首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Sodium currents mediated by voltage-sensitive sodium channels in normal and scorpion toxin-resistant neuroblastoma cells were measured using a giga-ohm seal recording method in the whole cell patch configuration. The voltage and time dependence of sodium currents were similar in normal and mutant cell lines. Half-maximal activation occurred for test depolarizations in the range of -7 to -11 mV. Half-maximal inactivation occurred for pre-pulses in the range of -62 to -69 mV. Scorpion toxin from Leiurus quinquestriatus (100 to 200 nM) increased the time constant for sodium channel inactivation 6- to 9-fold, increased the peak sodium current 2.0 +/- 0.5-fold, shifted the voltage dependence of sodium channel activation 7 to 11 mV to more negative potentials, and made the voltage dependence of inactivation less steep. These effects were observed for both normal and scorpion toxin-resistant neuroblastoma cells. However, the effect of Leiurus toxin on the rate of inactivation was half-maximal at 1.7 nM for the parental cell line N18, in contrast to 5.4 or 39 nM for the scorpion toxin-resistant clone LV30 and 24 or 51 nM for LV10. These results show that scorpion toxin resistance results from a specific change in channel properties that does not impair normal function but causes an increase in the apparent KD for Leiurus toxin action on sodium channels.  相似文献   

2.
Tetrodotoxin-sensitive and tetrodotoxin-resistant single sodium channel currents were recorded from rat dorsal root ganglion neurons. The two types of sodium channel currents could be distinguished by the effects of predepolarization, 10 nM tetrodotoxin, and the inactivation during depolarization. Single-channel conductances were calculated to be 6.3 and 3.4 pS in the tetrodotoxin-sensitive and tetrodotoxin-resistant channels, respectively.  相似文献   

3.
Schwab Y  Jahke R  Jover E 《Neuroreport》2004,15(7):1219-1223
Rat melanotrophs fire Na+ and Ca2(+)-dependent action potentials. Whereas the molecular identity of Ca2+ channels expressed by these cells is well documented, less is known about Na channels. We characterize the expression of seven sodium channel alpha-subunit and the beta1- and beta2-subunit mRNAs. The tetrodotoxin-resistant Nav1.8 and Nav1.9 alpha subunit mRNAs are detected in the newborn intermediate lobe and in cultured melanotrophs. Electrophysiological recordings further demonstrate the expression of both tetrodotoxin-sensitive and tetrodotoxin-resistant currents by dissociated melanotrophs. Moreover, activated sodium channels are able to elicit intracellular calcium waves, both in the absence or in the presence of tetrodotoxin. This work shows that rat melanotrophs express functional tetrodotoxin-resistant sodium channels, whose activation can lead to the generation of intracellular calcium waves.  相似文献   

4.
Song J  Jang YY  Shin YK  Lee C  Chung S 《Brain research》2000,855(2):267-273
The effects of N-ethylmaleimide (NEM), an alkylating reagent to protein sulfhydryl groups, on tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) sodium channels in rat dorsal root ganglion (DRG) neurons were studied using the whole cell configuration of patch-clamp technique. When currents were evoked by step depolarizations to 0 mV from a holding potential of -80 mV NEM decreased the amplitude of TTX-S sodium current, but exerted little or no effect on that of TTX-R sodium current. The inhibitory effect of NEM on TTX-S sodium channel was mainly due to the shift of the steady-state inactivation curve in the hyperpolarizing direction. NEM did not affect the voltage-dependence of the activation of TTX-S sodium channel. The steady-state inactivation curve for TTX-R sodium channel was shifted by NEM in the hyperpolarizing direction as that for TTX-S sodium channel. NEM caused a change in the voltage-dependence of the activation of TTX-R sodium channel unlike TTX-S sodium channel. After NEM treatment, the amplitudes of TTX-R sodium currents at test voltages below -10 mV were increased, but those at more positive voltages were not affected. This was explained by the shift in the conductance-voltage curve for TTX-R sodium channels in the hyperpolarizing direction after NEM treatment.  相似文献   

5.
We have previously presented evidence that electrical activity and increased cytosolic calcium reduce the density of sarcolemmal tetrodotoxin (TTX)-sensitive sodium channels in cultured rat muscle cells (Sherman, S. J., and W. A. Catterall (1984) Proc. Natl. Acad. Sci. U. S. A. 81: 262-266). We show here that growth of cells in ryanodine has a biphasic effect on sodium channel number. At low concentrations (0.3 to 10 microM) where this drug releases calcium from the sarcoplasmic reticulum into the cytoplasm, sodium channel number is reduced 62%; whereas, at higher concentrations where total cellular calcium is depleted, the density of sodium channels is increased 40% above control. These results provide further evidence for modulation of sodium channel number by cytosolic calcium. Growth of muscle cells in the presence of agents that mimic cyclic AMP (cAMP) action or increase intracellular cAMP levels including 8-bromo-cyclic AMP (8-BrcAMP), cyclic nucleotide phosphodiesterase inhibitors, and forskolin increased sodium channel density up to 125%. This action did not involve changes in spontaneous electrical activity. Dibutyryl cGMP had no effect. Measurement of the turnover rate of sodium channels after block of channel accumulation by tunicamycin (1.5 micrograms/ml) gave a half-time of 18 hr for exponential decay of TTX-sensitive sodium channels in cultured rat muscle cells after an initial 6-hr lag period. Treatments which modulate sodium channel number through changes in cytosolic calcium or cAMP had no effect on the rate of channel turnover. The increase of sodium channel number after inhibiton of electrical activity or treatment with 8-BrcAMP was half-maximal at 17 hr, consistent with an increase in the rate of sodium channel biosynthesis and/or incorporation into the sarcolemma without a change in channel turnover time. We conclude that cytosolic calcium decreases and cAMP increases sodium channel number by modulating the rate of biosynthesis and/or processing of channel components. The biochemical mechanisms of these regulatory effects are considered.  相似文献   

6.
TTX-sensitive (TTX-S) and TTX-resistant (TTX-R) sodium channel currents were analyzed in acutely dissociated dorsal root ganglion (DRG) neurons isolated from 3-12-d-old and adult rats. Currents were recorded using the whole-cell patch-clamp technique. TTX-R current was more likely to be present in younger animals (3-7 d), whereas TTX-S current was more common in older animals (7-10 d), although TTX-R current was recorded from adult rat DRG neurons. The TTX-R and TTX-S currents differed in their steady-state inactivation, with 50% inactivation voltage at -40 +/- 5 mV (n = 10) for TTX-R currents and -70 +/- 4 mV (n = 10) for TTX-S currents. These current types also differed in their activation kinetics, with 50% activation values of -15 +/- 5 mV (n = 5) for TTX-R currents and -26 +/- 6 mV (n = 5) for TTX-S currents. The interactions of TTX-R and TTX-S channels with various pharmacological agents and divalent cations were studied. The Kd values for TTX-S and TTX-R currents were estimated to be 0.3 nM and 100 microM for TTX, 0.5 nM and 10 microM for saxitoxin, and 50 microM and 200 microM for lidocaine, respectively. TTX-S channels did not exhibit a marked use-dependent block by lidocaine, whereas lidocaine significantly decreased TTX-R current in a use-dependent manner at frequencies ranging from 1 to 33.3 Hz. Several external divalent cations exerted different effects on these current types.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The effects of N-ethylmaleimide (NEM), an alkylating reagent to protein sulfhydryl groups, on tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) sodium channels in rat dorsal root ganglion (DRG) neurons were studied using the whole cell configuration of patch-clamp technique. When currents were evoked by step depolarizations to 0 mV from a holding potential of −80 mV NEM decreased the amplitude of TTX-S sodium current, but exerted little or no effect on that of TTX-R sodium current. The inhibitory effect of NEM on TTX-S sodium channel was mainly due to the shift of the steady-state inactivation curve in the hyperpolarizing direction. NEM did not affect the voltage-dependence of the activation of TTX-S sodium channel. The steady-state inactivation curve for TTX-R sodium channel was shifted by NEM in the hyperpolarizing direction as that for TTX-S sodium channel. NEM caused a change in the voltage-dependence of the activation of TTX-R sodium channel unlike TTX-S sodium channel. After NEM treatment, the amplitudes of TTX-R sodium currents at test voltages below −10 mV were increased, but those at more positive voltages were not affected. This was explained by the shift in the conductance–voltage curve for TTX-R sodium channels in the hyperpolarizing direction after NEM treatment.  相似文献   

8.
Fetal mouse brain cells were investigated by 22Na+ flux assays with the aim to determine the ontogenetic time course of appearance of functional voltage-sensitive sodium channels. Their pharmacological properties were assessed by measurement of the response to known neurotoxins, acting at site 1, 2, or 3 of the Na+ channel. Brain cell suspensions, prepared at 11-19 d of prenatal development in vivo, and fetal brain neurons in culture were explored. In vivo neurotoxin-sensitive Na+ influx becomes detectable at 12 d of gestation, in concordance with the time of appearance of saturable binding sites for alpha-scorpion toxin (alpha-ScTx) and saxitoxin. Progression in fetal age or in time in vitro is accompanied by an increase in the initial rate and in the amplitude of Na+ uptake stimulated by batrachotoxin or veratridine. The general pharmacological properties of developing Na+ channels are very similar to the known properties of voltage-dependent Na+ channels in adult nerve: Batrachotoxin acts as a full channel agonist and veratridine as a partial agonist. Their respective apparent affinities are increased in presence of alpha-ScTx, in agreement with the known positive cooperativity of toxins acting at sites 2 and 3 of the Na+ channel. alpha-ScTx alone induces a small increase in Na+ permeability; its effect is greatly amplified in the presence of batrachotoxin or veratridine. The apparent affinity of alpha-ScTx is reduced by cell depolarization. Tetrodotoxin and saxitoxin block the increase in Na+ permeability induced by batrachotoxin, veratridine, and alpha-ScTx.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Currents through "fast" (tetrodotoxin-sensitive) sodium channels in rat sensory neurons were measured before and after external application of solutions containing 10 mM Woodward's reagent K (pH 6.0). The membrane treatment has resulted in irreversible changes of stationary activation and inactivation parameters.  相似文献   

10.
The pyrethroid insecticides are known to modify neuronal sodium channels to cause a prolongation of whole cell current. The sodium channels expressed in the dorsal root ganglion neurons of the rat are of two types, one highly sensitive to tetrodotoxin and the other highly resistant to tetrodotoxin. The pyrethroid allethrin exerted profound effects on tetrodotoxin-resistant sodium channels while causing minimal effects on tetrodotoxin-sensitive sodium channels. Currents derived from tetrodotoxin-resistant sodium channels were greatly prolonged during a step depolarization; the tail currents upon repolarization were also augmented and prolonged. In the tetrodotoxin-sensitive sodium channel currents, these changes caused by allethrin were much smaller or negligible. The activation and inactivation voltages of tetrodotoxin-resistant peak sodium currents were not significantly altered by allethrin. The differential action of allethrin on the two types of sodium channels would be important not only in identifying the target molecular structure but also in interpreting the symptoms of poisoning in mammals.  相似文献   

11.
The differential effects of the pyrethroid tetramethrin on tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) single sodium channel currents in rat dorsal root ganglion (DRG) neurons were investigated using the outside-out configuration of patch-clamp technique. Channel conductances were 10.7 and 6.3 pS for TTX-S and TTX-R sodium channels, respectively, at a room temperature of 24–26°C. The single-channel current of TTX-S sodium channels at the test potential of −30 mV was −1.27 ± 0.25 pA, and was not changed after exposure to 10 μM tetramethrin (−1.28 ± 0.23 pA). The open time histogram of TTX-S single-channel currents could be fitted by a single exponential function with a time constant of 1.27 ms. After exposure to 10 μM tetramethrin, the open time histogram could be fitted by the sum of two exponential functions with time constants of 1.36 ms (τfast) and 5.73 ms (τlow). The percentage of contribution of each component to the population was 62% for the fast component representing the normal channels and 38% for the slow component representing the tetramethrin modified channels. The amplitudc of TTX-R single-channel currents was slightly changed from −0.72 ± 0.14 to −0.83 ± 0.07 pA by 10 μM tetramethrin. The open time histogram of TTX-R single-channel currents could be fitted by a single exponential function with a time constant of 1.92 ms. In the presence of 10 μM tetramethrin, the open time histogram could be fitted by the sum of two exponential functions with time constants of 2.07 ms (τfast) and 9.75 ms (τslow). The percentage of contribution of each component was 15% for the fast, unmodified component and 85% for the slow, modified component. Differential effects of tetramethrin on the open time distribution of single sodium channel currents explains the differential sensitivity of TTX-S and TTX-R sodium channels.  相似文献   

12.
Voltage-dependent Ca2+ currents (ICas) in neurons can be classified into T-, N- and L-types. In the CA1 pyramidal neurons freshly isolated from rat hippocampus we found an additional tetrodotoxin (TTX)-sensitive Ca2+ current (termed 'TTX-ICa') which passed through the Na+ channel. The TTX-ICa showed a heterogeneous distribution in the dorsal site of Ca1 region.  相似文献   

13.
Two-electrode voltage clamp of intact, identified pyloric neurons of the spiny lobster stomatogastric ganglion reveals two major outward currents. A rapidly inactivating, tetraethylammonium- (TEA) insensitive, 4-aminopyridine- (4AP) sensitive, outward current resembles IA of molluscan neurons; it activates rapidly on depolarizations above rest (e.g. -45 mV), delaying both the axonal-sodium and the neuropil-calcium spikes which escape voltage-clamp control. We infer that A-current is distributed both in a space clamped region (on or near the soma) and in a non-space clamped region with access to the generators for sodium and calcium spikes. A calcium-dependent outward current, IO(Ca), activates rapidly at clamp steps above -25 mV and inactivates at depolarizing holding voltages. Increasing depolarization results in an increase in both IO(Ca) and firing rate but a reduction in the amplitude of the sodium spike current. Blockage of IO(Ca) with Cd2+ causes little change in spike firing pattern. These observations are consistent with IO(Ca) being activated primarily in the soma and nearby regions which are under good control with a soma voltage clamp (and distant from the Na(+)-spike trigger zone). While the lack of space clamp limits resolution of charging transients and tail currents, the identification of the major current subgroups can still be readily accomplished, and inferences about the location and function of currents can be made which would not be possible if the cells were space clamped or truncated.  相似文献   

14.
15.
16.
A voltage clamp analysis of the effects ofl-aspartate,l-glutamate and related derivatives on Purkinje cell dendrites was performed in rat cerebellar slices maintained in vitro. Short iontophoretic pulse applications ofl-aspartate andl-glutamate in the dendritic field of Purkinje cells induced dose-dependent inward currents with fast onset and recovery. Quisqualate application also gave rise to well developed inward currents with fast onset and slow recovery, whereas N-methyl-d,l-aspartate had no or little effect on Purkinje cell membranes unless prolonged (several seconds) applications were used. Steady applications of low doses of N-methyl-d,l-aspartate much more severely depressedl-aspartate thanl-glutamate mediated responses, whereas inward currents due to quisqualate were unaffected. Inward currents due to quisqualate were often more reduced than those due tol-aspartate by steady applications of 2-amino-5-phosphonovalerate, and the antagonistic action of this drug on responses due tol-glutamate was very weak. These results suggest that receptors of Purkinje cells for glutamate and aspartate are different, and are also different from N-methyl-d-aspartate and quisqualate receptors.  相似文献   

17.
Voltage clamp analysis of cholinergic action in the hippocampus   总被引:28,自引:0,他引:28  
A slow muscarinic EPSP, accompanied by an increase in membrane input resistance, can be elicited in hippocampal CA1 pyramidal cells in vitro by electrical stimulation of cholinergic afferents in the slice preparation. Associated with the slow EPSP is a blockade of calcium-activated potassium afterhyperpolarizations (AHPs) (Cole and Nicoll, 1984a). In this study a single-electrode voltage clamp was used to examine the currents affected by activation of muscarinic receptors, using either bath application of carbachol or electrical stimulation of the cholinergic afferents. The 3 main findings of this study are that (1) of the 2 calcium-activated potassium currents (termed IAHP and IC) in hippocampal pyramidal cells, only IAHP is sensitive to carbachol; (2) IAHP is approximately 10-fold more sensitive to carbachol than is another muscarine-sensitive current, IM; and (3) neither blockade of IAHP nor of IM can account for the production of the slow EPSP. Rather, the slow EPSP appears to be generated by the blockade of a nonvoltage-dependent, resting potassium current. We propose that the muscarinic blockade of IAHP, which largely accounts for spike frequency adaptation, is primarily involved in enhancing action potential discharge to depolarizing stimuli, while the slow EPSP acts directly to cause action potential discharge.  相似文献   

18.
Contactin, a glycosyl-phosphatidylinositol (GPI)-anchored predominantly neuronal cell surface glycoprotein, associates with sodium channels Nav1.2, Nav1.3 and Nav1.9, and enhances the density of these channels on the plasma membrane in mammalian expression systems. However, a detailed functional analysis of these interactions and of untested putative interactions with other sodium channel isoforms in mammalian neuronal cells has not been carried out. We examined the expression and function of sodium channels in small-diameter dorsal root ganglion (DRG) neurons from contactin-deficient (CNTN-/-) mice, compared to CNTN+/+ litter mates. Nav1.9 is preferentially expressed in isolectin B4 (IB4)-positive neurons and thus we used this marker to subdivide small-diameter DRG neurons. Using whole-cell patch-clamp recording, we observed a greater than two-fold reduction of tetrodotoxin-resistant (TTX-R) Nav1.8 and Nav1.9 current densities in IB4+ DRG neurons cultured from CNTN-/- vs. CNTN+/+ mice. Current densities for TTX-sensitive (TTX-S) sodium channels were unaffected. Contactin's effect was selective for IB4+ neurons as current densities for both TTX-R and TTX-S channels were not significantly different in IB4- DRG neurons from the two genotypes. Consistent with these results, we have demonstrated a reduction in Nav1.8 and Nav1.9 immunostaining on peripherin-positive unmyelinated axons in sciatic nerves from CNTN-/- mice but detected no changes in the expression for the two major TTX-S channels Nav1.6 and Nav1.7. These data provide evidence of a role for contactin in selectively regulating the cell surface expression and current densities of TTX-R but not TTX-S Na+ channel isoforms in nociceptive DRG neurons; this regulation could modulate the membrane properties and excitability of these neurons.  相似文献   

19.
Voltage clamp analysis of pentylenetetrazol effects on Aplysia neurons   总被引:1,自引:0,他引:1  
  相似文献   

20.
Neuroma formation was induced in adult rat sciatic nerves and the animals were allowed to survive for 1-10 months. In 10 animals single large myelinated fibres from the nerve segment above the neuroma were subjected to voltage clamp analysis. Six animals were fixed by glutaraldehyde perfusion and nodes of Ranvier or large myelinated fibres above the neuroma were examined in the electron microscope (EM). Most fibres exhibited normal action potentials, but a few had a reduced excitability and small action potentials. Some fibres had increased membrane time constant and leak conductance and a markedly increased membrane capacitance. Most of the examined nodes of Ranvier exhibited abnormally large delayed K currents, which could be blocked with 4-aminopyridine (4-AP). The Na current was normal. In the EM most large cross-cut myelinated axons were markedly atrophic, particularly after long survival times. Evaginations from the paranodal region of these axons penetrated between the terminating paranodal myelin lamellae. The nodal axolemmal undercoating could be very prominent and in some cases the nodal axon was irregular. These findings show that large myelinated peripheral nerve fibres, which are chronically disconnected from their peripheral targets, exhibit specific structural and functional abnormalities of the nodes of Ranvier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号