首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of the protein stabilizers on the stability and aerosol performance of spray dried recombinant human growth hormone (SD rhGH) was investigated. rhGH solution was spray dried alone, with polysorbate 20 (at three concentrations of 0.05%, 0.01%, and 0.005%), Zn(2+) (by Zn(2+):rhGH molar ratio of 2:1 and 4:1), and/or lactose (by lactose:rhGH weight ratio of 2:1). Size exclusion chromatography (SEC) analysis of spray dried powders demonstrated that of all the potential protein stabilizers, the combination of polysorbate 20 (0.05%), Zn(2+) (Zn(2+):rhGH molar ratio of 2:1) and lactose (lactose:rhGH weight ratio of 2:1) was the most effective at protecting rhGH against aggregation during spray drying. The results of circular dichroism (CD) analysis revealed that using of polysorbate 20 (in all concentrations) and Zn(2+) (by Zn(2+):rhGH molar ratio of 2:1) together in the formulations would preserve rhGH conformational stability during the process. The particle size distribution data obtained by laser diffraction method showed all SD rhGH formulations had volume median diameter and mean diameter below 5mum. The characterization of the aerosol performance of the spray dried powders by Andersen cascade impactor (ACI) showed that by increasing the concentration of polysorbate 20 in the formulations the aerodynamic efficiency of the resultant particles was reduced. In conclusion, the optimum amounts of polysorbate 20, Zn(2+) and lactose satisfied both physical stability during spray drying process (2.37% aggregation) and good aerosol performance (fine particle fraction; FPF=38.52%).  相似文献   

2.
Mannitol particles, produced by spray drying (SD), have been used commercially (Aridol) in bronchial provocation test. In this study, we propose an alternative method to produce inhalable mannitol powders. The elongated mannitol particles (number median length 4.0microm, and axial ratio of 3.5) were prepared using a confined liquid impinging jets (CLIJs) followed by jet milling (JM). Spray dried and jet milled raw mannitol particles were compared in an attempt to assess the performance of the particles produced by the new method. Aerosol performance of the three different powders (CLIJ, SD, and JM) was relatively poor (fine particle fraction or FPF(loaded) below 15%) when dispersed by the Rotahaler. Dispersion through the Aeroliser led to better aerosol performance of the CLIJ mannitol (FPF(loaded) 20.3%), which is worse than the JM (FPF(loaded) 30.3%) and SD mannitol particles (FPF(loaded) 45.7%) at 60 L/min, but comparable (FPF(loaded) 40.0%) with those of the JM (FPF(loaded) 40.7%) and SD (FPF(loaded) 45.5%) powders at 100L/min. Hence, the optimum use of these elongated mannitol particles can be achieved at increased air flow with a more efficient inhaler. In addition to crystallinity, morphology, and particle size distribution, the surface energies of these powders were measured to explain the differences in aerosol performance. A major advantage of using the CLIJ method is that it can be scaled up with a good yield as the precipitate can be largely collected and recovered on a filter, compared with spray drying which has a low collection efficiency for fine particles below 2microm.  相似文献   

3.
4.
Monoclonal antibody (mAb) based therapies may provide a valuable new treatment modality for acute and chronic lung diseases, including asthma, respiratory infections, and lung cancer. Currently mAbs are delivered via systemic administration routes, but direct delivery to the lungs via the inhaled route could provide higher concentrations at the site of disease and reduced off-target effects. Though lyophilized mAbs may be reconstituted and delivered to the lungs using nebulizers, dry powder inhalers provide a more patient-friendly delivery method based upon their fast administration time and portability. However, particle engineering processes required to prepare respirable dried powders for DPI delivery involve multiple potential stressors for mAbs, which have not been fully explored. In this study, a systematic examination of various aspects of the particle engineering process (atomization, freezing, drying, and storage) was performed to further understand their impact on mAb structure and aggregation. Using anti-streptavidin IgG1 as a model mAb, atomization settings were optimized using a design of experiments approach to elucidate the relationship between feed flow rate, formulation solid content, and atomization airflow rate and protein structural changes and aggregation. The optimized atomization conditions were then applied to spray drying and spray freezing drying particle engineering processes to determine the effects of freezing and drying on IgG1 stability and aerosol performance of the powders. IgG1 was found to be particularly susceptible to degradation induced by the expansive air-ice interface generated by spray freeze drying and this process also produced powders that exhibited decreased storage stability. This study further delineates the design space for manufacturing of respirable biologic therapies and is intended to serve as a roadmap for future development work.  相似文献   

5.
The purpose of this study was to produce salbutamol sulfate (SS) as a model anti-asthmatic drug using high-gravity controlled precipitation (HGCP) through antisolvent crystallisation. An aqueous solution of SS was passed through a HGCP reactor with isopropanol as antisolvent to induce precipitation. Spray drying was employed to obtain dry powders. Scanning electron microscopy, X-ray powder diffraction (XRD), density measurement, thermal gravimetric analysis, and dynamic vapour sorption were carried out to characterise the powder physical properties. The aerosol performance of the powders was measured using an Aeroliser connected to a multiple stage liquid impinger operating at 60 L/min. The HGCP SS particles were elongated with 0.1 microm in width but varying length of several mum, which formed spherical agglomerates when spray dried. The particles showed the same XRD pattern and true density (1.3g/cm3) as the raw material, indicating that they belonged to the same crystalline form. However, the spray dried agglomerates had a much lower tapped density (0.1g/cm3) than the raw material (0.6g/cm3). Compared with the powder obtained by spray drying directly from an aqueous solution, the SS powders obtained from HGCP were much less hygroscopic (0.6% versus 10% water uptake at 90% RH). The in vitro aerosol performance showed a fine particle fraction FPFloaded and FPFemitted up to 54.5+/-4.9% and 71.3+/-10.0%, respectively. In conclusion, SS powder with suitable physical and aerosol properties can be obtained through antisolvent HGCP followed by spray drying.  相似文献   

6.
Cromolyn sodium (CS) was spray dried under constant operation conditions from different water to ethanol feed ratios (50:50-0:100). The spray dried CS samples were characterized for their physicochemical properties including crystallinity, particle size distribution, morphology, density, and water/ethanol content. To determine quantitatively the crystallinity of the powders, an X-ray diffraction (XRD) method was developed using samples with different crystallinity prepared by physical mixing of 100% amorphous and 100% crystalline CS materials. The aerodynamic behavior of the CS samples was determined using an Andersen Cascade Impactor (ACI) with a Spinhaler at an air flow of 60 L/min. Binary mixtures of each spray dried CS powder and Pharmatose 325, a commercial alpha-lactose monohydrate available for DPI formulations, were prepared and in vitro aerosol deposition of the drug from the mixtures was analyzed using ACI to evaluate the effect of carrier on deposition profiles of the spray dried samples. CS spray dried from absolute ethanol exhibited XRD pattern characteristic for crystalline materials and different from patterns of the other samples. The crystallinity of spray dried CS obtained in the presence of water varied from 0% to 28.37%, depending on the ratio of water to ethanol in the feed suspensions. All samples presented different particle size, water/ethanol content, and bulk density values. CS particles spray dried from absolute ethanol presented uniform elongated shape whereas the other samples consisted mainly of particles with irregular shape. Overall, fine particle fraction increased significantly (p < 0.01) with decreasing d50% and water and ethanol content of spray dried CS samples. Significant difference (p < 0.01) in deposition profiles of the drug were observed between corresponding carrier free and carrier blended formulations. The difference in deposition profiles of CS aerosolized from various spray dried samples were described according to the particle size, shape, and water/ethanol contents of the powders. The results of this study indicate that enhanced aerosol performance of CS can be obtained by spray drying of the drug from suspensions containing > or = 87.5% v/v ethanol.  相似文献   

7.
Purpose. To study the effect of trehalose, lactose, and mannitol on the biochemical stability and aerosol performance of spray-dried powders of an anti-IgE humanized monoclonal antibody. Methods. Protein aggregation of spray-dried powders stored at various temperature and relative humidity conditions was assayed by size exclusion chromatography and sodium dodecyl sulfate polyacrylamide gel electrophoresis. Protein glycation was determined by isoelectric focusing and affinity chromatography. Crystallization was examined by X-ray powder diffraction. Aerosol performance was assessed as the fine particle fraction (FPF) of the powders blended with coarse carrier lactose, and was determined using a multiple stage liquid impinger. Results. Soluble protein aggregation consisting of non-covalent and disulfide-linked covalent dimers and trimers occurred during storage. Aggregate was minimized by formulation with trehalose at or above a molar ratio in the range of 300:1 to 500:1 (excipient:protein). However, the powders were excessively cohesive and unsuitable for aerosol administration. Lactose had a similar stabilizing effect, and the powders exhibited acceptable aerosol performance, but protein glycation was observed during storage. The addition of mannitol also reduced aggregation, while maintaining the FPF, but only up to a molar ratio of 200:1. Further increased mannitol resulted in crystallization, which had a detrimental effect on protein stability and aerosol performance. Conclusions. Protein stability was improved by formulation with carbohydrate. However, a balance must be achieved between the addition of enough stabilizer to improve protein biochemical stability without compromising blended powder aerosol performance.  相似文献   

8.

Purpose

The potential of aerosol phage therapy for treating lung infections has been demonstrated in animal models and clinical studies. This work compared the performance of two dry powder formation techniques, spray freeze drying (SFD) and spray drying (SD), in producing inhalable phage powders.

Method

A Pseudomonas podoviridae phage, PEV2, was incorporated into multi-component formulation systems consisting of trehalose, mannitol and L-leucine (F1?=?60:20:20 and F2?=?40:40:20). The phage titer loss after the SFD and SD processes and in vitro aerosol performance of the produced powders were assessed.

Results

A significant titer loss (~2 log) was noted for droplet generation using an ultrasonic nozzle employed in the SFD method, but the conventional two-fluid nozzle used in the SD method was less destructive for the phage (~0.75 log loss). The phage were more vulnerable during the evaporative drying process (~0.75 log further loss) compared with the freeze drying step, which caused negligible phage loss. In vitro aerosol performance showed that the SFD powders (~80% phage recovery) provided better phage protection than the SD powders (~20% phage recovery) during the aerosolization process. Despite this, higher total lung doses were obtained for the SD formulations (SD-F1?=?13.1?±?1.7?×?104 pfu and SD-F2?=?11.0?±?1.4?×?104 pfu) than from their counterpart SFD formulations (SFD-F1?=?8.3?±?1.8?×?104 pfu and SFD-F2?=?2.1?±?0.3?×?104 pfu).

Conclusion

Overall, the SD method caused less phage reduction during the powder formation process and the resulted powders achieved better aerosol performance for PEV2.
  相似文献   

9.
Protein Inhalation Powders: Spray Drying vs Spray Freeze Drying   总被引:3,自引:0,他引:3  
Purpose. To develop a new technique, spray freeze drying, for preparing protein aerosol powders. Also, to compare the spray freeze-dried powders with spray-dried powders in terms of physical properties and aerosol performance. Methods. Protein powders were characterized using particle size analysis, thermogravimetric analysis, scanning electron microscopy, X-ray powder diffractometry, and specific surface area measurement. Aerosol performance of the powders was evaluated after blending with lactose carriers using a multi-stage liquid impinger or an Anderson cascade impactor. Two recombinant therapeutic proteins currently used for treating respiratory tract-related diseases, deoxyribonuclase (rhDNase) and anti-IgE monoclonal antibody (anti-IgE MAb), were employed and formulated with different carbohydrate excipients. Results. Through the same atomization but the different drying process, spray drying (SD) produced small (3 m), dense particles, but SFD resulted in large (8–10 m), porous particles. The fine particle fraction (FPF) of the spray freeze-dried powder was significantly better than that of the spray-dried powder, attributed to better aerodynamic properties. Powders collected from different stages of the cascade impactor were characterized, which confirmed the concept of aerodynamic particle size. Protein formulation played a major role in affecting the powder's aerosol performance, especially for the carbohydrate excipient of a high crystallization tendency. Conclusions. Spray freeze drying, as opposed to spray drying, produced protein particles with light and porous characteristics, which offered powders with superior aerosol performance due to favorable aerodynamic properties.  相似文献   

10.
Purpose. To understand the effect of spray drying and powder processing environments on the residual moisture content and aerosol performance of inhalation protein powders. Also, the long-term effect of storage conditions on the powder's physical and biochemical stability was presented. Methods. Excipient-free as well as mannitol-formulated powders of a humanized monoclonal antibody (anti-IgE) and recombinant human deoxyribonuclease (rhDNase) were prepared using a Buchi 190 model spray dryer. Residual moisture content and moisture uptake behavior of the powder were measured using thermal gravimetric analysis and gravimetric moisture sorption isotherm, respectively. Protein aggregation, the primary degradation product observed upon storage, was determined by size-exclusion HPLC. Aerosol performance of the dry powders was evaluated after blending with lactose carriers using a multi-stage liquid impinger (MSLI). Results. Spray-dried powders with a moisture level (~ 3%) equivalent to the freeze-dried materials could only be achieved using high-temperature spray-drying conditions, which were not favorable to large-male manufacturing, or subsequent vacuum drying. These dry powders would equilibrate with the subsequent processing and storage environments regardless of the manufacturing condition. As long as the relative humidity of air during processing and storage was lower than 50%, powders maintained their aerosol performance (fine particle fraction). However, powders stored under drier conditions exhibited better long-term protein biochemical stability. Conclusions. Manufacturing, powder processing, and storage environments affected powder's residual moisture level in a reversible fashion. Therefore, the storage condition determined powder's overall stability, but residual moisture had a greater impact on protein chemical stability than on powder physical stability.  相似文献   

11.

Purpose

While most examples of nanoparticle therapeutics have involved parenteral or IV administration, pulmonary delivery is an attractive alternative, especially to target and treat local infections and diseases of the lungs. We describe a successful dry powder formulation which is capable of delivering nanoparticles to the lungs with good aerosolization properties, high loadings of nanoparticles, and limited irreversible aggregation.

Methods

Aerosolizable mannitol carrier particles that encapsulate nanoparticles with dense PEG coatings were prepared by a combination of ultrasonic atomization and spray freeze drying. This process was contrasted to particle formation by conventional spray drying.

Results

Spray freeze drying a solution of nanoparticles and mannitol (2 wt% solids) resulted in particles with an average diameter of 21?±?1.7 μm, regardless of the fraction of nanoparticles loaded (0–50% of total solids). Spray freeze dried (SFD) powders with a 50% nanoparticle loading had a fine particle fraction (FPF) of 60%. After formulation in a mannitol matrix, nanoparticles redispersed in water to < 1 μm with hand agitation and to < 250 nm with the aid of sonication. Powder production by spray drying was less successful, with low powder yields and extensive, irreversible aggregation of nanoparticles evident upon rehydration.

Conclusions

This study reveals the unique advantages of processing by ultrasonic spray freeze drying to produce aerosol dry powders with controlled properties for the delivery of therapeutic nanoparticles to the lungs.  相似文献   

12.
The pulmonary route has recently attracted attention as a noninvasive administration route for peptide and protein drugs, and an insulin powder for inhalation was approved by authorities in Europe and the USA. The present study examined usefulness of insulin and gene powders for systemic and local inhalation therapy. We prepared several dry insulin powders by spray drying to examine the effect of additives on insulin absorption. Citric acid appears to be a safe and potent absorption enhancer for insulin in dry powder. However, in the powder with citric acid (MIC0.2 SD) insulin was unstable compared with the other powders examined. To improve insulin stability, a combination of insulin powder and citric acid powder was prepared (MIC Mix). MIC Mix showed hypoglycemic activity comparable to MIC0.2 SD while the insulin stability was much better than that of MIC SD. Next, dry insulin powders with mannitol were prepared with supercritical carbon dioxide (SCF); the powder thus prepared reduced blood glucose level rapidly and was more effective than that prepared by spray drying. Chitosan-pDNA complex powders as a pulmonary gene delivery system were also prepared with SCF and their in vivo activity was evaluated. The addition of chitosan suppressed the degradation of pCMV-Luc during preparation and increased the storage stability. The luciferase activity in mouse lung was evaluated after pulmonary administration of the powders. The chitosan-pDNA powder with an N/P ratio=5 increased the luciferase activity to 27 times that of the pCMV-Luc solution. These results suggest that gene powder with chitosan is a useful pulmonary gene delivery system.  相似文献   

13.
High drug load inhalable particles were prepared by co-spray drying a hydrophobic, crystalline, small molecule drug with various lipid or phospholipid excipients at a 9:1 molar ratio to understand the primary drivers of aerosol performance. The effect of excipient structure on solid-state, surface characteristics, and aerodynamic performance of the co-spray dried particles was studied while keeping the spray drying parameters constant. Spray drying of the drug with lipids produced crystalline drug particles, whereas phospholipids produced partially amorphous drug particles. All of the co-spray dried particles were nearly spherical with a smooth surface, except for the spray dried drug particles without excipients – which showed the presence of rough crystals on the surface. All co-spray dried particles showed surface enrichment of the excipient. The surface enrichment of the phospholipids was higher compared to the lipids. Co-spray dried particles that showed higher surface enrichment of excipients showed improved aerosol performance. In comparing all the excipients studied, distearyolphosphatidylcholine (DSPC) showed maximum enrichment on the particle surface and thereby significantly improved aerosol performance. This study demonstrated that the addition of small amounts of lipid excipients during spray drying can change surface morphology, composition, and cohesion, impacting aerosol performance of drugs.  相似文献   

14.
Conventional slow‐acting insulin preparations for subcutaneous injection, e.g., suspensions of the complex with protamine and/or zinc, were reformulated as dry powders for inhalation and the insoluble aerosol tested for providing sustained insulin plasma levels. Large porous particles made of lactose, albumin, and dipalmitoylphosphatidylcholine, and incorporating insulin, protamine, and/or zinc chloride were prepared using spray‐drying. Integrity of insulin after spray‐drying and insulin insolubilization in spray‐dried particles was verified in vitro. The pharmacokinetic profile of the formulation delivered by inhalation and subcutaneous injection was assessed in vivo in the rat. The formulation process of insulin as dry powders did not alter insulin integrity and did not impede, in most cases, insulin insolubilization by protamine and/or zinc. Large porous insulin particles presented 7 μm mass mean geometric particle diameters, 0.1 g/cm3 bulk powder tap densities and theoretical aerodynamic diameters suitable for deep lung deposition (in the range of 2.2–2.5 μm). The dry powders exhibited 40% respirable fractions in the Andersen cascade impactor and 58–75% in the Aero‐Breather™. Insoluble inhaled insulin provided sustained insulin plasma levels for half a day, similar to injected insulin, and exhibited a bioavailability of 80.5% relative to subcutaneous injection of the same formulation. Drug Dev. Res. 48:178–185, 1999. ©1999 Wiley‐Liss, Inc.  相似文献   

15.
Reactive high gravity controlled precipitation (HGCP) was carried out to produce salbutamol sulphate (SS) particles suitable for inhalation. Aqueous solutions of free salbutamol base and sulphuric acid were mixed intensely inside a HGCP reactor to form the particles. Spray drying was employed to obtain dry powders. Physical properties of the powders were characterised by scanning electron microscopy, X-ray powder diffraction, thermal gravimetric analysis and dynamic water vapour sorption. Aerosol performance of the powders was measured using an Aeroliser connected to a multiple stage liquid impinger operating at 60 L/min. The results showed that the reactive HGCP powder, comprising primary SS sub-micron particles (approximately 100 nm in width and approximately 500 nm in length) packed into loose spherical agglomerates of about 2 microm in diameter, is of the same polymorphic form as the raw crystalline material, has a high specific surface area (24.7 +/- 0.1 m(2)/g), but a low moisture content (0.2%) and low moisture uptake (1.4% at RH 90%). The aerosol performance of the reactive HGCP powder is excellent, showing FPF(loaded) and FPF(emitted) of 76 +/- 5% and 83 +/- 7%, respectively, with low capsule and device retention. In conclusion, reactive HGCP followed by spray drying is suitable to produce stable crystalline powders of salbutamol with enhanced inhalation properties.  相似文献   

16.
The objective of this work was to investigate the impact of drying method and formulation on the physical stability (aggregation) and selected important physical properties of dried methionyl human growth hormone (Met-hGH) formulations. Solutions of Met-hGH with different stabilizers were dried by different methods (freeze drying, spray drying, and film drying), with and without surfactant. Properties of the dried powders included powder morphology, specific surface area (SSA), protein surface coverage, thermal analysis, and protein secondary structure. Storage stability of Met-hGH in different formulations was also studied at 50 degrees C and at 60 degrees C for 3 months. The dried powders displayed different morphologies, depending mainly on the method of drying and on the presence or absence of surfactant. Film dried powders had the lowest SSA (approximately 0.03 m(2)/g) and the lowest total protein surface accumulation (approximately 0.003%). Surfactant caused a reduction in the SSA of both spray dried and freeze dried powders. Spray dried powders showed greater protein surface coverage and SSA relative to the same formulations dried by other means. Greater in-process perturbations of protein secondary structure were observed with polymer excipients. Formulation impacted physical stability. In general, low molecular weight stabilizers provided better stability. For example, the aggregation rate at 50 degrees C of Met-hGH in a freeze dried trehalose-based formulation was approximately four times smaller than the corresponding Ficoll-70-based formulation. Drying method also influenced physical stability. In general, the film dried preparations studied showed superior stability to preparations dried by other methods, especially those formulations employing low molecular weight stabilizers.  相似文献   

17.
To test the feasibility of preparing redispersible powders from nanosuspensions without further addition of drying protectants, Lovastatin was processed into nanosuspensions and subsequently converted into a powder form using a spray-drying process. The effects of spray-drying process parameters and stabilizers on the properties of the spray-dried powders were evaluated. The inlet air temperature was found to have the most pronounced impact; a low-inlet air temperature consistently yielded dried powders with improved redispersibility. This was attributed to the low Peclet number associated with a low-inlet air temperature, making nanoparticles less prone to aggregation and coalescence during spray drying, as evidenced by the well-defined boundary shown between nanoparticles in the SEM photomicrographs of the spray-dried microparticles. The influence of atomization pressure is significant particularly at a low-inlet air temperature. The redispersibility index value of the powder is dependent on the type of stabilizers used in the nanosuspension formulation. Spray-dried powders with acceptable redispersibility were prepared with drug concentration as high as 3%. In conclusion, with optimized process parameters and selected stabilizers, spray drying is a feasible process in the solidification of nanosuspensions with high drug loading and acceptable redispersibility.  相似文献   

18.
There has been an increasing interest in the development of protein nanotherapeutics for diseases such as cancer, diabetes and asthma. Spray drying with prior micro mixing is commonly used to obtain these powders. However, the separation and collection of protein nanoparticles with conventional spray dryer setups has been known to be extremely challenging due to its typical low collection efficiency for fine particles less than 2μm. To date, there has been no feasible approach to produce these protein nanoparticles in a single step and with high yield (>70%). In this study, we explored the feasibility of the novel Nano Spray Dryer B-90 (equipped with a vibrating mesh spray technology and an electrostatic particle collector) for the production of bovine serum albumin (BSA) nanoparticles. A statistical experimental design method (Taguchi method based on three levels, five variables L(18) orthogonal array robust design) was implemented to study the effect of and optimize the experimental conditions of: (1) spray mesh size, (2) BSA solution concentration, (3) surfactant concentration, (4) drying air flow rate and (5) inlet temperature on: (1) size and (2) morphology (axial ratio). Particle size and morphology were predominantly influenced by the spray mesh size and surfactant concentration, respectively. The drying air flow rate and inlet temperature had minimal impact. Optimized production of smooth spherical nanoparticles (median size: 460±10nm, axial ratio: 1.03±0.00, span 1.03±0.03, yield: 72±4%) was achieved using the 4μm spray mesh at BSA concentration of 0.1% (w/v), surfactant concentration of 0.05% (w/v), drying flow rate of 150L/min and inlet temperature of 120°C. The Nano Spray Dryer B-90 thus offers a new, simple and alternative approach for the production of protein nanoparticles suited for a variety of drug delivery applications.  相似文献   

19.
The aim of this study was to assess the potential of delivering a combination antibiotic therapy, containing doxycycline and ciprofloxacin (both hydrochloride) as a dry powder (DPI) formulation for inhalation. Single and combination antibiotics were produced by spray drying. Particle size distributions were characterized by laser diffraction and imaging conducted by scanning electron microscopy. Solid-state characterisation of the antibiotics was carried out using differential scanning calorimetry, dynamic vapour sorption, X-ray powder diffraction, and differential scanning calorimetry. Using the Aerolizer device, the aerosol performance was measured using multistage liquid impinger and analysed using high performance liquid chromatography (R(2) = 1.0, CV = 0.4-1.0%). Furthermore, a disk diffusion test was performed for the assessment of the in vitro antimicrobial activity of the raw and spray dried antibiotics against bacteria. Results showed that cospray drying of the ciprofloxacin and doxycycline produced an antibiotic formulation (in a 1:1 ratio) suitable for inhalation that showed to be physically more stable then the analogous single spray dried antibiotic. The cospray dried powder has improved dispersion over the less stable single spray dried ciprofloxacin. The spray dried antibiotics were observed to have similar antimicrobial activity to the original antibiotics for Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pyrogenes, suggesting the spray drying process does not affect the anti-bacterial activity of the drug. Cospray dried antibiotics from a DPI is thus feasible and can potentially be an attractive delivery alternative to the more conventional systemic delivery route.  相似文献   

20.
The purpose of this study was to improve insulin absorption from dry powder after administration in lung without an absorption enhancer. The dry powders, with mannitol as a carrier, were prepared with or without an absorption enhancer (citric acid) by supercritical carbon dioxide (SCF) and spray drying (SD) processes. Insulin powder was precipitated from dimethyl sulfoxide and aqueous solutions by dispersing the insulin solutions from parallel and V-type nozzles, respectively, into supercritical carbon dioxide, which is an antisolvent for insulin. In vitro aerosol performance was evaluated with a cascade impactor. Insulin powder containing citric acid prepared by the SCF method (MIC SCF) showed improved inhalation performance compared with insulin powder prepared by the SD process, although the particle size of the former powder was larger than that in powders prepared by SD. Insulin absorption was estimated from the change in plasma glucose level. The blood glucose level after administration of the insulin powder without citric acid prepared by the SCF process (MI SCF) decreased rapidly, and a significant difference was observed for areas under the curve of change in plasma glucose concentration versus time (AUCs) between MI SCF and the insulin powder without citric acid prepared by the SD process (MI SD). These results suggest that the SCF technique would be useful to prepare dry powders suitable for inhalation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号