首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ciliary neurotrophic factor is the only known neurotrophic factor that can promote differentiation of hippocampal neural progenitor cells to glial cells and neurons in adult rats. This process is similar to spontaneous differentiation. Therefore, ciliary neurotrophic factor may be involved in spontaneous differentiation of neural stem cells. To verify this hypothesis, the present study isolated neural progenitor cells from adult male rats and cultured them in vitro. Results showed that when neural progenitor cells were cultured in the absence of mitogen fibroblast growth factor-2 or epidermal growth factor, they underwent spontaneous differentiation into neurons and glial cells. Western blot and immunocytochemical staining showed that exogenous ciliary neurotrophic factor strongly induced adult hippocampal progenitor cells to differentiate into neurons and glial cells. Moreover, passage 4 adult hippocampal progenitor cells expressed high levels of endogenous ciliary neurotrophic factor, and a neutralizing antibody against ciliary neurotrophic factor prevented the spontaneous neuronal and glial differentiation of adult hippocampal progenitor cells. These results suggest that the spontaneous differentiation of adult hippocampal progenitor cells is mediated partially by endogenous ciliary neurotrophic factor.  相似文献   

2.
BACKGROUND: It has been confirmed that brain-derived neurotrophic factor (BDNF) can promote the proliferation of neural stem cells (NSCs) and protect neuron-like cells in vitro. However, its effect on endogenous NSCs in vivo is still unclear. OBJECTIVE: To evaluate whether BDNF can induce the endogenous NSCs to proliferate and differentiate into the neurons in the mice model of cerebral infarction. DESIGN: A synchronal controlled observation. SETTINGS: Department of Neurology, Microbiology Division of the Department of Laboratory, Tianjin First Central Hospital; Howard Florey Institute, Medical College, the University of Melbourne. MATERIALS: Twenty-four pure breed C57BL/6J mice at the age of 10 weeks old (12 males and 12 females) were divided into saline control group and BDNF-treated group, 6 males and 6 females in each group. METHODS: The experiments were performed at the University of Melbourne from July 2004 to February 2005. ① The left middle cerebral artery (MCA) was ligated in both groups to establish models of cerebral infarction and the Matsushita measuring method was used to monitor the blood flow of the lesioned region supplied by MCA. 75% reduction of blood flow should be reached in the lesioned region. ② At 24 hours after infarction, mice in the BDNF-treated group were administrated with BDNF, which was slowly delivered using an ALZET osmium pump design. BDNF was dissolved in saline at the dosage of 500 mg/kg and injected into the pump, which could release the solution consistently in the following 28 days. The mice in the saline control group accepted the same volume of saline at 24 hours after infarction. ③ The Rotarod function test began at 1 week preoperatively, the time stayed on Rotarod was recorded. The mice were tested once a day till the end of the experiment. At 4 weeks post cerebral infarction, double labeling of Nestin and GFAP, BIII tubulin and CNPase immunostaining was performed to observe the differentiation directions of the re-expressed endogenous NSCs, and the percentages of the cells differentiated into astrocytes, neurons and oligodendrocytes were calculated. MAIN OUTCOME MEASURES: ① The differentiation directions of the re-expressed endogenous NSCs, and the percentage of the cells differentiated into astrocytes, neurons and oligodendrocytes. ② Comparison of motor function between the two groups. RESULTS: All the 24 pure C57BL/6J mice were involved in the analysis of results. ① Positively expressed endogenous NSCs appeared in the mice of both groups, and they mainly distributed around the focus of lesion, as well as the contralateral side. The expressed cells in the BDNF-treated group were obviously more than those in the saline control group. ②Activations of endogenous NSCs: At 4 weeks after infarction, re-expressions of endogenous NSCs appeared in both groups. The number of the re-expressed cells in the BDNF-treated group was about 4.2 times higher than that in the saline control group. The percentage of the cells differentiated into neurons in the BDNF-treated group was significantly higher than that in the saline control group (36%, 15%), the percentage of the cells differentiated into astrocytes was lower than that in the saline control group (54%, 77%), whereas the percentage of the cells differentiated into oligodendrocytes was similar to that in the saline control group (10%, 8%). ③ Results of motor functional test: Compared with before cerebral infarction, the mice in both groups manifested as obvious decrease in motor function at 1 week after infarction, whereas the recovery of motor function in the BDNF-treated group was significantly superior to that in the saline control group at 2, 3 and 4 weeks (P < 0.01). CONCLUSION: BDNF can promote the proliferation of endogenous NSCs in the brain of mice with cerebral infarction, it can decrease the differentiation rate of astrocytes, and increase the differentiation rate of neurons. BDNF has small influence on the differentiation of endogenous NSCs into oligodendrocytes, which was not benefit for the recovery of neural axon. Endogenous NSCs may improve the motor function of mice through the above pathways.  相似文献   

3.
BACKGROUND: It has been confirmed that brain-derived neurotrophic factor (BDNF) can promote the proliferation of neural stem cells (NSCs) and protect neuron-like cells in vitro. However, its effect on endogenous NSCs in vivo is still unclear. OBJECTIVE: To evaluate whether BDNF can induce the endogenous NSCs to proliferate and differentiate into the neurons in the mice model of cerebral infarction. DESIGN: A synchronal controlled observation. SETTINGS: Department of Neurology, Microbiology Division of the Department of Laboratory, Tianjin First Central Hospital; Howard Florey Institute, Medical College, the University of Melbourne. MATERIALS: Twenty-four pure breed C57BL/6J mice at the age of 10 weeks old (12 males and 12 females) were divided into saline control group and BDNF-treated group, 6 males and 6 females in each group. METHODS: The experiments were performed at the University of Melbourne from July 2004 to February 2005. ① The left middle cerebral artery (MCA) was ligated in both groups to establish models of cerebral infarction and the Matsushita measuring method was used to monitor the blood flow of the lesioned region supplied by MCA. 75% reduction of blood flow should be reached in the lesioned region. ② At 24 hours after infarction, mice in the BDNF-treated group were administrated with BDNF, which was slowly delivered using an ALZET osmium pump design. BDNF was dissolved in saline at the dosage of 500 mg/kg and injected into the pump, which could release the solution consistently in the following 28 days. The mice in the saline control group accepted the same volume of saline at 24 hours after infarction. ③ The Rotarod function test began at 1 week preoperatively, the time stayed on Rotarod was recorded. The mice were tested once a day till the end of the experiment. At 4 weeks post cerebral infarction, double labeling of Nestin and GFAP, BIH tubulin and CNPase immunostaining was performed to observe the differentiation directions of the re-expressed endogenous NSCs, and the percentages of the cells differentiated into astrocytes, neurons and oligodendrocytes were calculated. MAIN OUTCOME MEASURES: ① The differentiation directions of the re-expressed endogenous NSCs, and the percentage of the cells differentiated into astrocytes, neurons and oligodendrocytes.② Comparison of motor function between the two groups. RESULTS: All the 24 pure C57BL/6J mice were involved in the analysis of results. ①Positively expressed endogenous NSCs appeared in the mice of both groups, and they mainly distributed around the focus of lesion, as well as the contralateral side. The expressed cells in the BDNF-treated group were obviously more than those in the saline control group. ②Activations of endogenous NSCs: At 4 weeks after infarction, re-expressions of endogenous NSCs appeared in both groups. The number of the re-expressed cells in the BDNF-treated group was about 4.2 times higher than that in the saline control group. The percentage of the cells differentiated into neurons in the BDNF-treated group was significantly higher than that in the saline control group (36%, 15%), the percentage of the cells differentiated into astrocytes was lower than that in the saline control group (54%, 77%), whereas the percentage of the cells differentiated into oligodendrocytes was similar to that in the saline control group (10%, 8%). ③ Results of motor functional test: Compared with before cerebral infarction, the mice in both groups manifested as obvious decrease in motor function at 1 week after infarction, whereas the recovery of motor function in the BDNF-treated group was significantly superior to that in the saline control group at 2, 3 and 4 weeks (P 〈 0.01). CONCLUSION: BDNF can promote the proliferation of endogenous NSCs in the brain of mice with cerebral infarction, it can decrease the differentiation rate of astrocytes, and increase the differentiation rate of neurons. BDNF has small influence on the differentiation of endogenous NSCs into oligodendrocytes, which was not benefit for the recovery of neural axon. Endogenous NSCs may improve the motor function of mice through the above pathways.  相似文献   

4.
帕金森病大鼠海马区增殖神经干细胞分化情况的研究   总被引:2,自引:2,他引:0  
目的探讨帕金森病(PD)大鼠海马区增殖神经干细胞(NSCs)的分化情况。方法将6羟基多巴(6OHDA)注入大鼠纹状体内制作PD动物模型。连续注射5嗅脱氧尿核苷(Brdu)14d后处死。分别用Brdu和神经核抗原(Neun)以及Brdu和胶质纤维酸性蛋白(GFAP)免疫双标组织化学方法检测增殖的NSCs向神经元和神经胶质细胞的分化情况。结果PD模型成功后7d,在海马区Brdu/GFAP、Brdu/Neun阳性细胞开始出现,14d后双标的阳性细胞数逐渐增加,28d后达高峰。在这些双标的细胞中,Brdu/GFAP阳性的细胞数较多,而Brdu/Neun阳性的细胞数较少。结论6OHDA纹状体内注射制作的PD大鼠模型海马区增殖的NSCs大部分分化为神经胶质细胞,少部分分化为神经元。  相似文献   

5.
An experimental model of brachial plexus root avulsion injury of cervical dorsal C5-6 was established in adult and neonatal rats.Real-time PCR showed that the levels of brain-derived neurotrophic factor,nerve growth factor and neurotrophin-3 in adult rats increased rapidly 1 day after brachial plexus root avulsion injury,and then gradually decreased to normal levels by 21 days.In neonatal rats,levels of the three neurotrophic factors were decreased on the first day after injury,and then gradually increased from the seventh day and remained at high levels for an extended period of time.We observed that greater neural plasticity contributed to better functional recovery in neonatal rats after brachial plexus root avulsion injury compared with adult rats.Moreover, immunohistochemical staining showed that the number of bromodeoxyuridine/nestin-positive cells increased significantly in the spinal cords of the adult rats compared with neonatal rats after brachial plexus root avulsion injury.In addition,the number of bromodeoxyuridine/glial fibrillary acidic protein-positive cells in adult rats was significantly higher than in neonatal rats 14 and 35 days after brachial plexus injury.Bromodeoxyuridine/β-tubulin-positive cells were not found in either adult or neonatal rats.These results indicate that neural stem cells differentiate mainly into astrocytes after brachial plexus root avulsion injury.Furthermore,the degree of neural stem cell differentiation in neonatal rats was lower than in adult rats.  相似文献   

6.
The purpose of this study was to investigate the ability of astrocyte‐derived factors to influence neural progenitor cell differentiation. We previously demonstrated that rat adult hippocampal progenitor cells (AHPCs) immunoreactive for the neuronal marker class III β‐tubulin (TUJ1) were significantly increased in the presence of astrocyte‐derived soluble factors under noncontact coculture conditions. Using whole‐cell patch‐clamp analysis, we observed that the cocultured AHPCs displayed two prominent voltage‐gated conductances, tetraethyl ammonium (TEA)‐sensitive outward currents and fast transient inward currents. The outward and inward current densities of the cocultured AHPCs were approximately 2.5‐fold and 1.7‐fold greater, respectively, than those of cells cultured alone. These results suggest that astrocyte‐derived soluble factors induce neuronal commitment of AHPCs. To investigate further the activity of a candidate neurogenic factor on AHPC differentiation, we cultured AHPCs in the presence or absence of purified rat recombinant interleukin‐6 (IL‐6). We also confirmed that the astrocytes used in this study produced IL‐6 by ELISA and RT‐qPCR. When AHPCs were cultured with IL‐6 for 6–7 days, the TUJ1‐immunoreactive AHPCs and the average length of TUJ1‐immunoreactive neurites were significantly increased compared with the cells cultured without IL‐6. Moreover, IL‐6 increased the inward current density to an extent comparable to that of coculture with astrocytes, with no significant differences in theoutward current density, apparent resting potential, or cell capacitance. These results suggest that astrocyte‐derived IL‐6 may facilitate AHPC neuronal differentiation. Our findings have important implications for understanding injury‐induced neurogenesis and developing cell‐based therapeutic strategies using neural progenitors. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
背景:影响神经干细胞向神经元分化的因素很多,各种营养因子可以不同程度地刺激神经干细胞向神经元分化,如何使神经干细胞大量分化为神经元是研究的热点问题。 目的:观察联合应用碱性成纤维生长因子和神经生长因子对成年大鼠海马神经干细胞为神经元的影响。 方法:无菌条件下分离大鼠脑海马组织,传至第4代克隆球直径约为200 μm时,滴加DMEM/F12+2% B27+20 μg/L表皮生长因子+20 μg/L碱性成纤维细胞生长因子,进行单细胞克隆培养,传代的神经干细胞分成空白对照组、碱性成纤维细胞生长因子组、神经生长因子组、碱性成纤维细胞生长因子+神经生长因子组。观察传代后的克隆球进行神经干细胞免疫细胞化学染色鉴定,计数神经元特异性烯醇化酶阳性细胞率,检测神经干细胞向神经元的分化情况。 结果与结论:①单细胞克隆培养后,克隆球细胞表达巢蛋白,诱导分化后神经元特异性烯醇化酶、胶质纤维酸性蛋白均呈阳性表达。②与空白对照组神经干细胞分化为神经元的比例比较,碱性成纤维细胞生长因子组、神经生长因子组、碱性成纤维细胞生长因子组+神经生长因子组均明显提高(P < 0.05),且碱性成纤维细胞生长因子组+神经生长因子组神经元的比例最高(P < 0.05)。提示,碱性成纤维细胞生长因子可以提高神经生长因子诱和神经生长因子均可促进神经干细胞向神经元分化,且二者联合应用效果更佳。  相似文献   

8.
Evidence from epidemiological studies has proved that periconceptional use of folic acid (FA) can significantly reduce the risk of neural tube defects (NTDs). However, it is hard to explore when and how FA plays roles in neurogenesis and brain development in vivo, especially in human or other nonhuman primate systems. Primate embryonic stem cell (ESC) lines are ideal models for studying cell differentiation and organogenesis in vitro. In the present study, the roles of FA in neural differentiation were assessed in a rhesus monkey ESC system in vitro. The results showed no significant difference in the expression of neural precursor markers, such as nestin, Sox-1, or Pax-6, among neural progenitors obtained from different FA concentrations or with the FA antagonist methotrexate (MTX). However, FA depletion decreased cell proliferation and affected embryoid body (EB) and neural rosette formation, as well as neuronal but not neuroglia differentiation. Our data imply that the ESC system is a suitable model for further exploring the mechanism of how FA works in prevention of NTDs in primates.  相似文献   

9.
目的探讨脑源性神经营养因子(BDNF)诱导大鼠骨髓基质细胞(BMSCs)成为神经干细胞及其分化作用。方法取成年大鼠BMSCs,分别以BDNF和BDNF+RA(维甲酸)作为诱导物诱导,于诱导3d、7d后行巢蛋白(Nestin)、神经元特异烯醇化酶(NSE)、胶质纤维酸性蛋白免疫细胞化学染色。结果诱导3天后BDNF和BDNF+RA诱导组均有大量Nestin染色阳性细胞,BDNF+RA组阳性率高于BDNF组(P<0.01)。NSE、GFAP免疫阳性细胞在诱导3d后也有少量表达。诱导7天后BDNF和BDNF+RA诱导组Nestin阳性细胞明显减少,与诱导3天后比较差异有显著性(P<0.01),而NSE、GFAP阳性细胞数增多,与诱导3天后相比差异有显著性(P<0.01),且BDNF+RA组阳性率高于BDNF组(P<0.01)。结论联合应用BDNF与RA可提高BMSCs神经转化,并促进其向神经元及星形胶质细胞细胞分化。  相似文献   

10.
Several studies have demonstrated that selective serotonin reuptake inhibitor antidepressants can promote neuronal cell proliferation and enhance neuroplasticity both in vitro and in vivo. It is hypothesized that citalopram, a selective serotonin reuptake inhibitor, can promote the neuronal differentiation of adult bone marrow mesenchymal stem cells. Citalopram strongly enhanced neuronal characteristics of the cells derived from bone marrow mesenchymal stem cells. The rate of cell death was decreased in citalopram-treated bone marrow mesenchymal stem cells than in control cells in neurobasal medium. In addition, the cumulative population doubling level of the citalopram-treated cells was signiifcantly increased compared to that of control cells. Also BrdU incorporation was elevated in citalopram-treated cells. These ifndings suggest that citalopram can improve the neuronal-like cell differentiation of bone marrow mesenchymal stem cells by increasing cell proliferation and survival while maintaining their neuronal characteristics.  相似文献   

11.
骨髓基质细胞对神经干细胞分化为神经元的影响   总被引:14,自引:0,他引:14  
采用细胞共培养方式和免疫化学染色方法 ,研究骨髓基质细胞对神经干细胞分化为神经元、星形胶质细胞和寡突胶质细胞的影响。实验发现 ,体外培养的中脑神经干细胞在与成年大鼠骨髓基质细胞共培养 7d后 ,在神经干细胞后代中神经元比例可达 38.6 %± 10 .8% ,明显高于自然分化组 2 0 % ,提示骨髓基质细胞提供的微环境可明显提高神经干细胞后代中神经元的比例。  相似文献   

12.
Hair follicle-derived neural crest stem cells can be induced to differentiate into Schwann cells in vivo and in vitro. However, the underlying regulatory mechanism during cell differentiation remains poorly understood. This study isolated neural crest stem cells from human hair follicles and induced them to differentiate into Schwann cells. Quantitative RT-PCR showed that microRNA(miR)-21 expression was gradually increased during the differentiation of neural crest stem cells into Schwann cells. After transfection with the miR-21 agonist(agomir-21), the differentiation capacity of neural crest stem cells was enhanced. By contrast, after transfection with the miR-21 antagonist(antagomir-21), the differentiation capacity was attenuated. Further study results showed that SOX-2 was an effective target of miR-21. Without compromising SOX2 mRNA expression, miR-21 can down-regulate SOX protein expression by binding to the 3′-UTR of miR-21 mRNA. Knocking out the SOX2 gene from the neural crest stem cells significantly reversed the antagomir-21 inhibition of neural crest stem cells differentiating into Schwann cells. The results suggest that miR-21 expression was increased during the differentiation of neural crest stem cells into Schwann cells and miR-21 promoted the differentiation through down-regulating SOX protein expression by binding to the 3′-UTR of SOX2 mRNA.  相似文献   

13.
目的探索大鼠嗅鞘细胞对神经干细胞(NSC)分化的影响,以及分化后神经元电生理特性。方法取新生鼠大脑皮质,原代培养大鼠NSC。NSC分为实验组和对照组,实验组将无血清培养的NSC中加入嗅鞘细胞条件培养液,对照组单纯无血清培养NSC。光镜下观察细胞分化情况,免疫组化法分别检测巢蛋白(nestin)、神经生长因子受体(NGFRp75)、神经丝蛋白(NF200)和胶质纤维酸性蛋白(GFAP)的表达,膜片钳检测神经元电生理特性。结果实验组嗅鞘细胞主要诱导NSC分化为神经元,少量分化为胶质细胞。对照组NSC逐渐萎缩,最终死亡。分化后的神经元记录到快速激活、快速失活能被河豚毒素特异阻断的钠电流,以及慢激活、慢失活能被四乙铵特异阻断的延迟整流性钾电流。结论嗅鞘细胞能诱导NSC分化成神经元,分化后的神经元具有活跃的电生理特性。  相似文献   

14.
The purpose of this study was to assess fetal bovine acellular dermal matrix as a scaffold for supporting the differentiation of bone marrow mesenchymal stem cells into neural cells following induction with neural differentiation medium.We performed long-term,continuous observation of cell morphology,growth,differentiation,and neuronal development using several microscopy techniques in conjunction with immunohistochemistry.We examined specific neuronal proteins and Nissl bodies involved in the differentiation process in order to determine the neuronal differentiation of bone marrow mesenchymal stem cells.The results show that bone marrow mesenchymal stem cells that differentiate on fetal bovine acellular dermal matrix display neuronal morphology with unipolar and bi/multipolar neurite elongations that express neuronal-specific proteins,including βIII tubulin.The bone marrow mesenchymal stem cells grown on fetal bovine acellular dermal matrix and induced for long periods of time with neural differentiation medium differentiated into a multilayered neural network-like structure with long nerve fibers that was composed of several parallel microfibers and neuronal cells,forming a complete neural circuit with dendrite-dendrite to axon-dendrite to dendrite-axon synapses.In addition,growth cones with filopodia were observed using scanning electron microscopy.Paraffin sectioning showed differentiated bone marrow mesenchymal stem cells with the typical features of neuronal phenotype,such as a large,round nucleus and a cytoplasm full of Nissl bodies.The data suggest that the biological scaffold fetal bovine acellular dermal matrix is capable of supporting human bone marrow mesenchymal stem cell differentiation into functional neurons and the subsequent formation of tissue engineered nerve.  相似文献   

15.
16.
17.
In many recent studies,the inhibitory transmitter gamma-aminobutyric acid has been shown to modulate the proliferation,differentiation and survival of neural stem cells.Most general anesthetics are partial or allosteric gamma-aminobutyric acid A receptor agonists,suggesting that general anesthetics could alter the behavior of neural stem cells.The neuroprotective efficacy of general anesthetics has been recognized for decades,but their effects on the proliferation of neural stem cells have received little attention.This study investigated the potential effect of midazolam,an extensively used general anesthetic and allosteric gamma-aminobutyric acid A receptor agonist,on the proliferation of neural stem cells in vitro and preliminarily explored the underlying mechanism.The proliferation of neural stem cells was tested using both Cell Counting Kit 8 and bromodeoxyuridine incorporation experiments.Cell distribution analysis was performed to describe changes in the cell cycle distribution in response to midazolam.Calcium imaging was employed to explore the molecular signaling pathways activated by midazolam.Midazolam(30-90 μM) decreased the proliferation of neural stem cells in vitro.Pretreatment with the gamma-aminobutyric acid A receptor antagonist bicuculline or Na-K-2Cl cotransport inhibitor furosemide partially rescued this inhibition.In addition,midazolam triggered a calcium influx into neural stem cells.The suppressive effect of midazolam on the proliferation of neural stem cells can be partly attributed to the activation of gamma-aminobutyric acid A receptor.The calcium influx triggered by midazolam may be a trigger factor leading to further downstream events.  相似文献   

18.
19.
BACKGROUND: A combination of basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF), human heregulin-beta-1, beta-mercaptoethanol retinoic acid and forskolin has been reported to induce the differentiation of rat bone marrow stromal cells into myelinating Schwann-like cells. OBJECTIVE: To investigate the inducing effects of a combination of bFGF, PDGF, human heregulin-beta-1, beta-mercaptoethanol retinoic acid and forskolin on neural stem cell differentiation by one- and two-step methods. DESIGN, TIME AND SETTING: A cytobiology experiment was performed at the Department of Histology and Embryology, Medical School of Nantong University, and Jiangsu Province Key Laboratory of Neuroregeneration, China, between August 2005 and January 2007. MATERIALS: A total of 30 healthy Sprague Dawley rat embryos at gestational days 14-16 were selected, bFGF, PDGF, human heregulin-beta-t, beta-mercaptoethanol, retinoic acid, and forskolin were purchased from Sigma, USA. METHODS: Passage 3 rat neural stem cells were cultured by a one-step method in serum-free medium plus 10 ng/m/bFGF, 5 ng/mL PDGF, 200 ng/mL heregulin-beta-1,35 ng/mL all-trans retinoic acid, and 5 pmol/L forskolin or by a two-step method in serum-free medium plus 35 ng/m/ all-trans retinoic acid for 72 hours, followed by serum-free medium plus 10 ng/mL bFGF, 5 ng/mL PDGF, 200 ng/mL heregulin-beta-t and 5 μmol/L forskolin. The control condition consisted of 10% fetal bovine serum alone or 20 ng/mL bFGF alone. MAIN OUTCOME MEASURES: Differentiated cells were identified by immunocytochemical staining for microtubule associate protein-2 (MAP2) and St 00 protein. Geometric parameters and sodium ion currents of the differentiated cells were measured by image analysis and whole-cell patch-clamp techniques, respectively. RESULTS: Compared with the two-step culture method, neuronal-like cells exhibited longer processes and a similar appearance to mature neurons using the one-step method. The percentage of MAP2 positive cells induced by the one-step method was significantly greater than the serum-alone group (P 〈 0.05). Furthermore, the MAP2 positive cells induced by the one-step method had greater surface areas, cell body perimeters, and longer process than cells induced by serum-alone and bFGF-alone (P 〈 0.05). There were no significant differences in these parameters between the one-step and two-step methods (P 〉 0.05). In addition, 80% of the induced neuronal-like cells from the one-step method and 20% from the two-step method displayed inwardly-evoked currents. CONCLUSION: The combination of bFGF, PDGF, human heregulin-beta-t, beta-mercaptoethanol retinoic acid and forskolin successfully induced neuronal differentiation from neural stem cells, with the one-step induction being more effective than the two-step method.  相似文献   

20.
In this study,cells from the cerebral cortex of fetal rats at pregnant 16 days were harvested and cultured with 20 μg/L neurotrophin-3.After 7 days of culture,immunocytochemical staining showed that,22.4% of cells were positive for nestin,10.5% were positive for β-III tubulin(neuronal marker),and 60.6% were positive for glial fibrillary acidic protein,but no cells were positive for O4(oligodendrocytic marker).At 14 days,there were 5.6% nestin-,9.6% β-III tubulin-,81.1% glial fibrillary acidic protein-,and 2.2% O4-positive cells.In cells not treated with neurotrophin-3,some were nestin-positive,while the majority showed positive staining for glial fibrillary acidic protein.Our experimental findings indicate that neurotrophin-3 is a crucial factor for inducing neural stem cells differentiation into neurons and oligodendrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号