings suggest that ischemic preconditioning can attenuate transient cerebral ischemia-caused damage to the pyramidal neurons in the hippocampal CA1 area through maintaining cal-bindin D28k immunoreactivity.  相似文献   

2.
《中国神经再生研究》2016,(8):1254-1259
Recent evidence exists that glucose transporter 3 (GLUT3) plays an important role in the energy metabo-lism in the brain. Most previous studies have been conducted using focal or hypoxic ischemia models and have focused on changes in GLUT3 expression based on protein and mRNA levels rather than tissue levels. In the present study, we observed change in GLUT3 immunoreactivity in the adult gerbil hippocampus at various time points after 5 minutes of transient forebrain ischemia. In the sham-operated group, GLUT3 immunoreactivity in the hippocampal CA1 region was weak, in the pyramidal cells of the CA1 region in-creased in a time-dependent fashion 24 hours after ischemia, and in the hippocampal CA1 region decreased signiifcantly between 2 and 5 days after ischemia, with high level of GLUT3 immunoreactivity observed in the CA1 region 10 days after ischemia. In a double immunolfuorescence study using GLUT3 and gli-al-ifbrillary acidic protein (GFAP), we observed strong GLUT3 immunoreactivity in the astrocytes. GLUT3 immunoreactivity increased after ischemia and peaked 7 days in the dentate gyrus after ischemia/reperfu-sion. In a double immunolfuorescence study using GLUT3 and doublecortin (DCX), we observed low level of GLUT3 immunoreactivity in the differentiated neuroblasts of the subgranular zone of the dentate gyrus after ischemia. GLUT3 immunoreactivity in the sham-operated group was mainly detected in the subgran-ular zone of the dentate gyrus. These results suggest that the increase in GLUT3 immunoreactivity may be a compensatory mechanism to modulate glucose level in the hippocampal CA1 region and to promote adult neurogenesis in the dentate gyrus.  相似文献   

3.
We examined whether or not nitration of tyrosine residues takes place in the gerbil hippocampal CA1 region after transient forebrain ischemia. The nitration of tyrosine residues to produce nitrotyrosine is a footprint of peroxynitrite, a reaction product of nitric oxide (NO) with superoxide. Nitrotyrosine immunoreactivity had been detected in the CA1 region from the early stage in a reperfused brain at 30 min after transient ischemia until DNA fragmentation and neuronal death appeared at 4 days after transient ischemia. In electron microscopy, we detected, prominently, nitrotyrosine immunoreactivity after transient ischemia in the cytoplasm of the CA1 neurons. Therefore, it is considered that the nitration of tyrosine residues by peroxynitrite may be closely related to apoptosis after transient ischemia.  相似文献   

4.
In the present study, we used immunohistochemistry and western blot analysis to examine changes in the levels and cellular localization of iron, heavy chain ferritin (ferritin-H), and transferrin in the gerbil hippocampal CA1 region from 30 minutes to 7 days following transient forebrain ischemia. Relative to sham controls, iron reactivity increased signiifcantly in the stratum pyramidale and stratum oriens at 12 hours following ischemic insult, transiently decreased at 1–2 days and then increased once again within the CA1 region at 4–7 days after ischemia. One day after ischemia, ferritin-H immunoreactivity increased significantly in the stratum pyramidale and decreased at 2 days. At 4–7 days after ischemia, ferritin-H immunoreactivity in the glial components in the CA1 region was signiifcantly increased. Transferrin im-munoreactivity was increased signiifcantly in the stratum pyramidale at 12 hours, peaked at 1 day, and then decreased signiifcantly at 2 days after ischemia. Seven days after ischemia, Transferrin immunoreactivity in the glial cells of the stratum oriens and radiatum was signiifcantly increased. Western blot analyses support-ed these results, demonstrating that compared to sham controls, ferritin H and transferrin protein levels in hippocampal homogenates significantly increased at 1 day after ischemia, peaked at 4 days and then decreased. These results suggest that iron overload-induced oxidative stress is most prominent at 12 hours after ischemia in the stratum pyramidale, suggesting that this time window may be the optimal period for therapeutic intervention to protect neurons from ischemia-induced death.  相似文献   

5.
Fluoxetine, a selective serotonin reuptake inhibitor, alters several physiological processes, for example, elevating intracellular cAMP level, in the hippocampus. We examined the effect of fluoxetine on ischemia-induced neuronal death, the expression of brain-derived neurotrophic factor (BDNF) and changes in some antioxidative enzymes in the hippocampal CA1 region induced by transient ischemia. In addition, we also studied the effect of fluoxetine on locomotor activity in gerbils after ischemia/reperfusion. Animals were administered with various doses of fluoxetine (10, 20, and 40 mg/kg, i.p.) once daily for 3 days before the ischemic surgery. The treatment of 10 mg/kg and 20 mg/kg fluoxetine did not show significant neuroprotective effects on CA1 pyramidal cells 4 days after ischemia/reperfusion, while the treatment with 40 mg/kg fluoxetine in ischemic animals showed about 77% neuronal survival rate compared to the control group. The treatment of 40 mg/kg fluoxetine in ischemic animals enhanced significantly BDNF, catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase-1 (SOD1) immunoreactivity in the CA1 region compared to those in the saline-treated group 4 days after ischemia/reperfusion. In addition, the treatment of fluoxetine (10, 20, 40 mg/kg) significantly inhibited post-ischemic hyperactivity. In brief, treatment with fluoxetine protects neuronal damage after transient ischemia, and the neuroprotective effect of fluoxetine in an ischemic animal model may be related with the up-regulation of BDNF, CAT, GPX, and SOD1 expression.  相似文献   

6.
Quercetin(QE; 3,5,7,3′,4′-pentahydroxyflavone), a well-known flavonoid, has been shown to prevent against neurodegenerative disorders and ischemic insults. However, few studies are reported regarding the neuroprotective mechanisms of QE after ischemic insults. Therefore, in this study, we investigated the effects of QE on ischemic injury and the expression of antioxidant enzymes in the hippocampal CA1 region of gerbils subjected to 5 minutes of transient cerebral ischemia. QE was pre-treated once daily for 15 days before ischemia. Pretreatment with QE protected hippocampal CA1 pyramidal neurons from ischemic injury, which was confirmed by neuronal nuclear antigen immunohistochemistry and Fluoro-Jade B histofluorescence staining. In addition, pretreatment with QE significantly increased the expression levels of endogenous antioxidant enzymes Cu/Zn superoxide dismutase, Mn superoxide dismutase, catalase and glutathione peroxidase in the hippocampal CA1 pyramidal neurons of animals with ischemic injury. These findings demonstrate that pretreated QE displayed strong neuroprotective effects against transient cerebral ischemia by increasing the expression of antioxidant enzymes.  相似文献   

7.
Summary Transient forebrain ischemia produces a spatially and temporally selective pattern of neuronal degeneration in the hippocampal formation of the Mongolian gerbil. Ischemic neuronal death has been suggested to depend on the activation of excitatory hippocampal pathways that project to the vulnerable neurons. This idea was tested by examining the effect of a unilateral entorhinal cortical lesion or a unilateral knife cut lesion of intrahippocampal pathways on the neuropathology produced by 5 min of complete fore-brain ischemia. A prior lesion of either the ipsilateral entorhinal cortex or the mossy fiber and Schaffer collateral-commissural pathways partially prevented the destruction of CA1b pyramidal cells in most animals. It did not, however, reduce the extent of ischemic neuronal death in any other hippocampal subfield. Within area CA1b, an entorhinal lesion protected an average of 23% of the pyramidal cells and a transection of both mossy and Schaffer collateral-commissural fibers protected an average of 36.5%. CA1b pyramidal cells saved from ischemia-induced degeneration appeared clearly abnormal when stained with cresyl violet or by silver impregnation. It is suggested that lesions of excitatory pathways attenuate ischemic damage to area CA1b by directly or indirectly reducing the level of synaptic excitation onto the vulnerable neurons. However, only a relatively small percentage of hippocampal neurons can be protected by these lesions in the gerbil ischemia model and there is reason to believe that the neurons protected in this manner may not be electrophysiologically competent. Synaptic excitation therefore appears to play an important, but not an essential, role in this model of ischemic brain damage.Supported by NIH Stroke Center grant NS 06233  相似文献   

8.
Expressions of nerve growth factor (NGF) and low affinity p75 NGF receptor (p75 NGFR) in gerbil hippocampal neurons after 3.5-min transient forebrain ischemia were studied. Most hippocampal CAI neurons were lost (neuronal density = 44 ± 12/mm) at 7 days after recirculation, while no cell death was found in the sham-control neurons (220 ± 27/min). NGF immunoreactivity was normally present in the sham-control hippocampal neurons. However, it decreased in hippocampal CAI neurons, and slightly decreased in the neurons of CA3 and dentate gyrus areas from 3 hr after recirculation. By 7 days, NGF immunoreactivity returned almost completely to the sham-control level in the CA3 and dentate gyrus neurons but decreased markedly in the CAI neurons. In contrast, p75 NGFR immunoreactivity was scarcely present in the sham-control hippocampal neurons but was induced from 1 hr after recirculation in the CAI and CA3 neurons and from 3 hr in the dentate gyrus. At 7 days, p75 NGFR immunoreactivity was expressed greatly in the surviving CAI neurons and the reactive astrocytes but was not seen in the other hippocampal neurons. The markedly decreased NGF and greatly induced p75 NGFR immunoreactivity found in the CAI neurons after transient forebrain ischemia suggests that NGF and p75 NGFR may be involved in the mechanism of delayed neuronal death. © 1995 Wiley-Liss, Inc.  相似文献   

9.
Substantial generation of oxygen-derived free radicals has been implicated in pathophysiology of ischemic brain damage. Immunoreactive mitochondrial manganese and cytosolic copper-zinc superoxide dismutases, initial and essential enzymes to scavenge superoxide radical anions, increased in the gerbil hippocampal neurons after transient forebrain ischemia. Neuronal cells responded to oxidative stress in ischemia and induced the protective mechanism to increase superoxide dismutases.  相似文献   

10.
Chemical preconditioning using the mitochondrial toxin, 3-nitropropionic acid (3-NP) has been reported to induce neuroprotection against subsequent global ischemia. To investigate the underlying mechanisms, Mongolian gerbils were pretreated with either vehicle or 3-NP at the dose of 3 or 10 mg/kg, intraperitoneal, 3 days prior to a 5-min bilateral carotid artery occlusion followed by either 48 h or 7 days of blood recirculation. Neuronal damage was assessed by a cresyl violet/fuchsin acid staining. Induction of heat shock protein 72 (HSP72) and manganese superoxide dismutase (MnSOD) expression was evaluated by Western blotting. Astroglial and microglial activation was detected by immunohistochemistry (glial fibrillary acid protein) and by histochemistry (isolectin B4 staining), respectively. Present data show that the hippocampal neuronal damage induced by ischemia were of similar extent between the vehicle- and 3-NP-treated gerbils, whatever the dose tested, indicating that 3-NP did not induce tolerance to transient forebrain ischemia under our experimental conditions. The lack of difference in the post-ischemic level of HSP72 and MnSOD protein expression and in the intensity of astroglial and microglial activation represents further indirect indications of the absence of 3-NP preconditioning effect. In conclusion, although chemical preconditioning with 3-NP is a well-established phenomenon at least in vitro and in models of focal ischemia, the relevance of 3-NP as a preconditioning molecule towards global brain ischemia remains an open question.  相似文献   

11.
Adenylate cyclase (AC) has a specific sensitivity to Ca2+/calmodulin. AC-I, one of the mediator of learning and memory, plays an important role in signal transduction underlying learning and memory function. In the present study, we found ischemia-related changes of AC-I in the hippocampal CA1 region, but not in the CA2/3 region, after 5 min of transient forebrain ischemia in gerbils. In the sham-operated group, AC-I immunoreactive neurons were detected in pyramidal and non-pyramidal cells in the hippocampus proper. AC-I immunoreactivity was significantly increased at 3 h in the CA1 region after ischemic insult. Thereafter, AC-I immunoreactivity was gradually decreased. Four days after ischemic insult, AC-I-immunoreactive CA1 pyramidal cells in the stratum pyramidale were very few due to delayed neuronal death. The results of Western blot analysis showed that changes of AC-I protein contents were similar to immunohistochemical data after ischemic insult. Gpp(NH)p-dependent AC-I activity in hippocampal CA1 region was not changed in all groups, while Ca2+/calmodulin-dependent AC-I activity in hippocampal CA1 region was significantly decreased 24 h after ischemia–reperfusion. These results suggest that the decrease of AC-I activity may be associated with impairment of neurodevelopment and neuroplasticity including learning and memory although the AC-I immunoreactivity was maintained 24 h postischemic group compared to that of the sham-operated group.  相似文献   

12.
Ilexonin A is a compound isolated from the root of Ilex pubescens,a traditional Chinese medicine.Ilexonin A has been shown to play a neuroprotective role by regulating the activation of astrocytes and microglia in the peri-infarct area after ischemia.However,the effects of ilexonin A on astrocytes and microglia in the infarct-free region of the hippocampal CA1 region remain unclear.Focal cerebral ischemia models were established by 2-hour occlusion of the middle cerebral artery in rats.Ilexonin A(20,40 or 80 mg/kg)was administered immediately after ischemia/reperfusion.The astrocyte marker glial fibrillary acidic protein,microglia marker Iba-1,neural stem cell marker nestin and inflammation markers were detected by immunohistochemistry and western blot assay.Expression levels of tumor necrosis factor-αand interleukin 1βwere determined by enzyme linked immunosorbent assay in the hippocampal CA1 tissue.Astrocytes were activated immediately in progressively increasing numbers from 1,3,to 7 days post-ischemia/reperfusion.The number of activated astrocytes further increased in the hippocampal CA1 region after treatment with ilexonin A.Microglial cells remained quiescent after ischemia/reperfusion,but became activated after treatment with ilexonin A.Ilexonin A enhanced nestin expression and reduced the expression of tumor necrosis factor-αand interleukin 1βin the hippocampus post-ischemia/reperfusion.The results of the present study suggest that ilexonin A has a neuroprotective effect in the hippocampus after ischemia/reperfusion,probably through regulating astrocytes and microglia activation,promoting neuronal stem cell proliferation and reducing the levels of pro-inflammatory factors.This study was approved by the Animal Ethics Committee of the Fujian Medical University Union Hospital,China.  相似文献   

13.
Cilostazol is known to be a specific type III phosphodiesterase inhibitor, which promotes increased intracellular cAMP levels. We assessed the effect of cilostazol on production of angioneurins and chemokines and recruitment of new endothelial cells for vasculogenesis in a mouse model of transient forebrain ischemia. Pyramidal cell loss was prominently evident 3–28 days postischemia, which was markedly ameliorated by cilostazol treatment. Expression of angioneurins, including endothelial nitric oxide synthase, vascular endothelial growth factor, and brain‐derived neurotrophic factor, was up‐regulated by cilostazol treatment in the postischemic hippocampus. Cilostazol also increased Sca‐1/vascular endothelial growth factor receptor‐2 positive cells in the bone marrow and circulating peripheral blood and the number of stromal cell‐derived factor‐1α‐positive cells in the molecular layer of the hippocampus, which colocalized with CD31. CXCR4 chemokine receptors were up‐regulated by cilostazol in mouse bone marrow‐derived endothelial progenitor cells, suggesting that cilostazol may be important in targeting or homing in of bone marrow‐derived stem cells to areas of injured tissues. CD31‐positive cells were colocalized with almost all bromodeoxyuridine‐positive cells in the molecular layer, indicating stimulation of endothelial cell proliferation by cilostazol. These data suggest that cilostazol markedly enhances neovascularization in the hippocampus CA1 area in a mouse model of transient forebrain ischemia, providing a beneficial interface in which both bone marrow‐derived endothelial progenitor cells and angioneurins influence neurogenesis in injured tissue. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
《Neurological research》2013,35(9):957-962
Abstract

Background and purpose: Systemic administration of high-dose recombinant human erythropoietin (rhEPO) is known to attenuate ischemic injury. However, high-dose rhEPO might aggravate ischemic lesions by increasing blood viscosity because of its erythropoietic effects. Asialoerythropoietin (asialoEPO), an EPO derivative with an extremely short plasma half-life, has considerably lesser erythropoietic effect than that of naive EPO. We attempted to determine whether asialoEPO exerts the same neuroprotective effect as naive EPO in a gerbil transient forebrain ischemia model.

Methods: Transient occlusion of both the common carotid arteries was performed in 23 adult gerbils. The drugs (asialoEPO or rhEPO, 10 U/g bodyweight) or phosphate-buffered saline (PBS) were injected intraperitoneally at three times (3 hours before, immediately after, and 24 hours after the ischemic insult). Learning and retention tests were performed on days 6 and 7, respectively, and histological analyses were performed on day 7.

Results: Animals treated with asialoEPO and rhEPO showed significant neurological improvement compared to the PBS-treated animals. The number of viable neurons in the CA1 field of the rhEPO-treated (103.57 ± 27.90 cells/mm) and asialoEPO-treated (144.99 ± 34.87 cells/mm) animals was higher than that of the PBS-treated animals (19.53 ± 3.79 cells/mm). Terminal dinucleotidyltransferase-mediated UTP end labeling-positive cells were significantly lower in the rhEPO-treated (33.40 ± 8.13 cells/mm) and asialoEPO-treated (29.28 ± 14.91 cells/mm) animals than in the PBS-treated animals (76.67 ± 8.14 cells/mm). AsialoEPO treatment did not have any effect on erythropoiesis.

Conclusion: Multiple dosing of asialoEPO, like EPO, could protect the hippocampal CA1 neurons from ischemic damage without affecting erythropoiesis.  相似文献   

15.
16.
Kang TC  Hwang IK  Park SK  An SJ  Nam YS  Kim DH  Lee IS  Won MH 《Brain research》2003,977(2):284-289
In a previous study, we suggested that GABAergic neurons might be resistant to ischemic insult, because of the maintenance of the GABA shunt, which is one of the ATP synthetic pathways in neurons. In the present study, we identified Na(+)-K(+) ATPase immunoreactivity in the gerbil hippocampus in order to determine whether changes in Na(+)-K(+) ATPase immunoreactivity correlate with GABA shunt following ischemic insult. At 12 h after ischemia-reperfusion, Na(+)-K(+) ATPase immunoreactivity accumulated in some neurons in the CA1 region. However, the protein content of Na(+)-K(+) ATPase was not altered. Interestingly, the density of Na(+)-K(+) ATPase immunoreactivity in neurons and the protein content in the CA1 region was intensified in the 24 h post-ischemic group. As a result of double immunofluorescence study, Na(+)-K(+) ATPase immunoreactive neurons were identified with GABAergic neurons. Therefore, our findings suggest that the increase of Na(+)-K(+) ATPase in GABAergic neurons may be able to explain the resistance of these cells to ischemic insult, and support our previous hypothesis that GABA may play an important role as a metabolite in the survival of GABAergic neurons after ischemic insult.  相似文献   

17.
Transient ischemic attack(TIA) is an acute cerebrovascular incident,and is generally considered the best opportunity for early neuroprotective treatment against cerebral ischemia.This study retrospectively analyzed 80 patients with TIA(38 males and 42 females).Among 61 patients who received neuroprotective cerebrolysin treatment within 24 hours after TIA onset,13(21.31%) patients suffered subsequent strokes.Among 19 patients who received neuroprotective cerebrolysin treatment within 24-72 hours after TIA onset,seven(36.84%) developed cerebral infarction.There was a significant difference in the proportion of subsequent strokes between patients receiving cerebrolysin treatment within 24 hours and 24-72 hours after TIA onset(P = 0.438).These findings suggest that neuroprotective drugs administrated within 24 hours after TIA onset help reduce the incidence of subsequent strokes.The results demonstrate usefulness of the ABCD2 score at TIA patients in the determination of short-term and long-term cerebrovascular risk,including the frequency of subsequent ischemic cerebral infarctions up to 12 months.  相似文献   

18.
Delayed neuronal death in the hippocampal CA1 region after transient forebrain ischemia may share its underlying mechanism with neurodegeneration and other modes of neuronal death. The precise mechanism, however, remains unknown. In the postischemic hippocampus, conjugated ubiquitin accumulates and free ubiquitin is depleted, suggesting impaired proteasome function. The authors measured regional proteasome activity after transient forebrain ischemia in male Mongolian gerbils. At 30 minutes after ischemia, proteasome activity was 40% of normal in the frontal cortex and hippocampus. After 2 hours of reperfusion, it had returned to normal levels in the frontal cortex, CA3 region, and dentate gyrus, but remained low for up to 48 hours in the CA1 region. Thus, the 26S proteasome was globally impaired in the forebrain during transient ischemia and failed to recover only in the CA1 region after reperfusion. The authors also measured 20S and 26S proteasome activities directly after decapitation ischemia (at 5 and 20 minutes) by fractionating the extracts with glycerol gradient centrifugation. Without adenosine triphosphate (ATP), only 20S proteasome activity was detected in extracts from both the hippocampus and frontal cortex. When the extracts were incubated with ATP in an ATP-regenerating system, 26S proteasome activity recovered almost fully in the frontal cortex but only partially in the hippocampus. Thus, after transient forebrain ischemia, ATP-dependent reassociation of the 20S catalytic and PA700 regulatory subunits to form the active 26S proteasome is severely and specifically impaired in the hippocampus. The irreversible loss of proteasome function underlies the delayed neuronal death induced by transient forebrain ischemia in the hippocampal CA1 region.  相似文献   

19.
In this study, we tried to verify the neuroprotective effect of Chrysanthemum indicum Linne(CIL) extract, which has been used as a botanical drug in East Asia, against ischemic damage and to explore the underlying mechanism involving the anti-inflammatory approach. A gerbil was given CIL extract for 7 consecutive days followed by bilateral carotid artery occlusion to make a cerebral ischemia/reperfusion model. Then, we found that CIL extracts protected pyramidal neurons in the hippocampal CA1 region(CA1) from ischemic damage using neuronal nucleus immunohistochemistry and Fluoro-Jade B histofluorescence. Accordingly, interleukin-13 immunoreactivities in the CA1 pyramidal neurons of CIL-pretreated animals were maintained or increased after cerebral ischemia/reperfusion. These findings indicate that the pre-treatment of CIL can attenuate neuronal damage/death in the brain after cerebral ischemia/reperfusion via an anti-inflammatory approach.  相似文献   

20.
《Neurological research》2013,35(3):210-219
Objectives: Ischaemic preconditioning (IPC) can increase ischaemic tolerance of the central nervous system (CNS) to a subsequent longer or lethal period of transient ischaemia. In this study, we examined neuroprotective effects of time intervals after IPC against ischaemic insult in the hippocampus.

Methods: Animals were randomly assigned to six groups; sham-operated-group, ischaemia-operated-group, and three IPC (12?hours, 1- and 2-day intervals after IPC) plus ischaemia-groups (IPC-12?hour, 1 and 2-day interval-ischaemia-operated-groups). For neuroprotection, we carried out cresyl violet (CV) staining neuronal nuclei (NeuN) immunohistochemistry and Fluoro-Jade B histofluorescence staining. In addition, we examined gliosis using immunohistochemistry for GFAP (a marker for astrocytes) and Iba-1 (a marker for microglia).

Results: A significant loss of neurons was observed in the stratum pyramidale (SP) of the hippocampal CA1 region (CA1) in the ischaemia-operated-group and IPC-12?hours interval-ischaemia-operated-groups. In the IPC-1?day interval-ischaemia-operated-group, CA1 pyramidal neurons were well protected from ischaemic insult; the neuroprotective effect in the IPC-2?day interval-ischaemia-operated-group was less than that in the IPC-1?day interval-ischaemia-operated-group. On the other hand, we observed changes in glial cells (astrocytes and microglia) in the CA1 of all groups. The distribution pattern of glial cells only in the IPC-1?day interval-ischaemia-operated-group was similar to that in the sham-group.

Conclusion: In brief, our findings indicate that 1?day after IPC displays a mighty neuroprotection and shows an inhibition of glial activation in the CA1 induced by transient ischaemic insult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号