首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aqueous dispersions of solid lipid nanoparticles (SLN) show some interesting features in topical drug delivery. However, to get a semisolid carrier having the appropriate consistency for topical application, the liquid SLN dispersions have to be incorporated in convenient topical dosage forms like hydrogels or creams. This is a time-consuming production process with several disadvantages. A new one-step production process delivering a semisolid topical formulation including SLN is presented avoiding these disadvantages. The semisolid SLN dispersions were produced by high-pressure homogenization using an APV Lab 40 homogenizer. The resulting dispersions were characterized concerning their particle size and rheological properties. Despite the high lipid content of the SLN dispersions, they retained their colloidal particle size. Viscoelastic measurements proved the existence of a gel-like structure with a prevailing elastic component.  相似文献   

2.
Aqueous solid lipid nanoparticle (SLN) dispersions with a high lipid content up to 35% and viscous to semisolid consistency were produced by a high pressure homogenization process. Despite their high lipid content and viscosity these dispersions preserved their colloidal size range. The SLN dispersions were compared to nanoemulsions and microparticle dispersions with regard to particle size, viscoelastic properties and formation of a semisolid gel structure. Viscoelastic measurements including oscillation stress sweep tests and oscillation frequency sweep tests demonstrated that the existence of a solid particle matrix with a particle size in the nanometer range is a prerequisite to form a semisolid dispersion having the appropriate consistency for topical application. Striking differences were observed between solid lipid micro- and nanodispersions of the same composition. Particle size reduction resulted in an 80-fold increase of the elastic modulus. Particle size distribution, the physical state of the dispersed lipid phase and the emulsifier concentration have been identified as further key factors for the viscoelastic properties and gel structure of the lipid nanodispersions. By conducting oscillation measurements it was possible to relate the stability of lipid dispersions to specific rheological parameters therefore providing a sensitive tool in stability assessment. Changing the production process from a 40 ml batch to a 2 l batch turned out to have an influence on the colloidal structures of semisolid SLN dispersions. Consistency increased but particle size and ratio of elastic to viscous properties stayed in the same range.  相似文献   

3.
Aqueous dispersions of lipid nanoparticles are being investigated as drug delivery systems for different therapeutic purposes. One of their interesting features is the possibility of topical use, for which these systems have to be incorporated into commonly used dermal carriers, such as creams or hydrogels, in order to have a proper semisolid consistency. For the present investigation four different gel-forming agents (xanthan gum, hydroxyethylcellulose 4000, Carbopol943 and chitosan) were selected for hydrogel preparation. Aqueous dispersions of lipid nanoparticles--solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC)--made from tripalmitin were prepared by hot high pressure homogenization and then incorporated into the freshly prepared hydrogels. NLC differ from SLN due to the presence of a liquid lipid (Miglyol812) in the lipid matrix. Lipid nanoparticles were physically characterized before and after their incorporation into hydrogels. By means of rheological investigations it could be demonstrated that physical properties of the dispersed lipid phase have a great impact on the rheological properties of the prepared semisolid formulations. By employing an oscillation frequency sweep test, significant differences in elastic response of SLN and NLC aqueous dispersions could be observed.  相似文献   

4.
Nanocarriers are highly interesting delivery systems for the dermal application of drugs. Based on a eudermic alkylpolyglycosid nanoemulsions, solid lipid nanoparticles (SLN) and nano-structured lipid carriers (NLC) were prepared by ultrasonic dispersion. The ultrasound preparation technique turned out to be convenient and rapid. For reasons of comparison, nanoemulsions were also prepared by high-pressure homogenisation with highly similar physicochemical properties. Cryo electron microscopy was employed to elucidate the microstructure of the ultrasound-engineered nanocarriers. Furthermore, in vitro skin experiments showed excellent skin permeation and penetration properties for flufenamic acid from all formulations. Moreover, ATR-FTIR studies revealed barrier-restorative properties for NLC and SLN. Furthermore, the rheological characteristics of all nanocarriers were determined. In order to increase the viscosity, three different polymers were employed to also prepare semi-solid NLC drug delivery systems. All of them exhibited comparable skin diffusion properties, but may offer improved dermal applicability.  相似文献   

5.
Souto EB  Müller RH 《Die Pharmazie》2007,62(7):505-509
Clotrimazole is a wide spectrum local imidazolic antifungal agent used in several dermatological creams, having e.g. 1% (m/m) such as Canesten and Fungizid-ratiopharm cream. In the present work, a new system based on solid lipid nanoparticles (SLN) containing the identical concentration of drug has been developed. A comparative study between the rheological properties of the referred creams and the developed aqueous SLN dispersions was carried out. The influence of incorporation of SLN in a standard hydrophilic cream on its flow curves was also assessed. In addition, the release of clotrimazole from the two commercial creams, as well as from aqueous SLN dispersions was studied. Concerning the rheological investigations, all tested commercial creams revealed very low shear rates and no yield points. Lipid nanoparticles having a mean diameter of approx. 200 nm have been incorporated into a hydrophilic cream, in a concentration of 20%, 30% or 40% (m/m). The hydrophilic cream containing 20% of SLN showed a dilatant-like character; however, increasing the percentage of incorporated lipid nanoparticles to 30% and 40% the formulation changed to a more pseudoplastic character, showing yield values of 28 Pa and 39 Pa, respectively. For in vitro release studies, Franz diffusion cells with a cellulose acetate membrane were used to measure the release of clotrimazole from two different commercial formulations in comparison to the aqueous SLN dispersion. After 6 h the amount of drug released was higher than 48% when delivered from both investigated commercial formulations and not higher than 25% when delivered from the aqueous SLN dispersion. The percentage of drug released determined after 24 h was more than 50% for Canesten cream and Fungizid-ratiopharm cream and not higher than 30% for the developed SLN formulation showing its prolonged release character.  相似文献   

6.
Solid lipid nanoparticles (SLN) are a colloidal carrier system for controlled drug delivery. The lipophilic model drugs tetracaine and etomidate were incorporated to study the maximum drug loading, entrapment efficacy, effect of drug incorporation on SLN size, zeta potential (charge) and long-term physical stability. Drug loads of up to 10% could be achieved whilst simultaneously maintaining a physically stable nanoparticle dispersion. Incorporation of drugs showed no or little effect on particle size and zeta potential compared to drug-free SLN. The optimized production parameters previously established for drug-free SLN dispersions can therefore be transferred to drug-loaded systems to facilitate product development.  相似文献   

7.
Solid lipid nanoparticles (SLN) are a colloidal carrier system for controlled drug delivery. The lipophilic model drugs tetracaine and etomidate were incorporated to study the maximum drug loading, entrapment efficacy, effect of drug incorporation on SLN size, zeta potential (charge) and long-term physical stability. Drug loads of up to 10% could be achieved whilst simultaneously maintaining a physically stable nanoparticle dispersion. Incorporation of drugs showed no or little effect on particle size and zeta potential compared to drug-free SLN. The optimized production parameters previously established for drug-free SLN dispersions can therefore be transferred to drug-loaded systems to facilitate product development.  相似文献   

8.
SLN and NLC for topical delivery of ketoconazole   总被引:4,自引:0,他引:4  
The clinical use of ketoconazole has been related to some adverse effects in healthy adults, specially local reactions, such as severe irritation, pruritus and stinging. The purpose of the present work is the assessment of ketoconazole stability in aqueous SLN and NLC dispersions, as well as the physicochemical stability of these lipid nanoparticles, which might be useful for targeting this drug into topical route, minimizing the adverse side effects and providing a controlled release. Lipid particles were prepared using Compritol 888 ATO as solid lipid. The natural antioxidant alpha-tocopherol was selected as liquid lipid compound for the preparation of NLC. Ketoconazole loading capacity was identical for both SLN and NLC systems (5% of particle mass). SLN were physically stable as suspensions during 3 months of storage, but the SLN matrix was not able to protect the chemically labile ketoconazole against degradation under light exposure. In contrast, the NLC were able to stabilize the drug, but the aqueous NLC dispersion showed size increase during storage. Potential topical formulations are light-protected packaged SLN or NLC physically stabilized in a gel formulation.  相似文献   

9.
The clinical use of ketoconazole has been related to some adverse effects in healthy adults, specially local reactions, such as severe irritation, pruritus and stinging. The purpose of the present work is the assessment of ketoconazole stability in aqueous SLN and NLC dispersions, as well as the physicochemical stability of these lipid nanoparticles, which might be useful for targeting this drug into topical route, minimizing the adverse side effects and providing a controlled release. Lipid particles were prepared using Compritol®888 ATO as solid lipid. The natural antioxidant α-tocopherol was selected as liquid lipid compound for the preparation of NLC. Ketoconazole loading capacity was identical for both SLN and NLC systems (5% of particle mass). SLN were physically stable as suspensions during 3 months of storage, but the SLN matrix was not able to protect the chemically labile ketoconazole against degradation under light exposure. In contrast, the NLC were able to stabilize the drug, but the aqueous NLC dispersion showed size increase during storage. Potential topical formulations are light-protected packaged SLN or NLC physically stabilized in a gel formulation.  相似文献   

10.
Solid lipid nanoparticles (SLN) containing a novel potential sunscreen n-dodecyl-ferulate (ester of ferulic acid) were developed. The preparation and stability parameters of n-dodecyl-ferulate-loaded SLN have been investigated concerning particle size, surface electrical charge (zeta potential) and matrix crystallinity. The chemical stability of n-dodecyl-ferulate at high temperatures was also assessed by thermal gravimetry analysis. For the selection of the appropriated lipid matrix, chemically different lipids were melted with 4% (m/m) of active and lipid nanoparticles were prepared by the so-called high pressure homogenization technique. n-Dodecyl-ferulate-loaded SLN prepared with cetyl palmitate showed the lowest mean particle size and polydispersity index, as well as the highest physical stability during storage time of 21 days at 4, 20 and 40 degrees C. These colloidal dispersions containing the sunscreen also exhibited the common melting behaviour of aqueous SLN dispersions.  相似文献   

11.
The aim of the present study was the evaluation of lipid nanoparticles (solid lipid nanoparticles, SLN, and nanostructured lipid carriers, NLC) as potential carriers for octyl-methoxycinnamate (OMC). The release pattern of OMC from SLN and NLC was evaluated in vitro, determining its percutaneous absorption through excised human skin. Additional in vitro studies were performed in order to evaluate, after UVA radiation treatment, the spectral stability of OMC-loaded lipid nanoparticles. From the obtained results, ultrasonication method yielded both SLN and NLC in the nanometer range with a high active loading and a particle shape close to spherical. Differential scanning calorimetry data pointed out the key role of the inner oil phase of NLC in stabilizing the particle architecture and in increasing the solubility of OMC as compared with SLN. In vitro results showed that OMC, when incorporated in viscosized NLC dispersions (OMC-NLC), exhibited a lower flux with respect to viscosized SLN dispersions (OMC-SLN) and two reference formulations: a microemulsion (OMC-ME) and a hydroalcoholic gel (OMC-GEL). Photostability studies revealed that viscosized NLC dispersions were the most efficient at preserving OMC from ultraviolet-mediated photodegradation.  相似文献   

12.
Recently, colloidal dispersions based on solid lipids (solid lipid nanoparticles, SLN) and mixtures of solid and liquid lipids (nanostructured lipid carriers, NLC) were described as innovative carrier systems. A spherical particle shape is the basis of features such as a high loading capacity and controlled drug release characteristics due to smaller lipid-water interfaces and longer diffusion pathways when compared to thin platelets. The structures of SLN and the influence of oil load (NLC) on particle properties were investigated by photon correlation spectroscopy (PCS), laser diffractometry (LD), cryo-field emission scanning electron microscopy (cryo-FESEM), Raman spectroscopy and infrared spectroscopy (IR), and compared to a conventional nanoemulsion. PCS and LD data show similar size and size distribution for SLN and NLC (approximately 210 nm, polydispersity index approximately 0.15) and suggested a long term physical stability for the dispersions which had been stored for up to 12 months at different temperatures. Using cryo-FESEM droplets (for the nanoemulsion) and almost spherical particles for SLN and NLC were observed. Raman spectroscopy resulted in spectra for NLC that are weighted to the SLN spectra, suggesting an undisturbed crystal structure. Infrared spectra of the NLC are predominantly SLN in nature. Importantly the SLN bands are unshifted in the NLC spectrum indicating that the crystalline structure is unaffected by the presence of the oil.  相似文献   

13.
Colloidal lipid nanoparticle dispersions have been characterized by rheological measurements using two different nanostructured lipid carrier (NLC)-based formulations intended for cosmetic application of substances like sunflower oil and alpha-tocopherol. This study has shown that rheological and viscoelastic properties of aqueous NLC dispersions are quantitatively very different depending on the composition of the oil phase and the temperature of storage despite similar or even identical particle size. NLC were loaded with 30% active ingredient relative to the particle mass. Stearyl alcohol was used as lipid matrix and the particle sizes determined by photon correlation spectroscopy were in the range 210-270 nm. In general, sun flower oil-loaded NLC dispersions showed distinctly higher storage modulus (G'), loss modulus (G") and complex viscosity (eta*). Storage at lower temperature (4 degrees C versus 20 degrees C) delay the build up of a microstructure affected not only by size and stabilizer but also loaded ingredient and storage history after preparation, i.e. storage at room temperature accelerates the build up of a final suspension structure.  相似文献   

14.
目的:建立一种干燥的固体脂质纳米粒的制备方法。方法:采用超声分散法制备黄豆苷元固体脂质纳米粒的混悬液,然后采用喷雾干燥法将其制成干燥的、可再分散的固体脂质纳米粒。结果:在混悬液中黄豆苷元固体脂质纳米粒为球形粒子,平均粒径约为280 nm,喷雾干燥后得到的纳米粒仍为球型,分散后的粒径与喷干前相比有所增大,平均粒径约为720 nm,稳定性较好。结论:喷雾干燥法制备黄豆苷元固体脂质纳米粒是可行的。  相似文献   

15.
The choice of surfactant or surfactant mixtures at suitable concentrations contributes to the stability of solid lipid nanoparticles (SLN). In this study, it was found that 1.5% TegoCare 450 was the most effective stabilizer for the Witepsol E85 SLN dispersion compared to Tween 80, Tyloxapol and Pluronic F68 according to the data obtained from differential scanning calorimetry (DSC), zeta potential (ZP) measurements and particle size analysis.  相似文献   

16.
Solid lipid nanoparticles (SLNs) loaded with Cyclosporine A using glyceryl monostearate (GMS) and glyceryl palmitostearate (GPS) as lipid matrices were prepared by melt-homogenization using high-pressure homogenizer. Various process parameters such as homogenization pressure, homogenization cycles and formulation parameters such as ratio of drug: lipid, emulsifier: lipid and emulsifier: co-emulsifier were optimized using particle size and entrapment efficiencies as the dependent variables. The mean particle size of optimized batches of the GMS SLN and GPS SLN were found to be 131 nm and 158 nm and their entrapment efficiencies were 83 +/- 3.08% and 97 +/- 2.59% respectively. To improve the handling processing and stability of the prepared SLNs, the SLN dispersions were spray dried and its effect on size and reconstitution parameters were evaluated. The spray drying of SLNs did not significantly alter the size of SLNs and they exhibited good redispersibility. Solid state studies such as Infra Red Spectroscopy and Differential Scanning Calorimetry indicated absence of any chemical interaction between Cyclosporine A and the lipids. Scanning Electron Microscopy of optimized formulations showed spherical shape with smooth and non porous surface. In vitro release studies revealed that GMS based SLNs released the drug faster (41.12% in 20 hours) than GPS SLNs (7.958% in 20 hours). Release of Cyclosporine A from GMS SLN followed Higuchi equation better than first order while release from GPS SLN followed first order better than Higuchi model.  相似文献   

17.
Solid lipid nanoparticles (SLN, Lipopearls) are nanoparticles made from solid lipids by high pressure homogenization. Incorporation of chemically labile active ingredients into the solid lipid matrix protects against chemical degradation, which is shown for vitamin E. The SLN are physically stable in aqueous dispersions and also after incorporation into a dermal cream as proven by photon correlation spectroscopy and differential scanning calorimetry. Electron microscopy and atomic force microscopy data reveal the spherical shape of the SLN and the detailed structure of the particle surface. Ultrafine particles form an adhesive film leading to an occlusive effect on the skin. The occlusion promotes the penetration of vitamin E into the skin, as shown by the stripping test. In addition to chemical stabilization of active ingredients, occlusive effects on the skin and subsequent enhanced penetration of compounds, the SLN also possess a pigment effect covering undesired colours leading to an increased aesthetic acceptance by the customer.  相似文献   

18.
Solid lipid nanoparticles (SLNTM, LipopearlsTM) are nanoparticles made from solid lipids by highpressurehomogenization. Incorporation of chemically labile active ingredients intothe solid lipid matrix protects against chemical degradation, which is shown for vitamin E. The SLN are physically stable in aqueous dispersions and also after incorporation into a dermal cream as proven by photon correlation spectroscopy and differential scanning calorimetry. Electron microscopy and atomic force microscopy data reveal the spherical shape of the SLN and the detailed structure of the particle surface. Ultrafine particles form an adhesive film leading to an occlusive effect on the skin. The occlusion promotes the penetration of vitamin E into the skin, as shown by the stripping test. In addition to chemical stabilization of active ingredients, occlusive effects on the skin and subsequent enhanced penetration of compounds, the SLN also possess a pigment effect covering undesired colours leading to an increased aesthetic acceptance by the customer.  相似文献   

19.
Solid lipid nanoparticles (SLN) were produced loaded with cyclosporine A in order to develop an improved oral formulation. In this study, the particles were characterized with regard to the structure of the lipid particle matrix, being a determining factor for mode of drug incorporation and drug release. Differential scanning calorimetry (DSC) and wide-angle X-ray scattering (WAXS) measurements were employed for the analysis of the polymorphic modifications and mode of drug incorporation. Particles were produced using Imwitor 900 as lipid matrix (the suspension consisted of 10% particles, 8% Imwitor 900, 2% cyclosporine A), 2.5% Tagat S, 0.5% sodium cholate and 87% water. DSC and WAXS were used to analyse bulk lipid, bulk drug, drug incorporated in the bulk and unloaded and drug-loaded SLN dispersions. The processing of the bulk lipid into nanoparticles was accompanied by a polymorphic transformation from the beta to the alpha-modification. After production, the drug-free SLN dispersions converted back to beta-modification, while the drug-loaded SLN stayed primarily in alpha-modification. After incorporation of cyclosporine A into SLN, the peptide lost its crystalline character. Based on WAXS data, it could be concluded that cyclosporine is molecularly dispersed in between the fatty acid chains of the liquid-crystalline alpha-modification fraction of the loaded SLN.  相似文献   

20.
雷公藤内酯醇新型固体脂质纳米粒微观结构研究   总被引:3,自引:1,他引:3  
选择固体脂质山榆酸甘油酯(Compritol ATO 888)和液态油三辛酸甘油酯制备雷公藤内酯醇新型固体脂质纳米粒(SLN)载体系统,运用常温、低温差示量热分析(DSC)、X射线衍射(XRD)、小角X射线衍射(SAXS)和核磁共振(NMR)等多种分析测试手段对新型SLN性能和微观结构进行研究。结果显示,新型SLN纳米体系熔点从70.8 ℃降低到61.4 ℃,纳米化后熔融焓大大降低,于-17.7 ℃发生油相熔融吸热行为;无论是否载药,制备的纳米分散体系(新型SLN和传统SLN)都是由α相和少量β′相组成,所载药物雷公藤内酯醇对载体结晶性能基本无影响;新型SLN中分子运动自由度介于Compritol ATO 888基材和其制备的传统SLN二者之间,其长程结构相对于传统SLN和基材的结构只偏移0.1 nm,表明中链甘油酯液态油分子不可能插入片间和2个或3个链长结构间。两种物理状态不同的甘油酯在新型SLN中仍以两种状态存在:液态油和固态脂质,因其有各自的熔融性状(低温和常温DSC研究)和分子运动状态(NMR检测),推测本实验室制备新型SLN的微观结构应是液态油分子,没有插入到固体脂质层状结构之间,而是形成了更加微细的纳米油室,周围包被着固体脂质,整个球形颗粒还处于纳米尺度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号